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Spectral methods for learning discrete latent tree
models∗
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†
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We consider the problems of structure learning and pa-
rameter estimation for discrete latent tree models. For struc-
ture learning, we introduce a concept of generalized infor-
mation distance between variables based on singular values
of probability matrices, and use it to build a bottom-up
algorithm for structure recovery. The algorithm is proved
to be consistent. Moreover, a finite sample bound is given
for exact structure recovery. For parameter estimation, we
suggest a novel matrix decomposition algorithm for the
case when every latent variable has two states. Unlike the
expectation-maximization (EM) algorithm, our algorithm
can avoid trapping into a local optima. Moreover, it is
proved to be consistent and a finite sample bound is also
given for parameter estimation.

In both structural learning and parameter estimation,
empirical results were provided to support our theoreti-
cal results. In applications to real data, we analyzed the
Changchun mayor hotline data, where the underlying struc-
tures were detected for Chinese words. We demonstrated
that the proposed method is efficient for discovering hierar-
chical structures and latent information.

AMS 2000 subject classifications: Primary 62H05;
secondary 62H12.
Keywords and phrases: Latent variables, Parameter es-
timation, Spectral distance, Structural learning.

1. INTRODUCTION

This work is motivated by mining and analyzing various
topics for the Chinese text data. A typical way of modeling
those potential topics is to introduce latent variables for ex-
plaining the mechanism that words are generated from top-
ics. There are already numerous probabilistic models with
latent variables from both Statistics [3] and Machine Learn-
ing [18]. This paper is concerned with tree-structure graph-
ical probabilistic models where all the leaf nodes are ob-
served while the internal nodes are latent. They are referred
to as latent tree models in the literature. Special latent tree
models such as phylogenetic trees [10] have been studied for
decades. General latent tree models were first investigated
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by Zhang [25] (2004), where they were called hierarchical
latent class models. In Machine Learning, they are used as
a tool for latent structure discovery [7], density estimation
[23], and multidimensional clustering [16].

Previous algorithms for learning the structures of latent
tree models can be roughly divided into two groups. Algo-
rithms in the first group [25, 26, 6] aim at searching the
latent tree models that are optimal according to a scor-
ing metric. Those algorithms are computationally expensive
and do not have consistency guarantees. Algorithms in the
second group focus on the phylogenetic tree reconstruction
[11, 10, 8, 14, 17, 21], where the structures of models mostly
confine each internal node to having the same degree ex-
cept for the root. Inspired by works on the phylogenetic
tree reconstruction, Choi et al. [7] (2011) propose several
consistent bottom-up structure learning algorithms based
on the information distance. Those algorithms require that
all the variables have the same number of states. In this
paper, we generalize Choi’s work by allowing observed vari-
ables to have different numbers of states. A key novelty of
our work is the use of a concept of generalized informa-
tion distance between variables that is defined using sin-
gular values of probability matrices. Our new algorithm is
proved to be consistent. Moreover, a finite sample bound
is given for exact structure recovery with high probabil-
ity.

For estimating the parameters of latent tree models, pre-
vious works [25] rely on the expectation-maximization (EM)
algorithm. EM suffers from the possibility of being trapped
in local optimum, and thus no consistency guarantees can be
provided for those works. Chang [5] (1996) propose a matrix
decomposition method for parameter estimation on phylo-
genetic trees that does not have the local optimum prob-
lem. However, it requires all variables (observed and latent)
to have the same number of states, and encounters parame-
ter unidentifiability when matrix decomposition yields equal
diagonal elements. In this paper, we relax the restriction of
Chang’s method on the numbers of states for observed vari-
ables, and fix the parameter unidentifiability problem in the
special case when all latent variables have two states. We
propose a consistent algorithm, which has a finite sample
size for parameter estimation with high probability.

This paper is organized as follows. In Section 2, we in-
troduce some basic notations and assumptions used in this
paper. In Section 3, we introduce the notion of general in-
formation distance based on the product of singular values,
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and provide a recursive bottom-up algorithm for learning
latent tree structures. In Section 4, we discuss parameter
estimation methods for discrete latent tree models, and pro-
pose a new parameter estimation algorithm. In Section 5,
we report empirical results and real data applications to
demonstrate the performance of our structural learning and
parameter estimating algorithms. In Section 6, we give a
brief summary of our work. Finally, in the Appendix, we
provide the proofs for the theorems presented in our pa-
per.

2. PRELIMINARIES

Let G = (W,E) be a simple undirected graph, where W
is the set of vertices and E is the set of undirected edges.
The number of edges incident to a vertex x in G is called the
degree of x, which is denoted by d(x). A set L of distinct
vertices [x0, x1, · · · , xm] is referred to as a path of length
m in G between x0 and xm if (xi−1, xi) ∈ E for all i =
1, · · · ,m. Furthermore, if (x0, xm) ∈ E, we also refer to L
as a cycle in G. If for any two vertices of W there is a path
in G between them, we refer to G as a connected graph.
Two disjoint vertex subsets A,B are separated by a vertex
subset S in G if for any x ∈ A and any y ∈ B every path
in G between x and y contains a vertex in S. If (W,E) is a
connected simple graph with no cycles, it is referred to as a
tree and denoted as T . If a vertex x of T with d(x) = 1, it
is referred to as a leaf in T . If two leaves x and y in T are
adjacent to the same vertex, we refer to {x, y} as a sibling
pair in T . The diameter of a tree T is the number of nodes
on the longest path between two leaves in the tree, which
we denote as diam(T ).

If the vertex set W of G represents a set of random vari-
ables, a graphical model on G is a family of probability
distributions where A and B are conditionally independent
given S when two disjoint vertex subsets A and B are sep-
arated by a vertex subset S in G. Let T = (W,E) be a
tree. A graphical model T on T is referred to as a latent
tree model if the leaves of T are observed variables and
the internal nodes are latent variables. Furthermore, if we
limit T to a multinomial distribution family, we refer to
it as a discrete latent tree model. We denote the set of
observed variables as V and the set of latent variables as
H. Thus, the vertex set W of T comprises V and H, i.e.,
W = V

⋃
H. If the path between two observed variables

vi, vj in T contains h, then we refer to vi, vj as bifurcation
variables of h.

If we set a root variable for T , we can obtain a directed
tree �T = (W, �E) and the directions are fixed from the root

to the leaves. The element x → y in �E represents a direct
edge from x to y. We refer to y as a child variable of x and
denote the relation as y ∈ ch(x). An ordered set L of distinct
vertices x0 → x1 → · · · → xm is referred to as a directed
path of length m in �T from x0 to xm if xi−1 → xi ∈ �E for

all i = 1, · · · ,m. If there is a directed path in �T from h to

an observed variable vi, then we refer to vi as a directed
bifurcation variable of h in �T .

For any random variable z ∈ W , let dz denote the num-
ber of states of the variable z. For two random variables
x, y ∈ W , the joint probability matrix between them is de-
fined by Pxy = (Pr(x = xi, y = yj))1≤i≤dx,1≤j≤dy . When
x = y, as a special case of the joint probability matrix, the
marginal probability matrix Pxx is a diagonal matrix with
diagonal element Pr(x = xi), where i = 1, · · · , dx. For two
distinct random variables x, y ∈ W , the conditional prob-
ability matrix from y to x is defined by Px|y = (Pr(x =
xi|y = yj))1≤i≤dx,1≤j≤dy . For any variable x ∈ W , we define
a probability vector Px = (Pr(x = x1), · · · , P r(x = xdx))

T .
For any matrix M , let σt(M) denote the t-th largest sin-

gular value of M . For any vector x, its Euclidean norm is
denoted by ‖x‖ and the spectral norm of M is denoted by
‖M‖, i.e., ‖M‖ := sup‖x‖=1 ‖Mx‖.

For latent tree models, two standard assumptions (see [7]
and [19]) ensure that a latent tree does not include a redun-
dant latent variable, as follows.
(A1) Each latent variable has at least three neighbors.
(A2) Any two variables connected by an edge in the tree
model are neither perfectly dependent nor independent.
In the present study, the observed variables in our archi-
tecture are allowed to have different numbers of states. To
obtain probably approximately correct results, we also re-
quire the following two assumptions.
(A3) Latent variables have the same number r of states.
(A4) The joint probability matrix has rank r.
To avoid a case where the generalized information distance
is infinity, the assumption (A4) of the rank of the joint prob-
ability matrix is suggested, which is a generalization of the
parameter identifiability conditions in latent variable mod-
els [1, 13, 17]. The following section shows that (A3) and
(A4) ensure that the generalized information distance based
on the product of singular values has an additive property
along paths in latent trees.

3. LEARNING THE TREE STRUCTURE FOR
DISCRETE LATENT TREE MODELS

3.1 Generalized information distance

We define a generalized information distance between two
discrete variables x and y by

(3.1) dxy = − log

r∏
s=1

σs(Pxy)√
det(Pxx) det(Pyy)

,

where σs(A) denotes the s-th largest singular value of matrix
A and r is the rank of Pxy. This distance is an extension ver-
sion of the information distance [7] and is similar as the case
of continuous non-Gaussian variables [22]. For continuous
non-Gaussian variables x and y, a covariance operator Cxy
can be introduced to compute the expectation of the product
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of functions f(x) and g(y), using linear operations in the re-
producing kernel Hilbert space F . Formally, let Cxy : F → F
such that for all f, g ∈ F , Exy(f(x)g(y)) = 〈f, Cxyg〉. The
distance metric [22] between two continuous non-Gaussian
variables x and y is defined by

dxy = −1

2
log |CxyCT

xy|∗ +
1

4
log |CxxCT

xx|∗ +
1

4
log |CyyCT

yy|∗,

where |C|∗ is the product of non-zero singular values of C.
For two discrete variables x and y have the same num-

ber of states, Pxy is a square matrix. Furthermore, if Pxy

has a full rank, our generalized information distance is re-
duced to the information distance [7]. For example, if h and
g are any two latent variables in H, based on assumptions
(A3) and (A4), the generalized information distance dhg
defined in (3.1) degenerates into the information distance

− log
| det(Phg)|√

det(Phh) det(Pgg)
. The rank of Phg is r, so every row

of Phg has at least one nonzero element and every column
also has at least one nonzero element. Furthermore, some
row of Phg has at least two nonzero elements if and only if
some column of Phg has at least two nonzero elements. While
there are two or more nonzero elements in some rows of Phg,
we find that | det(Phg)| < det(Phh) based on the definition
of the determinant and the relation between Phg and Phh.
Similarly, while there are two or more nonzero elements in
some column of Phg, we find that | det(Phg)| < det(Pgg).
As discussed above, | det(Phg)| = det(Phh) if and only
if every row of Phg contains only one nonzero element.
| det(Phg)| = det(Pgg) if and only if every column of Phg

contains only one nonzero element, which occurs if and only
if every row of Phg has only one nonzero element. Thus,
dhg = 0 if and only if every row of Phg has only one nonzero
element, which means that a permutation σ exists such that
Pr(g = gσ(i)|h = hi) = 1, i = 1, · · · , r. Based on assump-
tion (A2), we find that dhg > 0 for any two distinct latent
variables h, g ∈ H in latent tree models. Similar results re-
garding the positive properties of information distance were
reported by Lake [15], where he proposed the use of sequence
distances to reconstruct evolutionary trees and illustrated
some basic properties of sequence distances. It should be
noted that the generalized information distance dxy may be
negative if x or y is an observed variable. In the following
section, however, we show that the sign does not affect our
bottom-up algorithm for learning latent tree structure.

Similar to the information distance [7, 15], the generalized
information distance also has additivity along paths. We
present the following theorem, the proof of which is given in
Appendix A.1.

Theorem 3.1. For a tree T = (W,E) and a discrete latent
tree model T on T , if [x0 = x, x1, · · · , xm = y] is a path in
T between two variables x, y ∈ W , then we find that:

dxy =

m−1∑
i=0

dxixi+1 .

3.2 Structural learning algorithm for discrete
latent tree models

In this subsection, we propose an algorithm for the struc-
tural learning of latent trees (SLLT) based on generalized
information distances. This algorithm is a modification of
the recursive grouping (RG) procedure proposed by Choi et
al. [7]. RG is a bottom-up algorithm used to determine the
relationships among leaf variables at each iteration. Similar
to RG, the computational complexity of our algorithm is
also O(diam(T )n3), where T is the latent tree and n is the
number of observed variables.

We assume that observed variables V are all the leaves of
a latent tree model. The inputs of the SLLT algorithm are
generalized information distances dxy for any x, y ∈ V . The
output of it is the latent tree structure.

For any three variables x, y, z ∈ V , we denote the gener-
alized information distance difference dxz − dyz by Φxyz. At
10 in Step 2 and 10, 20 in Step 3 of the SLLT algorithm, two
basic local structures among variables can be found based
on this difference. One is called a sibling group, the nodes
of which share the same neighbor, and any two nodes of a
sibling group form a sibling pair. The other is called a re-
maining child relation, where one node u is adjacent only
to the other node w that has been found, and we refer to
u as a remaining child of w. In contrast to computing the
information distance difference among latent variables [7],
our algorithm only use the generalized information distance
difference among observed variables.

In the SLLT algorithm, the temporary set Y contains
nodes, where their structural relations are checked in the
current step and Y is updated after we have found all the
local structures among Y . The temporary set D records all
of the nodes that have been found to be sibling groups or
remaining child relations. Every new latent variable is gen-
erated by a sibling group, as shown by 30 in Step 2 and 40

on Step 3, so for every latent variable there are at least two
bifurcation variables in D. The temporary set D(v) can be
regarded as a descendant set of v and, more precisely, the
adjacent relations among D(v)

⋃
{v} can form a subtree Tv

with the root v. Furthermore, it can be seen that 40 in Step
3 incorporates new subtrees with some smaller subtrees.

To illustrate the SLLT algorithm in more detail, we intro-
duce a discrete time record t = 0, 1, 2, · · · as a subscript of
Y,D,D(•) to describe the iteration process when |Y | ≥ 3. At
the beginning of each iteration step, the set Yt is contained
in W \Dt and Dt(x)

⋂
Dt(y) = ∅ for any two distinct nodes

x, y ∈ Yt because of the updating mechanism of Dt(•). In
Appendix B, we discuss the details of Steps 2 and 3, which
can find the correct remaining child relations and sibling
groups in T (W \Dt) at each iteration, and the updated set
Dt+1 is added to the nodes as the remaining children or in
the sibling groups of T (W \ Dt) after each iteration. Fur-
thermore, T (W \ Dt+1) is a subtree of T and the updated
set Yt+1 contains all the leaf variables of T (W \Dt+1) after
each iteration.
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Algorithm 1 Structural Learning for Latent Trees (SLLT)

Input: Observed variables V and generalized information dis-
tances dxy for any x, y ∈ V ;

Output: A tree structure T ;
1: Y ← V . D ← ∅. For any v ∈ V , D(v) ← ∅.
2: If |Y | ≥ 3, compute Φxyz = dxz − dyz for any three variables

x, y, z ∈ Y .
10. For any x, y ∈ Y ,

if Φxyz is constant for any z ∈ Y \ {x, y},
then {x, y} are a sibling pair in T .

20. Denote maximal sibling groups by {Πl}Ll=1.

Y ← Y \
L⋃

l=1

Πl.

30. For any l = 1, · · · , L,
add a new latent variable hl and connect hl to every
node in Πl.
Y ← Y

⋃
{hl},D(hl) ←

⋃
x∈Πl

{x},D ← D
⋃
(
⋃

x∈Πl

{x}).

3: While |Y | ≥ 3,
10. For any v ∈ Y

⋂
V and any u ∈ Y \ V ,

M ← V \ (D(u)
⋃
{v}) and choose bifurcation

variables i, j of u in D.
If Φvim is constant and Φvim �= Φvij for any m ∈ M ,
then {v, u} is a sibling pair in T (W \D).

20. For any two variables u,w ∈ Y \ V ,
M ← V \ (D(u)

⋃
D(w)) and choose bifurcation

variables i, j of u and k, l of w in D.
If Φikm = Φikl and Φkim �= Φkij for any m ∈ M ,
then u is a remaining child of w in T (W \D).

For any two variables u,w ∈ Y \ V ,
if neither u nor w is a remaining child,
M ← V \ (D(u)

⋃
D(w)) and choose bifurcation

variables i, j of u and k, l of w in D.
If Φikm is constant and Φikm �= Φikl,Φkim �= Φkij

for any m ∈ M ,
then {u,w} is a sibling pair in T (W \D).

30. Denote the remaining child relations and maximal sibling

groups by {Πl}Ll=1. Y ← Y \
L⋃

l=1

Πl.

40. For any l = 1, · · · , L,
if Πl = {u,w} and u is a remaining child of w,

then connect u and w.
Y ← Y

⋃
{w}, D(w) ← D(w)

⋃
D(u)

⋃
{u}

and D ← D
⋃
{u}.

if Πl is a sibling group,
then add a new latent variable hl and connect hl

to every node in Πl.
Y ← Y

⋃
{hl}, D(hl) ←

⋃
x∈Πl

(D(x)
⋃
{x})

and D ← D
⋃
(
⋃

x∈Πl

{x}).

4: If |Y | = 2, connect the two variables in Y .
5: return The structure generated by the adjacent relation-

ship.

Let us consider an example to illustrate our algorithm.
A latent tree T is shown in Figure 1, where v1, · · · , v12 are
observed variables and h1, · · · , h8 are latent variables. Ac-
cording to our SLLT algorithm, the generalized information

Figure 1. Example of the SLLT algorithm.

distances among observed variables v1, · · · , v12 of T are used
to learn the unknown latent tree structure. For any three ob-
served variables x, y and z, all the generalized information
distance differences Φxyz can be computed by dxz − dyz.
When Φv1v2v3 = Φv1v2v4 = · · · = Φv1v2v12 , we find that
{v1, v2} is a sibling pair in T . Similarly, {v1, v3}, {v2, v3},
{v4, v5}, {v6, v7}, {v8, v9}, {v10, v11} are sibling pairs in
T . Thus, {v1, v2, v3}, {v4, v5}, {v6, v7}, {v8, v9}, {v10, v11}
are five maximal sibling groups, and h5, h2, h6, h7, and
h8 are added as latent variables. D = {v1, · · · , v11} and
Y = {h2, h5, h6, h7, h8, v12}. After dropping the variables
in D from T , all of the leaf variables {h5, h6, h7, h8, v12} of
T (W \D) are contained in Y .

The observed variables v10, v11 are bifurcation variables
of the latent variable h8. When Φv12v10vm is constant and
Φv12v10vm �= Φv12v10v11 for m = 1, · · · , 9, we find that
{h8, v12} is a sibling pair in T (W \ D). The observed
variables v1, v2 are bifurcation variables of latent variable
h5 and the observed variables v4, v5 are bifurcation vari-
ables of latent variable h2. When Φv1v4vm = Φv1v4v5 and
Φv4v1vm �= Φv4v1v2 for m = 6, · · · , 12, the latent vari-
able h5 is a remaining child of latent variable h2. The ob-
served variables v6, v7 are bifurcation variables of latent
variable h6 and the observed variables v8, v9 are bifurca-
tion variables of latent variable h7. When Φv6v8vm is con-
stant and Φv6v8vm �= Φv6v8v9 , Φv8v6vm �= Φv8v6v7 for m =
1, · · · , 5, 10, 11, 12, we find that {h6, h7} is a sibling pair in
T (W \D). Thus, {h8, v12} and {h6, h7} are two maximal sib-
ling groups in T (W \D), and h4, h3 are added as latent vari-
ables. D = {v1, · · · , v12, h5, · · · , h8} and Y = {h2, h3, h4}.
After dropping the variables in D from T , all of the leaf vari-
ables {h2, h3, h4} of T (W \D) are contained in Y . Finally,
{h2, h3, h4} forms a sibling group based on similar checks.

The following theorem illustrates the correctness and
computational complexity of our SLLT algorithm, and its
proof is provided in Appendix A.2.

Theorem 3.2. If the joint probability matrixes Pxy, x, y ∈
V , are available, then SLLT outputs the true tree T correctly
within the time O(diam(T )n3).

To apply our SLLT algorithm to data, we need to use
the empirical estimation P̂xy of the joint probability matrix
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Pxy for any two observed variables x, y ∈ V . We compute

the empirical estimation matrix P̂xy = ( 1
N

∑N
k=1 I(x

(k) =

xi, y
(k) = yj))1≤i≤dx,1≤j≤dy , where N is the sample size.

Furthermore, the empirical estimation d̂xy of the generalized

information distance dxy can be obtained from P̂xy and the

empirical estimation Φ̂xyz of the generalized information dis-

tance difference Φxyz can be computed by Φ̂xyz = d̂xz − d̂yz
for x, y, z ∈ V .

In the SLLT algorithm, to determine the relations be-
tween two variables, we only need to check whether Φxyz

is equal to some constant or not. However, in the sample-
based SLLT algorithm, Φ̂xyz and Φ̂xyw may not be exactly

equal even if Φxyz = Φxyw. The difference |Φ̂xyz − Φ̂xyw|
tends to |Φxyz − Φxyw| when N → ∞, so we use this dif-
ference to determine the equality of Φxyz and Φxyw in the
sample-based version of the algorithm. Thus, we introduce
a prescribed threshold ε > 0 such that |Φ̂xyz − Φ̂xyw| < ε
if and only if Φxyz = Φxyw when the sample size N is suf-
ficiently large. In fact, we define a lower bound notation
ρmin = min{|Φxyz − Φxyw| : Φxyz �= Φxyw, x, y, z, w ∈ V },
and choose a threshold value ε < min{ 1

2ρmin, 1}. Further-
more, if |(Φ̂xyz − Φ̂xyw) − (Φxyz − Φxyw)| < ε when N

is sufficiently large, then we find that |(Φ̂xyz − Φ̂xyw)| <
ε if and only if Φxyz = Φxyw. Therefore, if the event

{|(Φ̂xyz− Φ̂xyw)− (Φxyz−Φxyw)| < ε for any x, y, z, w ∈ V }
occurs with a high probability when the sample size is suffi-
ciently large, we can learn the true latent tree structure with
a high probability from the sample-based SLLT algorithm
based on the correction of Theorem 3.2.

The following theorem shows the structural consistency of
the sample-based SLLT algorithm. Moreover, it illustrates
the relation between the sample size and the intrinsic pa-
rameters of models when learning the true latent tree. The
following notations are used in the following theorem. We
denote σmin as the minimum of the non-zero singular val-
ues of all the joint probability matrices for the observed
variables, i.e., σmin = minx,y∈V σrank(Pxy)(Pxy). We denote
dmax as the maximum number of states of the observed vari-
ables, i.e., dmax = maxx∈V dx.

Theorem 3.3. Let η ∈ (0, 1). Assume that the SLLT al-
gorithm is provided with N independent samples from the
distribution over the observed variables set V . If the sample
size N is sufficiently large such that

(3.2)

√
t0 + 1√
N

<
εσmin

16dmax
,

where t0 = − log η
n2dmax

, then with a probability of at least
1− η, the SLLT algorithm returns the true latent tree.

The proof of this Theorem 3.3 is provided in Ap-
pendix A.3, where we show that the event {|(Φ̂xyz−Φ̂xyw)−
(Φxyz − Φxyw)| < ε for any x, y, z, w ∈ V } occurs with
a high probability if the sample size is sufficiently large.

From (3.2), we know that if N is sufficiently large such

that 16dmax(
√
t0+1)

σmin

√
N

< min{ 1
2ρmin, 1}, there exists a suitable

threshold value ε < min{1
2ρmin, 1}.

The SLLT algorithm based on the generalized informa-
tion distance is a modification of the recursive grouping
(RG) algorithm [7]. The major differences between the SLLT
and the RG lie in three points. First, the SLLT adopts the
generalized information distance which is an extension ver-
sion of the information distance used in the RG. Second, the
computation in SLLT relies on distances between observed
variables while the RG needs to use distances on latent vari-
ables. Third, the RG utilizes one extra tuning parameter
to control the learning of latent tree. Inspired by the RG
algorithm, we introduce two tuning parameters for control-
ling the empirical distance, and obtain a modified version of
SLLT with a better structural learning ability. Since a longer
distance estimate is less accurate for a given number of sam-
ples, not all estimated distances can be used for structural
learning reliably [7]. So we only consider possible sibling

pairs for nodes x, y whose estimated distances d̂xy, d̂xz, d̂yz
are controlled by two thresholds τ1, τ2. Specifically, for each
pair of nodes x, y such that d̂xy < τ1, Φ̂xyz is computed for

node z in Kxy = {z ∈ V \{x, y}|max{d̂xz, d̂yz} < τ2}. So we
can obtain a modified algorithm SLLT2 with two thresholds
τ1 and τ2 for structural learning. The threshold τ1 can con-
trol the relationship of nodes in sibling groups. A small τ1
makes variables in a sibling group close to each other. The
threshold τ2 can control the judgement of the sibling pair
relationship. A large τ2 introduces more nodes into Kxy. It

increases the possibility to find that Φ̂xyz is not a constant.
So this case tends to obtain a tree with small branches. A
possible way for trimming nodes from the tree is to reduce
the value of τ2.

To our best knowledge, there is no widely accepted frame-
work of tuning parameters selection for latent tree models.
Tuning parameters τ1 and τ2 can be interpreted as an upper
bound of distances among sibling pairs and an upper bound
of reliable distances among observed variables respectively.
In this paper, τ1 and τ2 are chosen such that τ1 < τ2 and
τ1, τ2 are less than the mean plus two standard deviations
of the distances computed in our experiments. Specifically,
we empirically set τ1 = 3 and τ2 = 5.

4. ESTIMATING THE PARAMETERS FOR
DISCRETE LATENT TREE MODELS

The methods described in this section were inspired by
Chang’s matrix decomposition technique [5] for discrete
Markov models of evolution. A similar technique [17] is also
discussed for phylogenies and hidden Markov models. An-
other method [2] based on the randomized spectral decom-
position can obtain the parameter estimates for mixture
models, but this method does not lead directly to practi-
cal algorithms because of the amplification of errors due to
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the reliance of a high order polynomial factor on the rank
parameter.

In general, we do not know the state number for latent
variables. Thus, the discrete latent tree model with only
two-state latent variables is a simple and efficient choice that
meets Occam’s Razor principle, although the BIC could give
other suggestions based on the penalized likelihood. More-
over, based on models with two-state latent variables, our
matrix decomposition method does not require the control
of eigenvalue separation using the additional randomized
methods employed by [2], so our method has a more compact
sample size bound shown in the following Theorem 4.1.

In this section, the observed variables are allowed to have
different numbers of states, but we will start with an illumi-
nating case where the observed variables are two-state.

4.1 Computing conditional probability
matrices by spectral decomposition

In this subsection, we assume that all the variables in
W are two-state, i.e., dx = 2 for any x ∈ W . According to
the basic assumption (A1), for each latent variable h, there
are at least three neighbors of h. Thus, there are at least
three leaf variables a, b, c in the tree such that a, b, c are
conditionally independent given h. As considered in [5], we
focus on the conditional probabilities Pr(a = ai, b = bj |c =
ck) for i, j, k = 1, 2, which are well defined when Pr(c =
ck) is positive. According to the conditional independence
relationship in latent tree models,

Pr(a = ai, b = bj |c = ck)

=
∑
l

Pr(h = hl, a = ai, b = bj |c = ck),

where Pr(h = hl, a = ai, b = bj |c = ck) = Pr(b = bj |h =
hl)Pr(a = ai|h = hl)Pr(h = hl|c = ck). We select i as 1 and
denote the matrix (Pr(a = a1, b = bj |c = ck))1≤j≤2,1≤k≤2

as P a=a1

b|c , thus P a=a1

b|c has the following decomposition:

Pb|h

(
Pr(a = a1|h = h1) 0

0 Pr(a = a1|h = h2)

)
Ph|c.

Furthermore, it can be decomposed into:

Pb|h

(
Pr(a = a1|h = h1) 0

0 Pr(a = a1|h = h2)

)
P−1
b|hPb|c.

Then, we obtain the spectral decomposition form:

P a=a1

b|c P−1
b|c

= Pb|h

(
Pr(a = a1|h = h1) 0

0 Pr(a = a1|h = h2)

)
P−1
b|h .

We denote the matrix (Pr(a = a1, b = bj , c =
ck))1≤j≤2,1≤k≤2 as P a=a1

bc . Since P a=a1

bc = P a=a1

b|c Pcc and

Pbc = Pb|cPcc, we have:

P a=a1

bc P−1
bc

= Pb|h

(
Pr(a = a1|h = h1) 0

0 Pr(a = a1|h = h2)

)
P−1
b|h .

(4.1)

The left side of this equation can be estimated by using the
observed variables. By spectral decomposition, the param-
eters of the latent variables can be obtained from the right
side of this equation. From assumption (A4), we find that
Pr(a = a1|h = h1) �= Pr(a = a1|h = h2), although we do
not know the actual states of h1 and h2. From equation (4.1),
the conditional probabilities Pr(a = a1|h = h1) and Pr(a =
a1|h = h2) are the two eigenvalues of P a=a1

bc P−1
bc , which

we denote as λ1 and λ2, respectively, and we assume that
λ1 > λ2 without any loss of generalization. Furthermore, the
vector xk = (Pr(b = b1|h = hk), P r(b = b2|h = hk))

T is the
eigenvector of P a=a1

bc P−1
bc that is associated with the eigen-

value λk for k = 1, 2. Thus, from the spectral decomposition
of P a=a1

bc P−1
bc , we can obtain Pb|h by using the restriction re-

lation that Pr(b = b1|h = hk) + Pr(b = b2|h = hk) = 1 for
k = 1, 2.

To apply this spectral decomposition method to data,
we need to estimate the two matrices P a=a1

bc and P−1
bc from

the observed data. We use the frequency matrix P̂ a=a1

bc =

( 1
N

∑N
k=1 I(a

(k) = a1, b
(k) = bj , c

(k) = cl))1≤j≤2,1≤l≤2 to
estimate the conditional probability matrix P a=a1

bc , where
N is the sample size. Similarly, the conditional probabil-
ity matrix Pbc is estimated by using the frequency matrix
P̂bc = ( 1

N

∑N
k=1 I(b

(k) = bj , c
(k) = cl))1≤j≤2,1≤l≤2, where N

is the sample size. As discussed above, based on the spectral
decomposition of P̂ a=a1

bc P̂−1
bc , we can obtain the estimation

P̂b|h for Pb|h.
The following Theorem 4.1 shows that the eigenvalues

λ̂1, λ̂2 with λ̂1 ≥ λ̂2 and the corresponding restricted eigen-
vectors x̂1, x̂2 of P̂ a=a1

bc P̂−1
bc are consistent with the true

eigenvalues λ1, λ2 and the corresponding restricted eigen-
vectors x1, x2 of P a=a1

bc P−1
bc . Thus, the estimation P̂b|h from

this spectral decomposition method is consistent with the
true conditional probability matrix Pb|h. The proof of The-
orem 4.1 is shown in Appendix B.1. For any invertible
matrix A, κ(A) denotes the condition number of A, i.e.,
κ(A) = ‖A‖‖A−1‖. Based on our assumptions, both Pbc and
Pa|h are invertible. For any η ∈ (0, 1), we define the events

E =
⋂

i=1,2{|λ̂i − λi| ≤ 3κ(Pb|h)‖P−1
bc ‖2 1+

√
t0√

N
, ‖x̂i − xi‖ ≤

18
|λ1−λ2| (1 + κ(Pb|h))‖P−1

bc ‖2 1+
√
t0√

N
}, where t0 = − log 1

2η.

Theorem 4.1. For any η ∈ (0, 1), when the sample size N
is sufficiently large such that

(4.2)
18

|λ1 − λ2|
(1 + κ(Pb|h))‖P−1

bc ‖2 1 +
√
t0√

N
< 1,

where t0 = − log 1
2η, we find that P (E) > 1− η.
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Chang [5] (1996) proposed this spectral decomposition
method for the evolutionary tree model. This method re-
quires that all of the variables have an equal number of states
and it does not limit the state number of the latent variables
to two. However, when the state number of latent variables
is more than two, this direct decomposition method may
cause the non-identifiablity of the eigenvector because the
dimension of some eigenspaces may be larger than one. In
the following subsection, we generalize Chang’s method to
latent tree models with observed variables that are allowed
to have different number of states. However, the restriction
of models with two-state latent variables is used to avoid
non-identifiability.

4.2 Case with only two-state latent variables

In this subsection, we assume that the state number of
the latent variables is two and that the state number of the
observed variables may be greater than two. As mentioned
in the previous subsection, for any latent variable h, there
are three leaf variables a, b, c ∈ V such that a, b, c are con-
ditionally independent given h. We consider the case where
da, db, dc ≥ 2 and we make some modifications of the matrix
decomposition method discussed in the previous subsection.

For any state 1 ≤ i ≤ da, we can view variable a as a

two-state variable a(i). The first state a
(i)
1 of a(i) is the i-

th state ai of a, and the second state a
(i)
2 represents the

other states {a1, · · · , ai−1, ai+1, · · · , ada} of a. Similarly, for
any 1 ≤ j ≤ db, 1 ≤ k ≤ dc, variables b and c can be
viewed as the two-state variables b(j) and c(k). The three
two-state variables a(i), b(j), and c(k) are also conditionally
independent given h.

If Pb(j)c(k) is nonsingular, P
a(i)=a

(i)
1

b(j)c(k) P−1
b(j)c(k) exists a spec-

tral decomposition:

Pb(j)|h

(
Pr(a = ai|h = h1) 0

0 Pr(a = ai|h = h2)

)
P−1
b(j)|h.

Since the rank of Pa|h is two, a minimum subscript i′ exists
such that Pr(a = ai′ |h = h1) �= Pr(a = ai′ |h = h2). We
refer to ai′ as the label state of a from h and record the val-
ues Pr(a = ai′ |h = h1) and Pr(a = ai′ |h = h2). Based on

the spectral decompositions of P
a(i′)=a

(i′)
1

b(j)c(k) P−1
b(j)c(k) , we can

obtain the conditional probability matrix Pb(j)|h because
Pr(a = ai′ |h = h1) �= Pr(a = ai′ |h = h2). The first row

(Pr(b(j) = b
(j)
1 |h = h1), P r(b(j) = b

(j)
1 |h = h2)) of Pb(j)|h is

simply the jth row (Pr(b = bj |h = h1), P r(b = bj |h = h2))
of Pb|h.

If Pb(j)c(k) is singular, this means that Pb(j)|h or Pc(k)|h is

singular because Pb(j)c(k) = Pb(j)|hPhhP
T
c(k)|h. We adjust the

value of k and if Pb(j)c(k) is nonsingular after the adjustment,
the jth row of Pb|h can be obtained by spectral decomposi-

tions of P
a(i′)=a

(i′)
1

b(j)c(k) P−1
b(j)c(k) . If Pb(j)c(k) is singular irrespective

of the adjustment of the value of k, Pb(j)|h must be singular

because there at least one state of c exists such that Pc(k)|h
is nonsingular. Thus, we find that Pr(b = bj |h = h1) =
Pr(b = bj |h = h2). We can adjust the value of k such that
Pa(i′)c(k) is nonsingular. Indeed, because the rank of Pc|h is
two, we find that Pr(c = ck|h = h1) �= Pr(c = ck|h = h2)
for some 1 ≤ k ≤ dc, thus Pa(i′)c(k) is nonsingular since
Pa(i′)c(k) = Pa(i′)|hPhhP

T
c(k)|h and both Pa(i′)|h and Pc(k)|h

are nonsingular. Using spectral decomposition of

P
b(j)=b

(j)
1

a(i′)c(k) P−1
a(i′)c(k)

= Pa(i′)|h

(
Pr(b = bj |h = h1) 0

0 Pr(b = bj |h = h2)

)
P−1
a(i′)|h,

we can obtain two equal conditional probabilities, Pr(b =
bj |h = h1) and Pr(b = bj |h = h2), which form the jth row
of Pb|h.

As discussed above, regardless of whether Pb(j)c(k) is sin-
gular or not, we can obtain the jth row of Pb|h. Thus, the
conditional matrix Pb|h can be obtained step by step. Since
the rank of Pb|h is two, a minimum subscript j′ exists such
that Pr(b = bj′ |h = h1) �= Pr(b = bj′ |h = h2). We refer
to bj′ as the label state of b from h and record the values
Pr(b = bj′ |h = h1) and Pr(b = bj′ |h = h2).

To compute the conditional probability matrix Pc|h, we

switch b(j) and c(k), and Pc|h can be obtained via the

repeated spectral decompositions of P
a(i′)=a

(i′)
1

c(k)b(j)
P−1
c(k)b(j)

or

P
c(k)=c

(k)
1

a(i′)b(j)
P−1
a(i′)b(j)

. To compute the conditional probability
matrix Pa|h, we use the label state bj′ of b from h and the
values Pr(b = bj′ |h = h1) and Pr(b = bj′ |h = h2), as

well as performing the decompositions of P
b(j

′)=b
(j′)
1

a(i)c(k) P−1
a(i)c(k)

to obtain the two eigenvectors, or the decompositions of

P
a(i)=a

(i)
1

b(j′)c(k) P−1
b(j′)c(k) to obtain the two eigenvalues. The con-

ditional probability matrix Pa|h can be obtained by per-
forming these decompositions repeatedly.

During the process used to generate the conditional prob-
ability matrix Pb|h, we actually obtain each of its rows in
each decomposition step. It should be noted that the corre-
sponding states of latent variable h in each column of Pb|h
must be the same. To achieve this, we fix two eigenvalues
Pr(a = ai′ |h = h1) �= Pr(a = ai′ |h = h2), and obtain the
two eigenvectors that correspond to Pr(a = ai′ |h = h1) and
Pr(a = ai′ |h = h2) in each decomposition step. Moreover,
we record the label states bj′ of b obtained from h and the
obtained values Pr(b = bj′ |h = h1) and Pr(b = bj′ |h = h2).

To determine the conditional probability Pc|h, we decom-

pose the matrix P
a(i′)=a

(i′)
1

c(k)b(j)
P−1
c(k)b(j)

to obtain the two eigen-
vectors according to the values Pr(a = ai′ |h = h1) and
Pr(a = ai′ |h = h2). To determine the conditional proba-

bility Pa|h, we decompose the matrix P
b(j

′)=b
(j′)
1

a(i)c(k) P−1
a(i)c(k) to

obtain the two eigenvectors according to the values Pr(b =
bj′ |h = h1) and Pr(b = bj′ |h = h2). As shown above, record-
ing the label states ai′ , bj′ guarantees that the states of la-
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tent variable h that correspond to the two columns of Pc|h
and Pa|h match those of the two columns obtained for Pb|h.

4.3 Parameter estimation algorithm for
discrete latent tree models

As discussed above, we only need the joint distributions
of three observed variables to obtain the parameters of all
the conditional probability matrices. Thus, we propose the
following PELT algorithm.

Algorithm 2 Parameter Estimation for Latent Trees
(PELT)

Input: A latent tree T with a root and the joint distributions
of three observed variables;

Output: All of conditional probability matrices on edges in T ;
1: Construct the directed tree �T .
2: For every latent variable h,

find all the child variables of h.
For every child variable of h,

find a directed bifurcation variable of child variable.
Collect the set C of all the directed bifurcation variables
{a, b, · · · } of all the child variables of h.
If C contains exactly two variables,

find an observed variable c such that the path between
c and h in T does not contain any child of h.

Compute Pa|h, Pb|h, · · · by spectral decomposition.
3: For every latent variable h and every child variable q of h,

if q is a latent variable,
choose a common directed bifurcation variable s of q
and h, and compute conditional probability matrix
Pq|h = P+

s|qPs|h.
4: return All the conditional probability matrices.

According to assumption (A1), every latent variable h has
at least three neighbors. If h has exactly two child variables
as described in step 2 of this algorithm, an observed variable
c must exist such that the path between c and h in T does
not contain any child of h. To guarantee that the column
states of Pa|h, Pb|h, · · · for h in step 2 are matched, we need
to record the label states of a and b from h and perform
the corresponding matrix decompositions according to the
label states. In step 3, since Ps|qPq|h = Ps|h and the rank of

Ps|q is two, Pq|h = P+
s|qPs|h, where P+

s|q = (PT
s|qPs|q)

−1PT
s|q.

Moreover, we can also obtain the probability vector Proot of
the root using Proot = P+

a|rootPa for any observed variable a
since Pa|rootProot = Pa.

In the PELT algorithm, we can use the frequency ma-
trices to replace the true probability matrices and obtain
the empirical version of this algorithm to estimate all the
conditional probability matrices of the discrete latent tree
models. If only the latent variables are restricted to being
two-state, we find that for any latent variable h ∈ H and any
v ∈ ch(h), the estimation matrix P̂v|h obtained by using the
PELT algorithm is consistent for the true conditional prob-
ability matrix Pv|h. The consistency theorem and proof are
shown in Appendix B.2.

Table 1. Time costs of the EM and PELT algorithms using a
sample size of 300 k

Model EM (s) PELT (s)

Model 1 4342.64 0.05393

Model 2 8659.58 0.11697

Model 3 3949.07 0.03561

Model 4 8528.13 0.09418

5. NUMERICAL EXPERIMENT

In this section, numerical experiments were designed
for both simulated and real datum. In Section 5.1, we
demonstrated the consistency of our algorithms on simu-
lated data from four concrete latent tree structures. In Sec-
tions 5.2, we handled the Chinese text data on Public Se-
curity Bureau (PSB) from the Changchun Mayor Public
Hotline. It can be seen that our algorithms provide valid
hierarchical clusterings for observed variables in the da-
tum. All of the experiments were performed using C++ on
a desktop with an Intel Core i5-4590 CPU 3.3 GHz and
8 GB RAM.

5.1 Simulation study

In this subsection, we applied our SLLT and PELT al-
gorithms to synthetic datasets generated from known latent
tree models. We first presented the simulation results to
demonstrate the consistency of our algorithms. And then we
studied the performance of the SLLT algorithm, its modi-
fied version and Choi et al.’s RG algorithm [7] for struc-
tural learning. Finally, we compared the PELT algorithm
and the EM algorithm for parameter estimation. As shown
in Figures 3 and 4, the structural learning and parameter
estimation errors of our algorithms decreased as the sample
size increased. Figure 5 illustrates that the modified version
SLLT2 performed much better than the SLLT algorithm and
the RG algorithm. Figure 6 shows that the PELT algorithm
partly outperformed the EM algorithm in terms of the esti-
mation error and Table 1 shows that the execution speed of
PELT was far faster than that of EM. Detailed descriptions
and analyses of the simulation experiments are given in the
following section.

We generated datasets from latent tree models with four
different topologies, as shown in Figure 2. The structures
of models 1 and 3 were similar to those of models 2 and 4,
where we restricted every latent variable that was located
adjacent to the three observed variables. The numbers in
the boxes below the leaves are the numbers of state of ob-
served variables. We wanted to compare the performances
of the EM and PELT algorithms, so we fixed the number
of states as two for the latent variables. The model parame-
ters were generated randomly such that the determinant of
the first 2 × 2 sub-matrix of every conditional probability
matrix was no less than 0.3, which satisfied the full column
rank requirement of the conditional probability matrices.
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Figure 2. Four latent tree models used in the simulation
experiments.

As shown in Section 3.2, the basic sibling pair structure
is determined using a prescribed threshold ε > 0. In particu-

Figure 3. Performance of the SLLT algorithm using models 1,
2, 3, and 4.

lar, if |Φ̂xyz− Φ̂xyw| < ε for all z, w ∈ V \{x, y}, we consider
that {x, y} is a sibling pair. It is apparent that when we
increase the value of this threshold, more observed variables
tend to belong to a common sibling group and less become
singletons. So it is much easier to obtain a latent tree struc-
ture for a larger ε. In the simulation for structural learning,
we started the threshold ε from 0.1, and let it increase with
a step size of 0.1 until the SLLT algorithm generates a tree
structure. As shown in Section 4.2, we have two ways to
estimate the conditional probability matrix Pb|h according
to whether Pb(j)c(k) is singular or not. In the practical im-
plement, a threshold ε1 is set to 0.001 for judging whether
Pb(j)c(k) is singular or not based on the empirical estimation
det(P̂b(j)c(k)).

First, to evaluate the consistency of the performance of
our SLLT and PELT algorithms, we varied the sample size
among 10 k, 30 k, 60 k, 100 k, 300 k, 600 k, and 1000 k, and
determined the average from 100 independent runs using
different model parameters with each of the four structures
shown in Figure 2.

We used two metrics to assess the performance of the
consistency of the SLLT algorithm. The metric shown in
the left subgraph of Figure 3 is the Robinson-Foulds met-
ric [20], which quantifies the difference between the learned
and true structures. The metric shown in the right subgraph
of Figure 3 is the absolute difference between the number
of learned and true latent variables. Figure 3 shows that
the SLLT algorithm performed better as the sample size in-
creased. The performance of the SLLT algorithm with model
3 was better than that with model 4. The extra leaves in
model 4 compared with model 3 added the number of struc-
ture judgments in the SLLT algorithm, and also increased
the possibility of making incorrect judgments.

The comparison of model 1 and model 3 in Figure 3 shows
that the algorithm performed much better with model 1
than model 3 when the sample size was large, i.e., 300 k,
600 k, and 1000 k, although model 1 had more observed
variables and latent variables than model 3. The tree width
was 8 with model 3 and 6 with model 1, so the longer path in
model 3 may have reduced the minimum non-zero singular
value of the joint probability matrices. When the sample size
was fixed and the minimum non-zero singular value became
smaller, it was more difficult to obtain an exact estimate
of the minimum non-zero singular value, which has a ma-
jor effect on the generalized information distance. Thus, the

Latent tree models 685



Figure 4. Performance of the PELT algorithm using models 1,
2, 3, and 4.

Figure 5. Performance of SLLT, SLLT2 and RG using models
1, 2, 3, and 4.

structure of model 3 was more difficult to recover than that
of model 1 because the width of model 3 was greater than
that of model 1.

For the PELT algorithm, we computed the average er-
ror between the estimated and true parameter based on the
true structure. The left subgraph of Figure 4 shows that
the PELT algorithm performed better with model 2 than
model 1, although the structure of model 2 contained more
observed variables than that of model 1. The increased num-
ber of observed variables made structure learning more dif-
ficult, as shown in Figure 3, although the extra leaves below
the latent variables enhanced the parameter estimation ac-
curacy. Indeed, when the latent variables bifurcated to more
observed variables, we could choose b, c as the two end ver-
tices of a path that was as short as possible, which helped
move Pbc away from the singularity. Thus, based on matrix
computation theory, we know that the estimation P̂−1

bc of

P−1
bc and the further decomposition P̂ a=a1

bc P̂−1
bc of P a=a1

bc P−1
bc

would be more accurate. Similar differences in performance
were also detected between models 4 and 3, which are shown
in the right subgraph of Figure 4.

To compare our algorithms with Choi et al.’s RG algo-
rithm [7], we used the four latent tree structures in Figure 2.
The numbers of the state of variables were limited to two
since the RG algorithm requires variables of the same cardi-
nality. As shown in Figure 5, the performance of our SLLT2
algorithm was much better than the RG algorithm for model
1, 2 and 3. And the RG algorithm, utilizing one extra thresh-
old to control the computation of Φ̂xyz, outperformed the
SLLT algorithm for model 2, 3 and 4.

Finally, we compared the performance of the EM algo-
rithm and the PELT algorithm using latent tree models.
We varied the sample size among 10 k, 30 k, 60 k, 100 k,

Figure 6. Estimation error using the EM and PELT
algorithms with models 1, 2, 3, and 4.

and 300 k, and generated 100 random datasets with dif-
ferent model parameters using each of the four structures
shown in Figure 2. For each dataset and every sample size,
we ran the EM algorithm with five random initializations
and 50 iterations, and we recorded the best estimation er-
ror obtained by using the EM algorithm. We compared the
average estimation errors with the EM algorithm and the
PELT algorithm for the 100 datasets and each sample size.
As shown in Figure 6, the PELT algorithm outperformed
the EM based on the estimation errors with models 1 and 3,
and the performance of the EM algorithm was almost sta-
ble at every sample size, which appeared to be trapped by a
local optimum with models 1 and 3. With models 2 and 4,
the EM algorithm outperformed the PELT algorithm, but
both had a high estimation accuracy with a sufficiently large
sample size. The average time costs with the EM and the
PELT algorithms using a sample size of 300 k are shown
in Table 1. The execution speed was faster with the PELT
algorithm, and the EM algorithm had huge time costs with
a large sample size because the EM algorithm updates the
statistics based on every sample and numerous iterations of
all the samples are required.

5.2 Chinese text application

In this subsection, we tested our algorithms on real-world
data sets. The probability distributions that govern these
data sets may not satisfy the assumptions required for con-
sistent learning of the latent tree models. However, the ex-
periments here pointed out that our algorithms can still be
useful in mining the latent hierarchical structures behind
observed variables.

The Changchun mayor hotline [12] is an important
project led by the local government of Changchun city,
which is the capital of Jilin Province in Northeast China.
This project provides local residents with the opportunity
to call the mayor’s office and report various public issues
via the “12345” hotline. The typical issues reported include
local crime, public utility, and problems with transporta-
tion. Each phone call is recorded and converted into a text
message in Chinese by an operator.

We studied the Changchun mayor hotline dataset with
28,910 keywords for more than 640,000 documents. Our
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Table 2. The first one hundred keywords for the PSB (The English version is shown in Table 3)

method can handle this dataset in 9 hours and obtain a
latent tree with 30,435 nodes, where contains 1,525 latent
variables. To give a clear illustration for real data applica-
tion in this paper, we built a small database consisting of
100 keywords, shown in Table 2 and 3, from 52,920 docu-
ments assigned to the Public Security Bureau (PSB). Those
keywords were selected by positive correlation and large χ2

value with PSB. We are concerned about the potential re-
lationships between these keywords for PSB, because they
can reflect various topics related to PSB.

In the practical implement, we used the SLLT2 algorithm
to learn the latent tree structure as discussed in Section 5.1.
This algorithm only considers possible sibling pairs for nodes
x, y whose estimated distances d̂xy, d̂xz, d̂yz are controlled
by two thresholds τ1, τ2. Specifically, for each pair of nodes
x, y such that d̂xy < τ1, Φ̂xyz is computed for node z in

Kxy = {z ∈ V \ {x, y}|max{d̂xz, d̂yz} < τ2}. The threshold
τ1 can control the relationship of nodes in sibling groups.
The threshold τ2 can control the judgement of the sibling
pair relationship. As discussed in Section 3.2, we empirically
set τ1 = 3 and τ2 = 5.

By using the SLLT2 algorithm, we obtained a whole la-
tent tree as shown in Figure 7. Its vertex set consists of
100 observed leaf nodes and 20 latent nodes. Sibling groups
of observed nodes present various topics from the residents’
complaint call. The main issues reflected by those groups in-

clude local crime, traffic problem, noise nuisance and keep-
ing dogs. Latent node 101 of the largest degree is adjacent
to seventeen leaf nodes. It reflects a common topic on lo-
cal crime based on seventeen keywords, which is shown in
Figure 8. Another important topic is on traffic problem (Fig-
ure 9) from latent node 102 adjacent to eleven keywords.

6. CONCLUSION

In this study, we proposed two algorithms for structure
learning and parameter estimation in discrete latent tree
models. We also presented provable guarantees for our al-
gorithms and determined the relationship between the sam-
ple size and the intrinsic parameters of the models. The
simulations showed that our algorithms are computation-
ally efficient, even with large sample sizes, and the empir-
ical results also support our theoretical results. The Chi-
nese text application of our method illustrated that the la-
tent tree model can capture common topics in the docu-
ments and mining latent structures behind observed vari-
ables.

APPENDIX A. PROOFS IN SECTION 3

A.1 Proof of Theorem 3.1

To prove the additivity of the generalized information
distance, we need the following lemma.
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Table 3. The English translation of Table 2

Id Keywords Id Keywords Id Keywords Id Keywords

1 police station 26 patrol 51 police 76 traffic light

2 traffic police 27 feed 52 suspect 77 gambling
machine

3 municipal public 28 loudspeaker 53 surveillance 78 commit a crime
security bureau box

4 policeman 29 everyday 54 keep a dog 79 policeman

5 dog 30 wound 55 Changchun public 80 a (an)
security bureau

6 report 31 broadcast 56 forbid 81 fire fighting

7 big 32 gambling 57 police 82 on duty

8 call the police 33 the case 58 traffic police 83 sound
brigade

9 mahjong parlor 34 punish 59 truck 84 advice

10 disturb residents 35 place 60 dispatch 85 parking

11 propagate 36 regulate the 61 registered 86 fire facilities
traffic residence

12
public security 37 public security 62 one-way street 87 license plate
sector organization

13 sound box 38 traffic signals 63 public security 88 drive

14 althorn 39 traffic police 64 intersection 89 walk the dog
detachment

15 vehicle 40 fine 65 happen 90 noise nuisance

16 dog 41 identity card 66 yell 91 videotape

17 traffic 42 badge number 67 mahjong 92 strike

18 traffic jam 43 prostitution 68 ticket 93 organize
gambling

19 feed 44 traffic 69 be forced 94 traffic jam
departments

20 public security 45 traffic accident 70 warn 95 city bureau
bureau

21 rule-breaking 46 tricycle 71 police force 96 turn left

22 signal lamp 47 horn 72 close a case 97 beat

23 case 48 barking 73 cry one’s wares 98 have a rest

24 driver’s license 49 handle a case 74 serious 99 pornographic

25 filing 50 travel 75 speed 100 play music

Lemma A.1. Let U be a d × r column orthogonal matrix
and let C be a d × r matrix with full column rank. If the
range of C is contained in the range of U , there are two
r× r orthogonal matrices P and Q such that C = UPΛQT ,
where Λ is a diagonal matrix that comprises all the singular
values of C.

Proof. Since C is a d×r matrix with full column rank, there
is an r × r orthogonal matrix Q such that QTCTCQ is a
diagonal matrix with positive diagonal elements by spectral
decomposition. We denote QTCTCQ by Λ2, where Λ is a
diagonal matrix that comprises all the singular values of C.
Since the range of C is within the range of U , there exists an
r × r matrix Y such that CQ = UY . Thus, Y TY = Λ2 and
Λ−1Y TY Λ−1 = I. We denote Y Λ−1 by P , where P is an r×r
orthogonal matrix and Y = PΛ. Thus, C = UPΛQT .

Now, let us prove Theorem 3.1. When we discuss the
additivity of generalized information distance along paths

in the tree, there are actually three basic cases, i.e., paths
between latent variables, paths between observed variables,
and paths between an observed variable and a latent vari-
able. The first case is the same as the additivity information
distance [7] and the second case is similar to the third case.
Thus, we provide the proof of the third case, as follows.

Let v be an observed variable and let h be a latent
variable. Assume that there is a path [v, y, h] in T . We
can see that dvy + dyh = dvh. Let us consider the ex-

pression
∏r

s=1 σs(Pvy)√
det(Pvv) det(Pyy)

×
∏r

s=1 σs(Pyh)√
det(Pyy) det(Phh)

, which equals∏r
s=1 σs(Pvy)

∏r
s=1 σs(Pyh)√

det(Pvv) det(Phh) det(Pyy)
. Since Pvy = Pv|yPyy and (A4), the

rank of Pv|y is r. According to singular value decomposition,
there are two column orthogonal matrices P andQ such that

Pvy = P

⎛
⎝ σ1(Pvy)

· · ·
σr(Pvy)

⎞
⎠QT ,

688 X. Wang et al.



Figure 7. Latent tree structure from 100 keywords of the Public Security Bureau.
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Figure 8. A common topic on crime.

Figure 9. A common topic on traffic problem.

where P is a dv × r matrix and Q is a r × r matrix. So

Pvy = P

⎛
⎝ σ1(Pvy)

· · ·
σr(Pvy)

⎞
⎠QT = Pv|yPyy,

and⎛
⎝ σ1(Pvy)

· · ·
σr(Pvy)

⎞
⎠ = PTPvyQ = PTPv|yPyyQ.

It can be verified that the range of Pv|y is within the
range of P . From Lemma A.1, we find that

∏r
s=1 σs(Pvy) =∏r

s=1 σs(Pv|y) det(Pyy). Thus,

r∏
s=1

σs(Pvy)
r∏

s=1
σs(Pyh)√

det(Pvv) det(Phh) det(Pyy)
=

r∏
s=1

σs(Pv|y)
r∏

s=1
σs(Pyh)√

det(Pvv) det(Phh)
.

Based on the Markov property of latent tree models, we
find that Pvh = Pv|yPyh. As discussed above, we also
find that

∏r
s=1 σs(Pvh) =

∏r
s=1 σs(Pv|y)

∏r
s=1 σs(Pyh) by

Figure 10. Structure relations between two observed variables
i, j.

Lemma A.1. Thus, we find that:

r∏
s=1

σs(Pvy)√
det(Pvv) det(Pyy)

r∏
s=1

σs(Pyh)√
det(Pyy) det(Phh)

=

r∏
s=1

σs(Pvh)√
det(Pvv) det(Phh)

.

Therefore, dvy + dyh = dvh. If there is a much longer path
between v and h in T , the proof of the third case is similar.
Hence, we have completed the proof of Theorem 3.1.

A.2 Proof of Theorem 3.2

To prove the correctness of the SLLT algorithm, we need
the following Lemmas A.2, A.3, and A.4 to describe the
characteristics of the generalized information distance differ-
ence with various local structure relations. The correspond-
ing actual cases are shown in Figures 10, 11, and 12, where
a straight line represents an edge and a curve denotes a
path. The proofs of these lemmas can be obtained directly
by Theorem 3.1, so we omit them.

Lemma A.2. Given two observed variables i, j, {i, j} is a
sibling pair if and only if Φijk is constant for any observed
variable k �= i, j.

From Lemma A.2, we know that Step 2 of the SLLT al-
gorithm can find sibling groups among the observed vari-
ables. When we consider the relationship between an ob-
served variable v and a latent variable u, we only need to
judge whether there is a sibling pair relationship. Indeed,
every latent variable is generated by a sibling group in the
SLLT algorithm so if v is a remaining child node of u, when
the sibling pair {x, y} generates u, {v, x} is also a sibling
pair.

Lemma A.3. For an observed variable v and a latent vari-
able u, assume that i, j are two bifurcation variables of u.
If the relationship between v and u is shown in Fig. 11 (a),
then:
(1) Φvim is constant and Φvim �= Φvij for any observed vari-
able m, as shown in Fig. 11 (a).
If the relationship between v and u is shown in Fig. 11 (b),
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Figure 11. Structure relations between observed variable v
and latent variable u.

Figure 12. Structure relations between two latent variables
u,w.

then:
(2) Φvim = Φvij for any observed variable m, as shown in
Fig. 11 (b).
If the relation between v and u is shown in Fig. 11 (c), then:
(3) Φvim1 �= Φvim2 for any observed variables m1,m2, as
shown in Fig. 11 (c).

In 10 of Step 3, for any v ∈ Y
⋂

V and u ∈ Y \ V , select
the bifurcation variables i, j of u in D. We want to judge
the relation between v and u in T (W \D). We assume that
T (W \D) is a subtree of T and Y contains all the leaf nodes
in T (W \D). Since T (W \D) is a subtree of T , there is a path
of length 2, or more than 2, between u and v in T (W \D).

If Φvim is constant and Φvim �= Φvij for any m ∈ V \
(D(u)

⋃
{v}), then any path between u and v in T (W \D)

has a length of 2. Otherwise, if there is a path of length more
than 2 in T (W \ D) between v and u, this case is similar
to that shown in Fig. 11 (c) because every latent variable
has at least three neighbors. Thus, two observed variables
m1,m2 ∈ V \ (D(u)

⋃
{v}) exist such that Φvim1 �= Φvim2 ,

which is a contradiction. Therefore, any path between u and
v in T (W \D) has a length of 2. Furthermore, u is a leaf node
of T (W \D). Otherwise, a path in T (W \D) passes through
u between a leaf node w of T (W \D) and v. We know that
w ∈ Y because Y contains all of the leaf nodes in T (W \D).
Since w, u ∈ Y ,D(w)

⋂
D(u) = ∅. We can select an observed

variable m′ ∈ D(w)
⋃
{w}. Hence, m′ ∈ V \ (D(u)

⋃
{v}),

and this case is similar to that shown in Fig. 11 (b). Thus,
Φvim′ = Φvij , which is a contradiction. Therefore, u is also a
leaf node of T (W \D) and {v, u} is a sibling pair in T (W \D).

Lemma A.4. For two latent variable u,w, assume that i, j
are two bifurcation variables of u and k, l are two bifurcation
variables of w.
If the relation between v and u is shown in Fig. 12 (a), then:
(1) Φikm is constant and Φikm �= Φikl,Φkim �= Φkij for any
observed variable m as shown in Fig. 12 (a).
If the relation between v and u is shown in Fig. 12 (b), then:
(2) Φikm = Φikl and Φkim �= Φkij for any observed variable
m in Fig. 12 (b).
If the relation between v and u is shown in Fig. 12 (c), then:
(3) Φikm �= Φikl and Φkim = Φkij for any observed variable
m in Fig. 12 (c).
If the relation between v and u is shown in Fig. 12 (d), then:
(4) Φikm = Φikl and Φkim �= Φkij for any observed variable
m in Fig. 12 (d).
If the relation between v and u is shown in Fig. 12 (e), then:
(5) Φikm �= Φikl and Φkim = Φkij for any observed variable
m in Fig. 12 (e).
If the relation between v and u is shown in Fig. 12 (f),
then:
(6) Φikm1 �= Φikm2 for any observed variables m1,m2 in
Fig. 12 (f).

In 20 of Step 3, for any u,w ∈ Y \V , select the bifurcation
variables i, j of u and k, l of w in D. We need to judge the
relationship between u and w in T (W \D). We assume that
T (W \D) is a subtree of T and that Y contains all the leaf
nodes in T (W \D). Since T (W \D) is a subtree of T , there
is a path of length 1, or more than 1, between u and w in
T (W \D).

If Φikm is constant and Φikm �= Φikl,Φkim �= Φkij for any
m ∈ V \ (D(u)

⋃
D(w)), then any path between u and w in

T (W \D) has a length of no more than 2. Otherwise, if there
is a path of a length more than 2 in T (W \D) between u and
w, this case is similar to that shown in Fig. 12 (f) because ev-
ery latent variable has at least three neighbors. Thus, there
are two observed variablesm1,m2 ∈ V \(D(u)

⋃
D(w)) such

that Φikm1 �= Φikm2 . This is a contradiction. Therefore, any
path between u and w in T (W \ D) has a length of no
more than 2. Furthermore, w is a leaf node of T (W \ D).
Otherwise, a path in T (W \ D) passes through w between
a leaf node w1 of T (W \ D) and u. In addition, we know
that w1 ∈ Y since Y contains all of the leaf nodes in
T (W \ D). Since w1, u, w ∈ Y , D(w1)

⋂
D(u) = ∅ and

D(w1)
⋂

D(w) = ∅. We can select an observed variable
m′ ∈ D(w1)

⋃
{w1}. Therefore, m′ ∈ V \ (D(u)

⋃
D(w))

and this case is similar to that shown in Fig. 12 (b) or (d).
Thus, Φikm′ = Φikl, which is a contradiction. Similarly, u is
also a leaf node of T (W \D). If u is adjacent to w, then u or
w is not a leaf node in T (W \D) when |Y | � 3, which is a
contradiction. Therefore, {u,w} is a sibling pair in T (W \D).

If Φikm = Φikl and Φkim �= Φkij for any m ∈ V \
(D(u)

⋃
D(w)), then any path between u and w in T (W \D)
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has a length of no more than 2. Otherwise, if there is a path
of a length more than 2 in T (W \D) between u and w, this
case is similar to that shown in Fig. 12 (f) because every
latent variable has at least three neighbors. Thus, there are
two observed variables m1,m2 ∈ V \ (D(u)

⋃
D(w)) such

that Φikm1 �= Φikm2 , which is a contradiction. Therefore,
any path between u and w in T (W \D) has a length of no
more than 2. Furthermore, u is a leaf node of T (W \ D).
Otherwise, a path in T (W \ D) passes through u between
a leaf node u1 of T (W \ D) and w. We know that u1 ∈ Y
since Y contains all of the leaf nodes in T (W \ D). Thus,
u1, u, w ∈ Y , D(u1)

⋂
D(u) = ∅ and D(u1)

⋂
D(w) = ∅.

We can select an observed variable m′ ∈ D(u1)
⋃
{u1}.

Hence, m′ ∈ V \ (D(u)
⋃

D(w)) and this case is similar
to that shown in Fig. 12 (c) or (e). Thus, Φikm′ �= Φikl and
Φkim′ = Φkij , which is a contradiction. Therefore, u is a
leaf node of T (W \ D). If there is a path with a length
of 2 in T (W \ D) between v and u, this case is similar
to that shown in Fig. 12 (a) because every latent variable
has at least three neighbors. Thus, an observed variable
m′ ∈ V \ (D(u)

⋃
D(w)) exists such that Φikm′ �= Φikl,

which is a contradiction. Therefore, u is a remaining child
of w in T (W \D).

To prove the SLLT algorithm, we use the discrete time
record t = 0, 1, 2, · · · to describe the iteration process when
|Y | ≥ 3.

When t = 0, D0 = ∅ and Y0 is the set V of all the leaves
of T (W ). From Lemma A.2, Step 2 can find all the sibling
groups in T correctly. The updated set D1 that comprises
all the maximal sibling groups in T is a leaf subset of T .
Hence, T (W \ D1) is a subtree of T and all the leaves of
T (W \ D1) are contained in Y1. According to Lemma A.2,
the structure relation among D1 is true and the adjacent
relation between D1 and W \D1 is also true.

When t = 1, T (W \ D1) is a subtree of T and all the
leaves of T (W \D1) are contained in Y1. According to Lem-
mas A.3 and A.4, Step 3 can correctly find all the sibling
groups and remaining child relations in T (W \ D1). The
difference subset D2 \ D1 is a leaf subset of T (W \ D1).
Hence, T (W \D2) is a subtree of T and all of the leaves of
T (W \D2) are contained in Y2. According to Lemmas A.3
and A.4, the structure relation among D2 \D1 is true and
the adjacent relation between D2 \ D1 and W \ D2 is also
true. The structure relation among D1 is true and the ad-
jacent relation between D1 and W \D1 is also true, so the
adjacent relation between D2 and W \ D2 is true and the
structure relation among D2 is true.

When t = s, T (W \ Ds) is a subtree of T and all of
the leaves of T (W \ Ds) are contained in Ys. According to
Lemmas A.3 and A.4, Step 3 can correctly find all the sib-
ling groups and remaining child relations in T (W \Ds). The
difference subset Ds+1 \ Ds is a leaf subset of T (W \ Ds).
Hence, T (W \Ds+1) is a subtree of T and all of the leaves
of T (W \ Ds+1) are contained in Ys+1. According to Lem-
mas A.3 and A.4, the structure relation among Ds+1 \Ds is

true. The adjacent relation between Ds+1\Ds and W \Ds+1

is also true. The structure relation among Ds is true and the
adjacent relation between Ds and W \Ds is also true, thus
the adjacent relation between Ds+1 and M \ Ds+1 is true,
and the structure relation among Ds+1 is true.

As discussed above, our SLLT algorithm can learn the
true latent tree structure by recursive reconstruction. The
computational complexity is bounded by O(diam(T )n3), as
described by [7]. Hence, we have completed the proof of
Theorem 3.2.

A.3 Proof of Theorem 3.3

In this section, we give the proof of Theorem 3.3. First,
we introduce the following proposition A.1 from [13], which
gives the tail bound inequality of the difference between the
empirical estimate and the true probability.

For three observed variables x, y, z ∈ V , let Pxyz denote
the third-order joint probability tensor (Pr(x = xi, y =
yj , z = zk))1≤i≤dx,1≤j≤dy,1≤k≤dz , and let P̂xyz denote its

empirical estimation ( 1
N

∑N
l=1 I(x

(l) = xi, y
(l) = yj , z

(l) =
zk))1≤i≤dx,1≤j≤dy,1≤k≤dz , where N is the sample size.

Proposition A.1. For any three observed variables x, y, z ∈
V , we find that for any t > 0, Pr(‖P̂xy − Pxy‖F > 1+

√
t√

N
) ≤

e−t and Pr(‖P̂xyz −Pxyz‖F > 1+
√
t√

N
) ≤ e−t, where ‖ • ‖F is

the Frobenius norm.

The following lemma describes the tail bound inequality
on the maximum singular value of P̂xy − Pxy.

Lemma A.5. For any observed variables x, y ∈ V , we find

that for any t > 0, Pr(σ1(P̂xy − Pxy) >
1+

√
t√

N
) ≤ e−t.

Proof. Since σ1(P̂xy − Pxy) is no more than ‖P̂xy − Pxy‖F ,
this lemma is obtained from Proposition A.1.

To prove Theorem 3.3, we only need to show that if the
sample size is sufficiently large, the probability of the event
{|(Φ̂xyz− Φ̂xyw)− (Φxyz−Φxyw)| < ε for any x, y, z, w ∈ V }
is sufficiently large. According to the definition of Φ, we
only need to show that when the sample size is sufficiently
large, the probability of the event {|d̂xy − dxy| < 1

4ε for any
x, y ∈ V } is sufficiently large.

In the following, we show how to make |d̂xy − dxy| < 1
4ε.

For any variables x, y ∈ V , we consider the generalized in-
formation distance dxy. Since dxy = −

∑r
s=1 log σs(Pxy) +

1
2

∑dx

s=1 log σs(Pxx)+
1
2

∑dy

s=1 log σs(Pyy), hence |d̂xy−dxy| <∑r
s=1 | log σs(P̂xy) − log σs(Pxy)| + 1

2

∑dx

s=1 | log σs(P̂xx) −
log σs(Pxx)|+ 1

2

∑dy

s=1 | log σs(P̂yy)− log σs(Pyy)|.
We denote σmin as minx,y∈V σrank(Pxy)(Pxy) (this al-

lows x = y). If Δ > 0 exists such that Δ < 1
2σmin and

|σs(P̂xy)−σs(Pxy)| ≤ Δ for any 1 ≤ s ≤ rank(Pxy) and any

x, y ∈ V , we have σs(P̂xy) > σs(Pxy)−|σs(P̂xy)−σs(Pxy)| >
1
2σmin. Since σs(Pxy), σs(P̂xy) >

1
2σmin, then | log σs(P̂xy)−

log σs(Pxy)| < 2
σmin

|σs(P̂xy) − σs(Pxy)|. Furthermore, we
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denote dmax as maxx∈V dx. We have |d̂xy − dxy| < 4dmaxΔ
σmin

.

Since ε ≤ 1, we can see that Δ < σminε
16dmax

implies Δ < 1
2σmin.

Thus, if a suitable Δ exists such that Δ < σminε
16dmax

and

|σs(P̂xy) − σs(Pxy)| ≤ Δ for 1 ≤ s ≤ rank(Pxy), then

|d̂xy − dxy| < 1
4ε.

We show how to select Δ such that Δ < σminε
16dmax

and

Pr(
⋂

x,y,s(|σs(P̂xy) − σs(Pxy)| ≤ Δ)) is sufficiently large.
If we can shows this successfully, we complete the proof of
Theorem 3.3. According to Lemma A.5, for any observed
variables x, y ∈ V , we find that for any t > 0,

Pr

(
σ1(P̂xy − Pxy) ≤

√
t+ 1√
N

)
> 1− e−t.

Based on standard matrix analysis theory, we know that
|σs(P̂xy) − σs(Pxy)| < σ1(P̂xy − Pxy) for any x, y ∈ V and

any 1 ≤ s ≤ rank(Pxy). Thus, Pr(|σs(P̂xy) − σs(Pxy)| ≤√
t+1√
N

) > 1 − e−t for any x, y ∈ V and any 1 ≤ s ≤
rank(Pxy). Therefore, for any t > 0, we have:

Pr

( ⋂
x,y,s

(|σs(P̂xy)− σs(Pxy)| ≤
√
t+ 1√
N

)

)

= 1− Pr

( ⋃
x,y,s

(|σs(P̂xy)− σs(Pxy)| >
√
t+ 1√
N

)

)

≥ 1−
∑
x,y,s

Pr

(
|σs(P̂xy)− σs(Pxy)| >

√
t+ 1√
N

)

≥ 1− n2dmaxe
−t � 1− η,

where η ∈ (0, 1). Hence, η = n2dmaxe
−t and we denote

t0 as − log η
n2dmax

. Thus, Pr(
⋂

x,y,s(|σs(P̂xy) − σs(Pxy)| ≤√
t0+1√
N

)) ≥ 1 − η. Therefore, we can select Δ =
√
t0+1√
N

. For

any η, if the sample size N is sufficiently large such that
Δ < σminε

16dmax
, then our SLLT algorithm learns the true latent

tree structure with a probability of at least 1− η.

APPENDIX B. PROOFS IN SECTION 4

B.1 Proof of Theorem 4.1

In this section, we give the proof of Theorem 4.1. For
a square matrix A ∈ R

k×k, if A is an invertible matrix,
we denote the condition number ‖A‖‖A−1‖ as κ(A). For
two square matrices A,B ∈ R

k×k, we denote the class
{λ1, · · · , λk} of all the eigenvalues of A as e(A), and we
denote the class {μ1, · · · , μk} of all the eigenvalues of B
as e(B). We define the optimal matching distance between
e(A) and e(B) as d(e(A), e(B)) = minτ max1≤j≤k |λj −
μτ(j)|, where τ is a permutation. From this definition,
if d(e(A), e(B)) ≤ t, a permutation τ exists such that
|λj − μτ(j)| ≤ t for j = 1, · · · , k. We define 1k as a k-
dimensional vector where each coordinate is 1. If the context
does not require the distinction of subscript k, we also use
the symbol 1.

First, we introduce a lemma regarding the spectral vari-
ation of diagonalizable matrices.

Lemma B.1. Assume that A ∈ R
k×k is a diagonalizable

matrix and that A = SDS−1, where D is a diagonal matrix
and S is an invertible matrix. We define rA = mini �=j{|Dii−
Djj | : Dii �= Djj}. If B ∈ R

k×k is a matrix such that
κ(S)‖A−B‖ < 1

2rA, then d(e(A), e(B)) ≤ κ(S)‖A−B‖.
Proof. When combined with the Bauer-Fike Theorem, this
lemma can be verified by a similar proof as Theorem VI.5.1
in [4] based on continuity arguments.

Next, we present a lemma regarding the perturbation of
eigenvalues and eigenvectors.

Lemma B.2. Assume that A ∈ R
k×k is a diagonalizable

matrix with k distinct real eigenvalues λ1, · · · , λk ∈ R.
The corresponding eigenvectors x1, · · · , xk satisfy 1Txi =
1, 1 ≤ i ≤ k, and every element in the matrix S =
(x1, · · · , xk) is nonnegative. Let Â ∈ R

k×k be a matrix. De-
fine εA = ‖Â − A‖, rA = mini �=j{|λi − λj | : λi �= λj},

αA = maxi{‖
(

A− λiI
1T

)+

‖}. If κ(S)εA < 1
2rA, we reach

the following conclusions.
1. Â has k distinct real eigenvalues λ̂1, · · · , λ̂k ∈ R such that
for any 1 ≤ i ≤ k, |λ̂i − λi| ≤ κ(S)εA.
2. Assume that the corresponding eigenvectors of Â are
x̂1, · · · , x̂k, which satisfy 1T x̂i = 1 for any 1 ≤ i ≤ k. If

αA(1 + κ(S))εA < 1, then ‖x̂i − xi‖ ≤ αA(1+κ(S))εA
1−αA(1+κ(S))εA

for

any 1 ≤ i ≤ k.

Proof. First, we give the proof of conclusion 1. From
Lemma B.1, since A is diagonalizable, for any eigenvalue
λi of A, there is an eigenvalue λ̂ of Â such that |λ̂ − λi| <
κ(S)εA < 1

2rA. Thus, these eigenvalues of Â are distinct

and we can order them as λ̂1, · · · , λ̂k such that |λ̂i − λi| <
κ(S)εA < 1

2rA. Since Â is a real matrix, if Â has a complex

eigenvalue λ, then Âx = λx and Âx = Âx = λx. There-
fore, λ is also an eigenvalue of Â. Since all the eigenval-
ues of A are real, there is an eigenvalue λi of A such that
|λi − λ| = |λi − λ| < 1

2rA, which is a contradiction. Thus all

of the eigenvalues of Â are real.
Next, we provide the proof of conclusion 2. Since xi is an

eigenvector of A that satisfies 1Txi = 1, xi is the solution
of the joint equations(

A− λiI
1T

)
xi =

(
0
1

)
.

Similarly, x̂i is the solution of the joint equations(
Â− λ̂iI

1T

)
x̂i =

(
0
1

)
.

Denote

(
A− λiI

1T

)
as Bi and

(
Â− λ̂iI

1T

)
as B̂i. It can

be verified that both Bi and B̂i have full column rank.
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From Theorem 5.1 in [24], we can obtain the perturba-

tion bound of xi as ‖x̂i − xi‖ ≤ ‖B+
i ‖‖B̂i−Bi‖

1−‖B+
i ‖‖B̂i−Bi‖

‖xi‖ ≤
‖B+

i ‖(1+κ(S))εA

1−‖B+
i ‖(1+κ(S))εA

‖xi‖ when ‖B+
i ‖(1 + κ(S))εA < 1. Since

every element of xi is nonnegative and 1Txi = 1, we know
that ‖xi‖ ≤ 1. Thus, if αA(1 + κ(S))εA < 1, ‖x̂i − xi‖ ≤
αA(1+κ(S))εA

1−αA(1+κ(S))εA
for any 1 ≤ i ≤ k.

In the following, we assume that all of the variables
are two-state. We focus mainly on the 2 × 2 matrix A =
P a=a1

bc P−1
bc when Pbc is invertible. As discussed in Section

4.1, A has a decomposition Pb|h

(
λ1 0
0 λ2

)
P−1
b|h , where

λ1 = Pr(a = a1|h = h1) and λ2 = Pr(a = a1|h = h2).
Let x1, x2 be the two eigenvectors of A that correspond
to λ1 and λ2, which satisfy 1Txi = 1 for i = 1, 2. Thus,
x1 = (Pr(b = b1|h = h1), P r(b = b2|h = h1))

T and
x2 = (Pr(b = b1|h = h2), P r(b = b2|h = h2))

T . We
present the following lemma to set an upper bound on αA

in Lemma B.2.

Lemma B.3. Assume that the 2× 2 matrix A is defined as

above. If λ1 �= λ2, we have ‖
(

A− λiI
1T

)+

‖ ≤ 3
|λ1−λ2| for

i = 1, 2.

Proof. For i = 1, 2, we denote

(
A− λiI

1T

)
as Bi. Since Bi

has full column rank, we have ‖B+
i ‖ = 1

σ2(Bi)
= 1

(λ2(BT
i Bi))

1
2
.

In the following, we prove that λ2(B
T
1 B1) ≥ (λ1−λ2)

2

9 . The
case of λ2(B

T
2 B2) is similar.

We denote the matrix A − λ1I as C and denote
the matrix CTC as D. Since A has a decomposition

Pb|h

(
λ1 0
0 λ2

)
P−1
b|h , the matrix C has the form of

1

p1 − p2

(
p1 p2

1− p1 1− p2

)(
0 0
0 λ2 − λ1

)(
1− p2 −p2

−(1− p1) p1

)
,

where p1 = Pr(b = b1|h = h1) and p2 = Pr(b = b1|h =
h2). It can be verified that the two eigenvalues λ1(D) =
(λ1−λ2)

2(p2
1+(1−p1)

2)(p2
2+(1−p2)

2)
(p1−p2)2

and λ2(D) = 0. The eigen-

vector ξ2(D) = ( p1√
p2
1+(1−p1)2

, 1−p1√
p2
1+(1−p1)2

)T , which corre-

sponds to λ2(D).
We define y = ξ2(D)T1, thus y = 1√

p2
1+(1−p1)2

. From

Theorem 3.3 in [9], which provides the lower bound of
the smallest eigenvalue of the rank one updates, we obtain

λ2(B
T
1 B1) ≥ y2 λ1(D)

λ1(D)+ν2 , where ν = y +
√
2− y2. Further-

more, we have

y2
λ1(D)

λ1(D)+ ν2
≥ (p22 +(1− p2)

2)

(p21 + (1− p1)2)(p22 +(1− p2)2)+ 4 (p1−p2)2

(λ1−λ2)2

≥ (p22 + (1− p2)
2)

(p22 + (1− p2)2) +
4

(λ1−λ2)2

≥ (λ1 − λ2)
2

(λ1 − λ2)2 +
4

(p2
2+(1−p2)2)

≥ (λ1 − λ2)
2

9
,

where the inequalities follow from 1
2 ≤ p21+(1−p1)

2 ≤ 1, 1
2 ≤

p22 +(1− p2)
2 ≤ 1, (p1 − p2)

2 ≤ 1 and (λ1 −λ2)
2 ≤ 1. Thus,

we obtain ‖
(

A− λiI
1T

)+

‖ ≤ 3
|λ1−λ2| for i = 1, 2.

If the empirical estimate P̂bc of Pbc is invertible, we can
define the empirical estimation Â = P̂ a=a1

bc P̂−1
bc of A, and

denote the two eigenvalues of Â as λ̂1, λ̂2. Furthermore, if
λ̂1 �= λ̂2, Â has two eigenvectors x̂1 and x̂2 that correspond
to λ̂1 and λ̂2, which also satisfy 1T x̂i = 1 for i = 1, 2.

Corollary B.1. We define εA = ‖Â − A‖. If Pbc and P̂bc

are invertible, the two following conclusions can be made:
1. If λ1 = λ2, then |λ̂i − λi| ≤ κ(Pb|h)εA for i = 1, 2.

2. If λ1 �= λ2 and 6
|λ1−λ2| (1 + κ(Pb|h))εA < 1, then:

Â has two distinct real eigenvalues λ̂1 and λ̂2, such that
|λ̂1− λ̂2| > 1

2 |λ1−λ2| and |λ̂i−λi| < κ(Pb|h)εA, ‖x̂i−xi‖ ≤
6

|λ1−λ2| (1 + κ(Pb|h))εA for i = 1, 2.

Proof. The first conclusion can be obtained directly from
the Bauer-Fike Theorem. The second conclusion can also
be obtained from Lemmas B.2 and B.3 because κ(Pb|h)εA <
1
4 |λ1 − λ2| when 6

|λ1−λ2| (1 + κ(Pb|h))εA < 1.

Lemma B.4. For any t > 0, if Pbc is invertible and
1+

√
t√

N
< 1

2‖P−1
bc ‖ , we have Pr(‖P̂ a=a1

bc P̂−1
bc − P a=a1

bc P−1
bc ‖ ≤

3‖P−1
bc ‖2 1+

√
t√

N
) > 1− 2e−t.

Proof. When ‖P−1
bc ‖‖P̂bc − Pbc‖ ≤ 1

2 , P̂bc is invertible and

‖P̂−1
bc − P−1

bc ‖ ≤ ‖P−1
bc ‖2‖P̂bc−Pbc‖

1−‖P−1
bc ‖‖P̂bc−Pbc‖

≤ 2‖P−1
bc ‖2‖P̂bc − Pbc‖.

Next, we consider the difference between P̂ a=a1

bc P̂−1
bc and

P a=a1

bc P−1
bc .

‖P̂ a=a1

bc P̂−1
bc − P a=a1

bc P−1
bc ‖

≤ ‖P̂ a=a1

bc − P a=a1

bc ‖‖P−1
bc ‖+ ‖P̂−1

bc − P−1
bc ‖‖P̂ a=a1

bc ‖
≤ ‖P−1

bc ‖‖P̂ a=a1

bc − P a=a1

bc ‖+ ‖P̂−1
bc − P−1

bc ‖
≤ ‖P−1

bc ‖‖P̂ a=a1

bc − P a=a1

bc ‖+ 2‖P−1
bc ‖2‖P̂bc − Pbc‖

≤ ‖P−1
bc ‖2(‖P̂ a=a1

bc − P a=a1

bc ‖+ 2‖P̂bc − Pbc‖).

The second inequality holds since ‖P̂ a=a1

bc ‖ ≤ 1 and the fi-
nal inequality holds since ‖P−1

bc ‖ ≥ 1. Furthermore, since

Pr(‖P̂bc − Pbc‖ ≤ 1+
√
t√

N
, ‖P̂ a=a1

bc − P a=a1

bc ‖ ≤ 1+
√
t√

N
) >

1 − 2e−t for any t > 0 from Proposition A.1, we have

Pr(‖P̂ a=a1

bc P̂−1
bc − P a=a1

bc P−1
bc ‖ ≤ 3‖P−1

bc ‖2 1+
√
t√

N
) > 1 − 2e−t

when the sample size is sufficiently large such that 1+
√
t√

N
≤

1
2‖P−1

bc ‖ .

Next, we give the proof of Theorem 4.1. In the case
where all the variables are two-state, Pbc is invertible
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and λ1 �= λ2 from assumption (A4). Define the event

E = {|λ̂i − λi| ≤ 3κ(Pb|h)‖P−1
bc ‖2 1+

√
t√

N
, ‖x̂i − xi‖ ≤

18
|λ1−λ2| (1 + κ(Pb|h))‖P−1

bc ‖2 1+
√
t√

N
: i = 1, 2}. Since |λ1 −

λ2| ≤ 1, κ(Pb|h) ≥ 1 and ‖P−1
bc ‖ ≥ 1, we have 1+

√
t√

N
<

1
2‖P−1

bc ‖ when 18
|λ1−λ2| (1 + κ(Pb|h))‖P−1

bc ‖2 1+
√
t√

N
< 1. Thus,

Pr(‖P̂ a=a1

bc P̂−1
bc − P a=a1

bc P−1
bc ‖ ≤ 3‖P−1

bc ‖2 1+
√
t√

N
) > 1 −

2e−t from Lemma B.4. From the second conclusion of
Corollary B.1, the event {‖P̂ a=a1

bc P̂−1
bc − P a=a1

bc P−1
bc ‖ ≤

3‖P−1
bc ‖2 1+

√
t√

N
} is contained in the event E when 18

|λ1−λ2| (1+

κ(Pb|h))‖P−1
bc ‖2 1+

√
t√

N
< 1. So P (E) > 1 − 2e−t. For any

η ∈ (0, 1), select t0 = − log 1
2η, and thus we obtain the

proof of Theorem 4.1.

B.2 Consistency of the PELT algorithm

In this section, we prove the consistency of our PELT
algorithm in the case where the latent variables are two-
state and the state number of the observed variables may
be greater than two. We introduce two lower bounds as the
intrinsic parameters: φ∗ = min{detPhh : h ∈ H} and θ∗ =
min{|Pr(a = ai|h = h1) − Pr(a = ai|h = h2)| : Pr(a =
ai|h = h1) �= Pr(a = ai|h = h2), 1 ≤ i ≤ da, a ∈ V, h ∈ H}.

For any variable a ∈ V and any state 1 ≤ i ≤ da, we can
view variable a as a two-state variable a(i). The first state
a
(i)
1 of a(i) is the ith state ai of a, and the second state a

(i)
2

represents the other states {a1, · · · , ai−1, ai+1, · · · , ada} of a.
Similarly, for any b, c ∈ V and any 1 ≤ j ≤ db, 1 ≤ k ≤ dc, b
and c can be viewed as the two-state variables b(j) and c(k).

The following Lemma B.5 gives the bound of singular
values, the condition numbers, and the norm of matrix in-
version using the intrinsic parameters φ∗ and θ∗.

Lemma B.5. For the observed variables a, b ∈ V , the states
1 ≤ i ≤ da, 1 ≤ j ≤ db, and the latent variables q, h ∈ H,
if Pa(i)|h and Pa(i)b(j) is invertible, we have the following
inequalities:
1. θ∗√

2
≤ σ2(Pa(i)|h) ≤ σ1(Pa(i)|h) ≤

√
2,

2. κ(Pa(i)|h) ≤ 2
θ∗
,

3. θ∗√
2
≤ σ2(Pq|h) ≤ σ1(Pq|h) ≤

√
2,

4. θ2∗φ∗ ≤ σ2(Pa(i)b(j)) ≤ σ1(Pa(i)b(j)) ≤ 1,
5. ‖P−1

a(i)b(j)
‖ ≤ 1

θ2
∗φ∗

,

6. θ∗√
2dmax

≤ σ2(Pa|h) ≤ σ1(Pa|h) ≤
√
2.

Proof. The sum of each column of Pa(i)|h is one and every

element in Pa(i)|h is nonnegative. Thus, ‖Pa(i)|h‖F ≤
√
2. It

follows that σ1(Pa(i)|h) = ‖Pa(i)|h‖ ≤ ‖Pa(i)|h‖F ≤
√
2. Since

σ1(Pa(i)|h)σ2(Pa(i)|h) = | det(Pa(i)|h)| = |Pr(a = ai|h =

h1)− Pr(a = ai|h = h2)| ≥ θ∗, we have θ∗√
2
≤ σ2(Pa(i)|h) ≤

σ1(Pa(i)|h) ≤
√
2. Furthermore, κ(Pa(i)|h) =

σ1(Pa(i)|h)

σ2(Pa(i)|h)
≤ 2

θ∗
.

An observed variable c exists in the latent tree such
that c and h are conditionally independent given q. Some

state 1 ≤ k ≤ dc exists such that Pc(k)|q is not singu-
lar. Furthermore, since Pc(k)|qPq|h = Pc(k)|h, it follows that
σ1(Pq|h)σ2(Pq|h)| det(Pc(k)|q)| ≥ θ∗. From | det(Pc(k)|q)| ≤ 1,
we have σ1(Pq|h)σ2(Pq|h) ≥ θ∗. Since σ1(Pq|h) = ‖Pq|h‖ ≤
‖Pq|h‖F ≤

√
2, so θ∗√

2
≤ σ2(Pq|h) ≤ σ1(Pq|h) ≤

√
2.

A latent variable s exists such that the observed variables
a and b are conditionally independent given s, so we have
| det(Pa(i)b(j))| = | det(Pa(i)|s)|
| det(Pss)|| det(Pb(j)|s)| ≥ θ2∗φ∗. Since σ1(Pa(i)b(j)) =
‖Pa(i)b(j)‖ ≤ ‖Pa(i)b(j)‖F ≤ 1, it follows that σ2(Pa(i)b(j)) ≥
θ2∗φ∗. Thus, ‖P−1

a(i)b(j)
‖ = 1

σ2(Pa(i)b(j)
) ≤

1
θ2
∗φ∗

.

From the relation between a(i) and a, it follows
that Pa(i)|h = BPa|h, where every element of the
first row of matrix B is zero, except the ith posi-
tion is one, and every element of the second row of
B is one, except the ith position is zero. It follows
that σ1(Pa(i)|h)σ2(Pa(i)|h) ≤

√
dmaxσ1(Pa|h)σ2(Pa|h) from

(III.19) in [4]. Since σ1(Pa(i)|h)σ2(Pa(i)|h) = | det(Pa(i)|h)| ≥
θ∗, we have θ∗√

2dmax
≤ σ2(Pa|h) ≤ σ1(Pa|h) ≤

√
2 from

σ1(Pa|h) ≤ ‖Pa|h‖F ≤
√
2.

Based on the discussion in Section 4.2, our method for
estimating parameters can be performed correctly if we
can correctly judge whether Pb(j)c(k) is singular or not and
whether the two eigenvalues are equal or not. Furthermore,
we must correctly match the latent variable states with the
recorded label states. All of these requirements are consid-
ered in the following.

We introduce a threshold ε1 to judge whether
Pb(j)c(k) is singular or not based on the empirical es-
timation P̂b(j)c(k) . If Pb(j)c(k) is invertible, we have
| det(Pb(j)c(k))| = | det(Pb(j)|h)|| detPhh|| det(Pc(k)|h)| ≥
θ2∗φ∗. If | det(P̂b(j)c(k)) − det(Pb(j)c(k))| ≤ ε1 < 1

2θ
2
∗φ∗ when

the sample size is sufficiently large, then | det(P̂b(j)c(k))| ≤
ε1 if and only if det(Pb(j)c(k)) = 0. Thus, if the event⋂

b,c,j,k{| det(P̂b(j)c(k)) − det(Pb(j)c(k))| ≤ ε1}, where b, c ∈
V, b �= c, 1 ≤ j ≤ db and 1 ≤ k ≤ dc, can occur with a high
probability when the sample size is sufficiently large, we can
correctly judge whether all of det(Pb(j)c(k)) are zero or not
with a high probability. Indeed, the following lemma shows
the lower bound of the probability that we can correctly
judge whether all of det(Pb(j)c(k)) are zero or not.

Lemma B.6. For any t > 0, Pr(
⋂

b,c∈V,b �=c,1≤j≤db,1≤k≤dc

{| det(P̂b(j)c(k)) − det(Pb(j)c(k))| ≤ 2(1+
√
t)√

N
}) > 1 −

n2d2maxe
−t, where n is the number of observed variables.

Proof. It can be verified that | det(P̂b(j)c(k)) −
det(Pb(j)c(k))| ≤ 2‖P̂b(j)c(k)−Pb(j)c(k)‖F . Thus, from Proposi-
tion A.1, it follows that Pr(| det(P̂b(j)c(k))−det(Pb(j)c(k))| ≤
2(1+

√
t)√

N
) > 1− e−t for any two distinct observable variables

b, c ∈ V and any 1 ≤ j ≤ db, 1 ≤ k ≤ dc. Therefore, for any
t > 0, we have
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Pr

⎛
⎝ ⋂

b,c,j,k

{| det(P̂b(j)c(k))− det(Pb(j)c(k))| ≤ 2(1 +
√
t)√

N
}

⎞
⎠

> 1−
∑

b,c,j,k

Pr

(
| det(P̂b(j)c(k))− det(Pb(j)c(k))|

>
2(1 +

√
t)√

N

)
> 1− n2d2maxe

−t,

where n is the number of observed variables and b, c ∈ V, b �=
c, 1 ≤ j ≤ db, 1 ≤ k ≤ dc.

As discussed above, if we set the threshold ε1 < 1
2θ

2
∗φ∗,

when the sample size N is sufficiently large such that
2(1+

√
t)√

N
< ε1, we can correctly judge whether all of

det(Pb(j)c(k)) are zero or not with a probability of at least
1− n2d2maxe

−t for any t > 0.
Now, we assume that we can correctly judge whether

all of det(Pb(j)c(k)) are zero or not. If the observed vari-
ables a, b, c are conditionally independent given a latent
variable h, some 1 ≤ j ≤ db and 1 ≤ k ≤ dc exist
such that Pb(j)c(k) is not singular. Thus, we can decom-

pose the matrix P
a(i)=a

(i)
1

b(j)c(k) P−1
b(j)c(k) to obtain the two eigen-

values, λ1 = Pr(a = ai|h = h1) and λ2 = Pr(a = ai|h =
h2). We also view the two eigenvalues as two functions,
λ1(a

(i), b(j), c(k), h) and λ2(a
(i), b(j), c(k), h). Since Pa|h has

full column rank, some 1 ≤ i ≤ da exists such that
λ1(a

(i), b(j), c(k), h) �= λ2(a
(i), b(j), c(k), h). Furthermore, we

can obtain the two eigenvectors x1 = (Pr(b(j) = b
(j)
1 |h =

h1), P r(b(j) = b
(j)
2 |h = h1))

T and x2 = (Pr(b(j) = b
(j)
1 |h =

h2), P r(b(j) = b
(j)
2 |h = h2))

T that correspond to λ1 and λ2,
respectively, from the restriction 1Tx1 = 1Tx2 = 1. Thus,

the first element x11 of x1 is Pr(b(j) = b
(j)
1 |h = h1), which is

simply Pr(b = bj |h = h1), and the first element x21 of x2 is

Pr(b(j) = b
(j)
1 |h = h2), which is simply Pr(b = bj |h = h2).

Similarly, we view these two eigenvectors as two vector func-
tions, x1(a

(i), b(j), c(k), h) and x2(a
(i), b(j), c(k), h).

We define two sets F1 = {ω = (a(i), b(j), c(k), h): Three or-
dered distinct variables a, b, c ∈ V are conditionally indepen-
dent given h ∈ H. 1 ≤ i ≤ da, 1 ≤ j ≤ db and 1 ≤ k ≤ dc.
Pb(j)c(k) is invertible and Pr(a = ai|h = h1) = Pr(a =
ai|h = h2)} and F2 = {ω = (a(i), b(j), c(k), h): Three ordered
distinct variables a, b, c ∈ V are conditionally independent
given h ∈ H. 1 ≤ i ≤ da, 1 ≤ j ≤ db and 1 ≤ k ≤ dc.
Pb(j)c(k) is invertible and Pr(a = ai|h = h1) �= Pr(a =
ai|h = h2)}. For any ω = (a(i), b(j), c(k), h) ∈ F1

⋃
F2, we

denote P
a(i)=a

(i)
1

b(j)c(k) P−1
b(j)c(k) as A(ω). Furthermore, if P̂b(j)c(k) is

invertible, we denote P̂
a(i)=a

(i)
1

b(j)c(k) P̂−1
b(j)c(k) as Â(ω). Let λ1(ω)

and λ2(ω) be the two eigenvalues of A(ω), and let λ̂1(ω) and

λ̂2(ω) be the two eigenvalues of Â(ω). For any ω ∈ F2, de-
note the two eigenvectors of A(ω) that correspond to λ1(ω)
and λ2(ω) as x1(ω) and x2(ω) with 1Tx1(ω) = 1Tx2(ω) = 1.

If λ̂1(ω) �= λ̂2(ω), denote the two eigenvectors of Â(ω) that

correspond to λ̂1(ω) and λ̂2(ω) as x̂1(ω) and x̂2(ω) with
1T x̂1(ω) = 1T x̂2(ω) = 1.

For any ω1 ∈ F1, we define the event E1(ω1) =⋂
i=1,2{|λ̂i(ω1) − λi(ω1)| ≤ 6(1+

√
t)

θ5
∗φ

2
∗
√
N
}. For any ω2 ∈

F2, we define the event E2(ω2) =
⋂

i=1,2{|λ̂i(ω2) −
λi(ω2)| ≤ 6(1+

√
t)

θ5
∗φ

2
∗
√
N
, |λ̂1(ω2) − λ̂2(ω2)| > 1

2θ∗, |x̂i1(ω2) −

xi1(ω2)| ≤ 54(1+
√
t)

θ6
∗φ

2
∗
√
N
}. Furthermore, The following lemma

presents the lower bound of the probability of the event⋂
ω1∈F1,ω2∈F2

(E1(ω1)
⋃

E2(ω2)):

Lemma B.7. For any t > 0, if 54(1+
√
t)

θ6
∗φ

2
∗
√
N

< 1, we have

Pr

⎛
⎝ ⋂

ω1∈F1,ω2∈F2

(E1(ω1)
⋃

E2(ω2))

⎞
⎠ ≥ 1− 2n3md3maxe

−t,

where n is the number of observed variables and m is the
number of latent variables.

Proof. From the definition of θ∗ and φ∗, it follows that 0 <
θ∗ ≤ 1 and 0 < φ∗ ≤ 1. If the sample size N is sufficiently

large such that 54(1+
√
t)

θ6
∗φ

2
∗
√
N

< 1, for any (a(i), b(j), c(k), h) ∈
F1

⋃
F2, it holds that

1+
√
t√

N
< 1

2‖P−1

b(j)c(k)
‖ from Lemma B.5.

Furthermore, Pr(‖P̂ a(i)=a
(i)
1

b(j)c(k) P̂−1
b(j)c(k) − P

a(i)=a
(i)
1

b(j)c(k) P−1
b(j)c(k)‖ ≤

3‖P−1
b(j)c(k)‖2 1+

√
t√

N
) > 1 − 2e−t from Lemma B.4. Moreover,

for any ω = (a(i), b(j), c(k), h) ∈ F2, we have
18

|λ1(ω)−λ2(ω)| (1+

κ(Pb(j)|h))‖P−1
b(j)c(k)‖2 1+

√
t√

N
< 1 from Lemma B.5.

As discussed above, when the sample size N is

sufficiently large such that 54(1+
√
t)

θ6
∗φ

2
∗
√
N

< 1, we have

Pr(E1(ω1)
⋃

E2(ω2)) > 1 − 2e−t for any ω1 ∈ F1 and any
ω2 ∈ F2 from Corollary B.1 and Lemma B.4. Hence, we
have:

Pr

⎛
⎝ ⋂

ω1∈F1,ω2∈F2

(E1(ω1)
⋃

E2(ω2))

⎞
⎠

≥ 1−
∑

ω1∈F1,ω2∈F2

Pr
(
(E1(ω1)

⋃
E2(ω2))

c
)

≥ 1− 2e−t|F1

⋃
F2|

≥ 1− 2n3md3maxe
−t,

where n is the number of observed variables and m is the
number of latent variables.

If |λ̂1(ω) − λ̂2(ω) − λ1(ω) + λ2(ω)| < ε2 < 1
2θ∗, then

|λ̂1(ω) − λ̂2(ω)| < ε2 if and only if λ1(ω) = λ2(ω). If the

event {|λ̂1(ω) − λ̂2(ω) − λ1(ω) + λ2(ω)| < ε2 for any ω ∈
F1

⋃
F2} occurs with a high probability when the sample

size is sufficiently large, we can correctly judge whether all
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the λ1(ω) − λ2(ω) for ω ∈ F1

⋃
F2 are zero or not with a

high probability.
As discussed above, if we can correctly judge whether all

the det(Pb(j)c(k)) are zero or not, by setting the threshold
ε2 < 1

2θ∗, when the sample size is sufficiently large such

that 54(1+
√
t)

θ6
∗φ

2
∗
√
N

< ε2 (which implies that 54(1+
√
t)

θ6
∗φ

2
∗
√
N

< 1 and

|λ̂1(ω) − λ̂2(ω) − λ1(ω) + λ2(ω)| ≤ 12(1+
√
t)

θ5
∗φ

2
∗
√
N

< ε2 for ω ∈
F1

⋃
F2), the event that we can correctly judge whether all

the λ1(ω)−λ2(ω) for ω ∈ F1

⋃
F2 are zero or not occurs with

a probability of at least 1−2n3md3maxe
−t. At the same time,

we can guarantee that for any ω ∈ F2, |λ̂1(ω)−λ̂2(ω)| > 1
2θ∗

and |λ̂i(ω)−λi(ω)| ≤ 1
4θ∗ for i = 1, 2, thus we can correctly

match the states of the latent variables using the label states.
Furthermore, if Pr(b = bj |h = h1) = Pr(b = bj |h = h2), we

only decompose P
b(j)=b

(j)
1

a(i′)c(k) P−1
a(i′)c(k) once to obtain the two

equal eigenvalues, as discussed in Section 4.2. This means
that for any (a(i), b(j), c(k), h) ∈ F1

⋃
F2, the decomposition

of P
b(j)=b

(j)
1

a(i)c(k) P−1
a(i)c(k) will be performed once at most in the

PELT algorithm, and any case on (a(i), b(j), c(k), h) used in
the PELT algorithm is contained in F1

⋃
F2.

Denote the event that our PELT algorithm works as G1

and the event
⋂

s,h,i,j{|P̂ r(s = si|h = hj) − Pr(s = si|h =

hj)| ≤ 54(1+
√
t)

θ6
∗φ

2
∗
√
N
} as G2, where the estimation P̂ r(s = si|h =

hj) is obtained from the PELT algorithm and s ∈ V, h ∈
H, 1 ≤ i ≤ da, j = 1, 2. Thus we have the following lemma:

Lemma B.8. For any t > 0, if we set the thresholds ε1 <
1
2θ

2
∗φ∗ and ε2 < 1

2θ∗, when 2(1+
√
t)√

N
< ε1 and 54(1+

√
t)

θ6
∗φ

2
∗
√
N

<

ε2, then Pr(G1

⋂
G2) ≥ 1 − 3n3md3maxe

−t, where n is the
number of observed variables and m is the number of latent
variables.

Proof. From Lemmas B.6 and B.7, we have equalities that
Pr(G1

⋂
G2) ≥ (1 − 2n3md3maxe

−t)(1 − n2d2maxe
−t) ≥ 1 −

3n3md3maxe
−t, where n is the number of observed variables

and m is the number of latent variables.

From Lemma B.8, for any s ∈ V and h ∈ H, we have

‖P̂s|h − Ps|h‖ ≤
√
2dmax

54(1+
√
t)

θ6
∗φ

2
∗
√
N

and P̂s|h also has full col-

umn rank. Since Ps|qPq|h = Ps|h and P̂s|qP̂q|h = P̂s|h in the
PELT algorithm, then from Theorem 5.1 in [24], we have

‖P̂q|h − Pq|h‖ ≤
‖P+

s|q‖(
√
2‖P̂s|q − Ps|q‖+ ‖P̂s|h − Ps|h‖)
1− ‖P+

s|q‖‖P̂s|q − Ps|q‖

≤
√
2dmax(

√
2‖P̂s|q − Ps|q‖+ ‖P̂s|h − Ps|h‖)

θ∗ −
√
2dmax‖P̂s|q − Ps|q‖

≤ 2
√
2dmax

θ∗

5
2

√
2dmax54(1 +

√
t)

θ6∗φ
2
∗
√
N

≤ 540dmax(1 +
√
t)

θ7∗φ
2
∗
√
N

,

where the second inequality holds from Lemma B.5 when√
2dmax‖P̂s|q−Ps|q‖ ≤ 1

2θ∗. Since
108dmax(1+

√
t)

θ6
∗φ

2
∗
√
N

< ε2 < 1
2θ∗

implies that 54(1+
√
t)

θ6
∗φ

2
∗
√
N

< ε2 and
√
2dmax‖P̂s|q − Ps|q‖ ≤

108dmax(1+
√
t)

θ6
∗φ

2
∗
√
N

< 1
2θ∗, we obtain the following theorem which

shows that our PELT algorithm can obtain consistent esti-
mates of all the conditional probability matrices.

Theorem B.1. For any η ∈ (0, 1), if we set the thresh-
olds ε1 < 1

2θ
2
∗φ∗ and ε2 < 1

2θ∗, when the sample size N is
sufficiently large such that

(B.1)
2(1 +

√
t0)√

N
< ε1,

108dmax(1 +
√
t0)

θ6∗φ
2
∗
√
N

< ε2,

where t0 = − log η
3n3md3

max
, then we have

Pr(
⋂

h∈H,v∈ch(h){‖P̂v|h −Pv|h‖ ≤ 540dmax(1+
√
t0)

θ7
∗φ

2
∗
√
N

}) ≥ 1− η,

where n is the number of observed variables and m is the
number of latent variables.
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