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Estimation of directed subnetworks in ultra high
dimensional data for gene network problems

SUNG WoON HAN*, SUNGHwAN KIM*, JUNHEE SEOK,

JEEWHAN YOON', AND HUA ZHONGT

The next generation sequencing technology generates ul-
tra high dimensional data. However, it is computationally
impractical to estimate an entire Directed Acyclic Graph
(DAG) under such high dimensionality. In this paper, we
discuss two different types of problems to estimate subnet-
works in ultra high dimensional data. The first problem is to
estimate DAGs of a subnetwork adjacent to a target gene,
and the second problem is to estimate DAGs of multiple
subnetworks without information about a target gene. To
address each problem, we propose efficient methods to es-
timate subnetworks by using layer-dependent weights with
BIC criteria or by using community detection approaches to
identify clusters as subnetworks. We apply such approaches
to the gene expression data of breast cancer in TCGA as a
practical example.

KEYWORDS AND PHRASES: Bayesian network, Directed
acyclic graph, Penalized likelihood, High dimension, Sub-
networks.

1. INTRODUCTION

Pathway analysis and gene-gene interaction studies play
important roles to reveal the underlying molecular mech-
anisms associated with cancer development. The directed
acyclic graph (DAG) is a commonly used model to estimate
a gene regulatory network. Since the cost of generating high-
throughput data has been reduced, ultra high dimensional
data sets are abundantly available [64]. However, the es-
timation of DAGs is an NP-hard problem, so it requires
heavy computational time even for middle-sized data. Not
surprisingly, it is challenging to estimate a whole gene net-
work using large-scale gene expression data. For example, in
large omics data for cancer such as the TCGA (The Cancer
Genome Atlas) or the GTEx (Genotype-Tissue Expression)
project, the number of gene expressions is huge, more than
10,000. However, there is no existing method that can es-
timate an entire network within reasonable computational
time.

A directed subnetwork that contains a few clusters with
significant genomic features is sufficient to account for the
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system of biological components related to diseases without
estimating an entire network. Thus, we estimate a network
focusing on only a few gene expressions that serve impor-
tant roles in the model. According to Gene Ontology [25, 2],
protein coding-genes characterized with the same genomic
function leading to a certain disease are often mutually as-
sociated and biologically function together. In addition, the
function of a gene can be revealed within a group of genes
having known genetic functions [16], and thus identifying
directed interactions within a group of similar functional
genes is a reasonable approach. In this paper, we propose
a method to estimate directed subnetworks in ultra high
dimensional data.

Probabilistic graphical models have received a wide at-
tention in terms of estimating networks. Conditional de-
pendency among variables can be represented by undi-
rected or directed graphs. Undirected graphical models are
known as full conditional models or conditional indepen-
dence graphs, and contain undirected edges. Undirected
graphs are typically used to construct an undirected network
with gene-gene interaction. If two variables are dependent
given all the other variables, the corresponding two nodes
are connected [38]. For instance, in the Gaussian graphi-
cal model, a non-zero element of the precision matrix (i.e.,
an inverse covariance matrix) indicates conditional depen-
dency.

For directed acyclic graphs (DAGs), the directed edges
indicate a causal relationship; it is useful to perform protein-
protein interaction analysis [32] or gene expression data
analysis [20]. In high dimensional data, especially when the
sample size is smaller than the variable dimension, a lasso
penalty is usually applied to estimate sparse networks. In
Meinshausen and Biithlmann (2006), the estimation of a full
conditional independence graph is shown by neighborhood
selection from a linear model with a lasso penalty. Shojaie
and Michailidis [61] converted the Li-penalized likelihood
to separable lasso problems to estimate DAGs under the
known variable ordering. Fu and Zhou [22] and Han et al.
[26] studied the L;-penalized likelihood to estimate DAGs
when the variable ordering is unknown.

Clustering analysis for gene networks has been studied
for a few decades. There are many clustering approaches
applied to gene expression data such as k-means [67], hier-
archical clustering [16, 1, 73, 27, 41], self-organizing maps
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(SOMs) [66, 69], Markov clustering algorithm [37, 21],
simulated annealing [42], Nearest Neighbor Networks [30],
Consense clustering [47, 75] and Spectral clustering algo-
rithm [35, 70, 28]. In addition, several clustering meth-
ods are discussed for protein-protein interaction networks
[65]; for instance, molecular complex detection algorithm
[3], Markov cluster algorithm [17], and Clique Percolation
Method [54].

A graph-based clustering is useful to circumvent the
challenge of high dimensionality, and community detection
in a social network is a popular example of the graph-
based clustering. This approach can be used for cluster-
ing genes based on interactions and their strength. There
are a bunch of methods for community detection methods
in constructing graphs (refer to Fortunato [19] and Porter
et al. [57]). Modularity maximization or spectral clustering
is one of the well-known methods for detecting communi-
ties.

As aforementioned, it is computationally impractical to
estimate DAGs under high dimensionality. In this paper,
we discuss two different types of problems to estimate sub-
networks in ultra high dimensional data. The first problem
is to estimate DAGs of a subnetwork adjacent to a target
gene, and the second problem is to estimate DAGs of mul-
tiple subnetworks without information about a target gene.
To address each problem, we propose an efficient method to
estimate subnetworks. This paper is organized as follows.
Section 2 explains background knowledge and introduces
problems of interest. Section 3 includes proposed algorithms
for estimating directed acyclic graphs in high dimensional
data, and Section 4 covers simulation studies performed un-
der various simulation scenarios. In Section 5, we apply the
proposed method to real example data to show the appli-
cation of our approaches. Lastly we make a conclusion in
Section 6.

2. PROBLEM FORMULATION

2.1 Graphical modeling and linear structure

Denote p variables of interest by Xi, Xs,..., X, and let
x be a n X p data matrix, where n indicates the sample size
or the number of the observations. A graph G can be rep-
resented by the variable set V with p nodes and edge set
E(V x V). Each edge in E accounts for a relationship be-
tween two nodes, and if (4,7) is present in F, (j,¢) should
not be. We define pa; = {all j|i + j}, which is a parent set
for i. To model a causal relationship, a structural equation
model can be widely used [55]. Suppose that ~; is an un-
explained latent variable (e.g., noise effects), and it follows
the independent normal distribution, N (0, U?Yi). The causal
relationship can be represented by linear regression [61] as
follows:

p
X; = Zainj + i

Jj=1

(1)
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where a;; is a causal effect of a directional relationship from
a parent j to a child 7. Using a vector representation, let
Y= [717’725"'7’717]713 and so Yo~ MN(OaQ)7 where Q =
diag[a%l,afm, ...,0‘,2yp]. With X = [X1, Xs, ..., X,], Equation
(2) can be represented by

(2)

where A is an adjacency matrix,

X=XA+~,

0 a2 a1p—1  Qlp
a1 0 oo o bapo1 a2y
3) A= :
ap-1,1 Gp-12 *° 0 ap-1p
ap,1 ap,2 ap,p—1 0

Note that X follows the multivariate normal distribution

with Var[X] = (I-A)7'Q((I — A)T)_l. We assume that x;

is standardized for 1 < i < p, and so Z; = Y _;_, zi/n =0,

and Yp_ (zik — ;)*/n = 1, where z; is the 4y, column

vector of data matrix y, and x;x is the ky, component of x;.
2.2 Penalized likelihood and Lasso

framework

The log likelihood for the linear model is

@ =2 log () x —logl(1 = ATQHI - A)
+otr [Q—l(f AT - AT,

where x; is the i, column vector of matrix x, and I isapxp
identity matrix. s a sample covariance matrix defined
by = S (i — @) (xi — )T /n, where 2 = Y x;/n.
According to Shojaie and Michailidis [61] and Han et al.
[26], the log likelihood can be approximated as

3 [(1 A - A)T]k A .
j=1

k=1 ’

()

However, this approximation requires the condition of
acyclicity, and the complete optimization problem was pro-
posed by Han et al. [26] as below:

P p
. 1 2
(6) 71%1]; [ﬁlm = xal3 +A) :laka‘l}v

1 j=1

»E

subject to T;; = I(ax; # 0), and

min(Card(T),p) p

; mgl [Tl}mm =0.

When applying this algorithm to high-dimensional data,
we necessarily encounter two challenges. The first is the ex-
pensive computational cost. To address this challenge, [26]

(7)



proposed an approach based on a two-step procedure. In
the first step, the algorithm purposely omits the acyclic
constraint (7), and then solves the optimization problem
(6). This procedure is identical to the estimation of a full
conditional independence graph by Lasso (Meinshausen and
Bithlmann, 2006), and hence this reduces searching space
within the full conditional independence graph. In the sec-
ond step, they fit an optimal graphical model using the
objective function (6) together with an acyclic condition.
This algorithm seems to be computationally efficient, but
yet might not be applicable to ultra high dimensional data
consisting of about 20,000 genomic features. To improve the
approach, we propose an algorithm for the target driven es-
timation of DAGs in case of ultra high dimensional data, as
well as for the estimation of subnetworks.

The main challenge is how to select A\;. Meinshausen and
Biithlmann (2006) mentioned that the selection of proba-
bilistic neighbors is equivalent to variable selection by the
lasso regression. In the two-stage approach, the first stage
deals with the neighbor selection problem, which is related
to selection of the penalty parameter in the lasso regression.
For selecting the penalty parameter, there are two main ob-
jectives to be considered; one is consistency of prediction
error, and the other is consistency of variable selection. To
minimize average prediction errors, cross validation (CV)
can be used, and is well known to be asymptotically op-
timal for estimating penalties. Nevertheless, CV does not
ensure consistency in model selection for the Lasso penalty
[72]. In addition, applying CV often incurs a high compu-
tational expense. To tackle this problem, Meinshausen and
Buhlmann [46] proposed a method for the penalty choice
under some regularization conditions in order to control the
false discovery. In principle, the method is proposed under
an assumption of asymptotic properties, which, in practice,
often does not function properly, especially when applied to
a finite sample size and the moderate number of true neigh-
bors. For consistency of model selection, the BIC (Bayesian
Information criteria) along with the best subset selection
approach is suggested [59, 60]. However, the approach us-
ing BIC criteria suffers from heavy computational time for
high dimensional data, so the combination of the lasso re-
gression and the BIC criteria has been widely implemented.
It was proved that the lasso approach obtains more stable
and correct estimations than the subset variable selection
method [68], and the BIC approach is known to satisfy con-
sistent model selection. Taken together, in this paper, we
will experimentally examine the estimation of directed net-
works by various criteria, and will show the superiority of
the proposed method compared to the existing approaches.

3. ESTIMATION OF THE TARGET
SUBNETWORK

In this section, we propose an algorithm to estimate a
directed acyclic graph around a target response. We propose

a two-step approach: (1) finding neighbors around a target
gene, (2) estimating a directionality among variables within
the set of neighbors.

3.1 Finding neighbors

Without loss of generality, let X, be a target response
variable. We apply a neighbor selection algorithm starting
from X,,. The neighbors of X,, are the set of variables with
non-zero coefficients from

1 p
) o = Xapll3 21 D gl

Jj=1

Let the level of x,, be Ly, then we denote L1 = {Xp}. The
variables selected by Equation (8) in terms of X, are in-
cluded in the layer 2 (Ls). Let XL™ be a variable in the set
of layer m, L,,. The set of the m + 1 level, L,,1, includes
a variable X Zm+1  which is obtained by

1 P
i = X0, I3+ A D 51
j=1

(9)

where X, € L,,. We keep running the above neighbor se-
lection algorithm until a stopping criterion is satisfied. We
propose several rules for the searching level. The first ap-
proach is to use a fixed upperbound for the searching level,
and so the algorithm searches neighbors until the level U.
The second approach is to use the level-dependent penalty
Am so that the penalty value A\ increases as the level in-
creases.

For the fixed upper bound approach of the searching level,
Am at a level m can be decided by the formula suggested by
Meinshausen and Bithlmann (2006):

26x,

M) = =7 [1 - @*1(%)].

We call this approach Fix-alpha, which is suggested to use in
[26]. The second fixed upper bound approach is using BIC.
Let a;,, be an estimate from Equation (9), then based on
several values of A, A, can be obtained by the BIC criterion,
which is

(10)

log(n)

(11)

1 . .
gHXim — Xai,, |3 + Card(as,,)

We call this approach Fix-BIC.

Besides the fixed upper bound approach using the layer-
independent penalty, we can use the BIC with a level-
dependent penalty:

log(n) o h(m)
== .

1 ~ ~
(12) E”Xim — Xai, |3 + Card(a;,,)

We propose two functions for h(m); hi(m) = c¢1(m — 1) or
ha(m) = cylog(m). If hy(0) = ) = 1, then Equation
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(12) becomes the BIC approach in (11). We call the ap-
proach using the function h;(-) as Var-BIC-hl, and we call
the approach using the function hq(-) as Var-BIC-h2. As
the layer increases, a higher weight is assigned to the degree
of freedom term, which also leads to an increase of A. The
Var-BIC-h1 approach gives a penalty, which increases ex-
ponentially in the level, whereas the Var-BIC-h2 approach
increases polynomially. As the algorithm search in the higher
layer, the penalty term becomes large, which automatically
stops the search.

3.2 Estimation of DAGs

After we identify the set of neighbors around a target
gene, we need to estimate the structure of a DAG. To esti-
mate a DAG, we can apply a search algorithm to find the
directionality within the neighborhood structure obtained
from the previous step. Since the variable selection step is
complete in the previous step, we no longer need a penalty
term, and so can only estimate the directionality based on
likelihood. The optimization problem is as below:

P
&1 )
(13) min E”Xk — xak|lz,
k=1
subject to
min(Card(T),p) p
(14) 3 [Tl} —0,
1=1 m=1 mm
and
(15) Tkj < Nkj7

where IV is a neighborhood structure matrix. The descrip-
tion of how to find the solution in the optimization problem
is in Appendix.

4. ESTIMATION OF THE MULTIPLE
SUBNETWORKS

To estimate multiple subnetworks of DAGs in ultra high
dimensional data, we propose a hybrid approach with com-
munity detection algorithms. We first estimate an undi-
rected graph or neighbors based on the Li-penalized like-
lihood in Equation (6). Based on the undirected graph, we
apply a community detection algorithm to find graphs or
clusters of the genes based on their estimated interaction.
Given each cluster, we estimate directionality by incorpo-
rating Equation (6) with the acyclic constraint (7).

We use several well known community detection algo-
rithms. For instance, one of the well-known metrics to gauge
how effectively a network is divided into groups or commu-
nities is modularity [52, 51]. Modularity is defined by “the
total number of edges among vertexes within the same com-
munity” minus “the expected number of edges among such
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vertexes, if they are randomly distributed”. Here, we investi-
gate three searching methods: fast greedy algorithm, walk-
trap algorithm, and leading eigenvector algorithm, which
are implemented in “igraph” package in R. The fastgreedy
algorithm by Clauset et al. [13] is a hierarchical approach,
which improves a modularity function in a greedy manner. It
starts its own separate community for each node, and com-
munities are merged at each iteration in order to increase
the modularity function value. The process stops when the
modularity function value cannot increase any more.

The walktrap algorithm by Pons and Latapy [56] uses a
stochastic approach based on a random walk. It generates
random walks on the network. Since there are more edges
between nodes within a community than those outside a
community, the random walks tend to stay within the same
community. The walktrap technique generates short random
walks, and by using the results, it merges smaller communi-
ties into larger ones, which automatically generates a den-
drogram. The modularity score is used to select the thresh-
old for cutting a dendrogram.

The leading eigenvector algorithm by Newman [51] is the
extension of the spectral partitioning method in a graph,
but the former uses the modularity matrix instead of the
Laplacian matrix used by the latter. It starts with the whole
network at the initial step, and it splits the network into two
parts which gives significant increase of the modularity. The
leading eigenventor of the modularity matrix is used to split
the networks.

5. SIMULATION STUDY

To experimentally compare performance of the proposed
methods, we perform simulation studies. We consider vari-
ous simulation scenarios in terms of the number of variables
(p) and the number of parents per child (d). The parame-
ter values we used are (p = 200,500, and 1000), (n = 500),
and (d = 2, 4, or 6). The latent variables (7;) are generated
from the standard normal distribution. The value a;;, the
causal relationship from X; to Xj, is set at 0.8. For esti-
mating target-driven subnetworks, we distribute edges from
Xp, which is a child node for all other edges. For multiple
subnetworks, we distribute edges randomly from each node
with blocks of matrices, which indicate clusters.

Comparing performances of the methods is not a triv-
ial task, since the methods detect subnetworks after defin-
ing clusters. Therefore, we consider estimating performance
within the clusters. First, we define p(C) by the number of
nodes within clusters, and p(A) by the number of nodes in
an entire graph. We also define e(C') by the number of true
edges within clusters, and p(A) by the number of nodes in
an entire graph. Within the cluster, we define the number of
true positives (TP), the number of false positives (FP), the
number of true negatives (TN), and the number of false neg-
atives (FN). Similarly, we also use directional true positive
(dTP) defined as the number of correctly estimated direc-
tionality [22, 26]. In addition, we also consider directional



false negative (dFN), which counts the number of wrongly
estimated directions of edges as well as the number of esti-
mated non-existing edges.

ROC curves based on TP and FP is not suitable to apply
since they depend on the size of the clusters. Instead, we
show similar curves based on overall performance such as
MCC with p(C)/p(A) or e(C)/e(A). The Matthew’s corre-
lation coefficient (MCC) is calculated by
(16)

MO — (TP x TN) — (FP x FN)

(TP + FP)(TP+ FN)(TN + FP)(TN + FN)]Y/2

Within a cluster, the higher value indicates the better fit.
Similarly, dMCC can be defined based on dTP and dFN in-
stead of TP and FP. We also use positive predictive value
(PPV), which is defined by TP over the number of all es-
timated edges. Similarly, dPPV is defined by dTP over the
number of all estimated edges. PPV does not count FN or
TN. MCC(dMCC) and PPV(dPPV) focus on values within
clusters.

5.1 Simulation results for selection of
neighbors

Finding neighbors in subsection 3.1 is the iterative vari-
able selection procedure. Before we perform full simulation
studies, we thus first investigate performances of the cri-
teria at one iteration, which is essentially single variable
selection procedure. More precisely, we investigate perfor-
mances in terms of the penalty parameter criteria under
one child structure. For p variables, X, is assumed to be
a child node, and edges from parent nodes are randomly
selected.

We come up with three simulation scenarios. Scenario 1
is that the true parent variables are independent of one an-
other, and also independent of other non-parent variables.
In Scenario 2, the true parent variables are independent of
one another, but they are dependent on other non-parent
variables. Especially, we assume that the non-parent vari-
ables are ancestors of the child variables. For example, if
X, is a child variable and X; is the parent variable for X,,.
We assign an edge between X; and Xj;, where X; is not
in the set of {Xj|Xy is a parent for X,,}. In Scenario 3, we
consider all parents are dependent on one another. Espe-
cially, we control each parent variable to be affected by only
one other parent. The simulation result for d=2 and 3 is
presented in Table 1.

Based on the simulation study, the approach based on
the formula in (10) performs very well for all three scenarios
when n = 500, as we expected. The formula is derived based
on asymptotic property (i.e., n is large). However, if n is a
small size (i.e., n = 100), performance become worse. For
example, in Scenario 1, if d = 2, p = 200, and n = 100, the
average MCC from a-method is 0.85, and the correspond-
ing MCC if d = 3 is 0.56. The BIC' approach shows good
performance under most cases, which indicates robustness.
As a data-driven approach, it adjusts the correlation struc-

ture of the data. Finally, we also investigate performance of
GCV criteria. As we discuss in the introduction, CV satis-
fies asymptotic consistency in prediction, but not in variable
selection. Taken together, in all cases, performance of GCV
is the worst. We also investigate higher d such as d=4 and 5,
and the simulation result is in Table 2. The patterns of per-
formance among the three approaches are similar to those
when d=2 and 3.

5.2 Simulation results for target-driven
subnetworks

We compare four different techniques: the Fix-alpha
method, the Fix-BIC method, the Var-BIC-h1 method, and
the Var-BIC-h2 method. On the whole, using the BIC crite-
ria gives better performance than using the alpha formula,
the fixed-alpha method. Among the methods using BIC cri-
teria, the techniques with layer-dependent weights such as
the Var-BIC-h1l and Var-BIC-h2 methods show higher per-
formance than the fixed layer technique such as the Fix-
BIC method, especially for small sized clusters. Such per-
formance patterns are clear when d=2, but when d=4 or
6, overall performances decrease for all methods since the
signal-to-noise ratio becomes small. The detailed explana-
tion of the performance comparisons especially for d=2 is
as follows.

We first compare the PPV or MCC metric along with the
different sizes of clusters in terms of the number of nodes,
as shown in Figure 1. PPV considers only true positives
or false positives based on estimated edges, and so it does
not consider which part of the edges should be counted as
true or false negatives. Thus, PPV is also a good metric for
estimation of a subnetwork.

Based on PPV metric plots in Figure 1 (a), the Fix-alpha
method is shown to have the worst performance. For exam-
ple, when p = 200, the PPV of the Fix-alpha method is less
than 0.4 in the range of p(C)/p(A) between 0 and 0.8. As
p increases up to 1000, the PPV of the Fix-alpha method
reduces and becomes less than 0.2. If we use the BIC crite-
ria, say Fix-BIC, performance is significantly improved. For
the range of p(C)/p(A) greater than 0.2, the PPV of the
Fix-BIC method is over 0.4, and for the range of p(C)/p(A)
greater than 0.4, it becomes over 0.6. The performance in-
creases if we use the methods with layer dependent weights.
The Var-BIC-hl method shows the PPV over 0.5 even in
the range of small p(C)/p(A). In the range greater than 0.2
of p(C)/p(A), the PPV of the Var-BIC-h1 method is over
0.6. Furthermore, the Var-BIC-h2 shows higher PPVs than
0.6 in the entire range of p(C)/p(A). Overall, the Var-BIC-
h2 shows the best performance regardless of the size of the
subnetwork, which indicates the robustness of the methods.

If we compare them based on dPPV, the values reduce.
The performance patterns in terms of dPPV are similar to
those based on PPV. The dPPV of the Fix-alpha method is
less than 0.2 when p=200, and less than 0.1 when p=1000.
However, the dPPVs of the Var-BIC-h1l and Var-BIC-h2
methods are around or over 0.4.
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Table 1. Simulation results from independent or dependent variables under one child structure

d P n Scenario 1 Scenario 2 Scenario 3
@ BIC, GCV o BIC), GCV o BIC, GCV

2] 50 100 .96 (.10) .96 (.09) .18 (.03) 1.00 (.04) .96 (.09) .18 (.03) 1.00 (.03) .99 (.03) .18 (.03)
2] 50 200 1.00 (.00) .98 (.06) .19 (.03) 1.00 (.00) .97 (.07) .19 (.03) 1.00 (.00) 1.00 (.02) .19 (.03)
21 50 500 1.00 (.00) .98 (.06) .20 (.03) 1.00 (.00) .99 (.04) .18 (.02) 1.00 (.00) 1.00 (.00) .20 (.03)
2 | 50 | 1000 1.00 (.00) .99 (.04) .22 (.03) 1.00 (.00) .98 (.06) .18 (.03) 1.00 (.00) 1.00 (.00) .19 (.03)
2 | 100 | 100 .91 (.20) .95 (.09) .09 (.02) 99 (.05) .96 (.09) .10 (.02) 99 (.04) 1.00 (.03) .10 (.02)
2 | 100 | 200 1.00 (.00) .97 (.08) .13 (.02) 1.00 (.00) .97 (.08) .13 (.02) 1.00 (.00) 1.00 (.03) .13 (.02)
2 | 100 | 500 1.00 (.00) .98 (.05) 14 (.02) 1.00 (.00) .98 (.06) .13 (.01) 1.00 (.00) 1.00 (.00) .14 (.01)
2 | 100 | 1000 1.00 (.00) .99 (.05) 15 (.01) 1.00 (.00) .99 (.05) .13 (.01) 1.00 (.00) 1.00 (.00) .13 (.01)
2| 200 | 100 .85 (.22) .96 (.08) .10 (.00) .96 (.10) .96 (.08) .11 (.00) 99 (.06) 99 (.03) .11 (.00)
21200 | 200 1.00 (.00) .96 (.08) .07 (.01) 1.00 (.00) .97 (.07) .07 (.01) 1.00 (.00) 1.00 (.02) .07 (.01)
21 200 | 500 1.00 (.00) .99 (.04) .09 (.01) 1.00 (.00) .99 (.04) .10 (.01) 1.00 (.00) 1.00 (.00) .09 (.02)
2 | 200 | 1000 1.00 (.00) 1.00 (.03) .10 (.02) 1.00 (.00) .99 (.05) .09 (.01) 1.00 (.00) 1.00 (.00) .10 (.01)
2 | 500 | 100 .75 (.30) .94 (.09) .12 (.00) 94 (\12) .96 (.08) .13 (.00) 98 (.07) 99 (.03) .13 (.00)
2 | 500 | 200 1.00 (.00) .97 (.07) .08 (.00) 1.00 (.00) .98 (.06) .08 (.00) 1.00 (.00) 1.00 (.00) .08 (.00)
2 | 500 | 500 1.00 (.00) .99 (.04) .04 (.01) 1.00 (.00) .99 (.04) .05 (.00) 1.00 (.00) 1.00 (.00) .05 (.00)
2 | 500 | 1000 1.00 (.00) .99 (.04) .06 (.00) 1.00 (.00) .99 (.03) .06 (.00) 1.00 (.00) 1.00 (.00) .07 (.00)
3| 50 100 .84 (.16) .82 (.15) .21 (.03) 95 (.08) .78 (.15) .21 (.04) 94 (.09) 91 (.11) .22 (.04)
3| 50 200 1.00 (.00) .84 (.13) .24 (.04) 1.00 (.00) .83 (.14) .23 (.04) 84 (.07) 90 (.11) .28 (.06)
3| 50 500 1.00 (.00) .89 (.12) .22 (.03) 1.00 (.00) .87 (.12) .25 (.04) 1.00 (.00) .92 (.11) .24 (.04)
3| 50 | 1000 1.00 (.00) .92 (.10) .21 (.03) 1.00 (.00) .88 (.11) .24 (.04) .93 (.06) .94 (.09) .32 (.05)
3 | 100 | 100 .80 (.18) .81 (.15) .12 (.03) .87 (.14) .80 (.17) .12 (.03) 1.00 (.00) .96 (.09) .24 (.03)
3| 100 | 200 1.00 (.00) .85 (.12) .16 (.02) 1.00 (.00) .85 (.13) .15 (.02) 1.00 (.00) .96 (.07) .26 (.04)
3| 100 | 500 1.00 (.00) .89 (.11) .16 (.01) 1.00 (.00) .88 (.12) .17 (.03) 1.00 (.00) .98 (.06) .28 (.07)
3 | 100 | 1000 1.00 (.00) .92 (.10) .15 (.02) 1.00 (.00) .90 (.11) .17 (.02) 1.00 (.00) .97 (.06) .33 (.05)
3] 200 | 100 .56 (.30) .22 (.24) .13 (.00) 75 (.22) .34 (.31) .13 (.01) 92 (.09) 90 (.11) .12 (.03)
3] 200 | 200 1.00 (.03) .85 (.14) .08 (.02) 1.00 (.01) .82 (.14) .09 (.02) 82 (.09) 90 (.11) .17 (.02)
3] 200 | 500 1.00 (.00) .91 (.10) .12 (.01) 1.00 (.00) .89 (.12) .10 (.01) 1.00 (.00) .92 (.11) .16 (.03)
3 | 200 | 1000 1.00 (.00) .93 (.10) .11 (.01) 1.00 (.00) .89 (.11) .13 (.01) 92 (.05) .97 (.06) .22 (.04)
3| 500 | 100 .50 (.29) .15 (.00) .15 (.00) 66 (.23) .15 (.00) .15 (.00) 1.00 (.00) .94 (.09) .17 (.02)
3| 500 | 200 .99 (.04) .87 (.12) .10 (.00) 1.00 (.02) .85 (.12) .10 (.00) 1.00 (.00) .96 (.07) .19 (.02)
3| 500 | 500 1.00 (.00) .91 (.11) .05 (.00) 1.00 (.00) .89 (.11) .06 (.00) 1.00 (.00) .97 (.06) .20 (.05)
3 | 500 | 1000 1.00 (.00) .91 (.10) .08 (.00) 1.00 (.00) .89 (.11) .08 (.01) 1.00 (.00) .95 (.07) .24 (.02)

We also compare the methods based on MCC criteria,
which consider TP and FP as well as true and false neg-
atives within clusters. The overall patterns of performance
are similar to those based on PPV. In the small range of
p(C)/p(A) between 0 and 0.2, the MCCs of the Fix-alpha
method are less than 0.2 for all p cases. However, the MCC
of the Var-BIC-h2 method is over 0.6 in the small range
of p(C)/p(A) between 0 and 0.2 when p=200, and over
0.7 when p=1000. The MCCs of the Fix-BIC method are
smaller than those of the variable weighted methods in the
range of small p(C)/p(A), and the MCCs of the Fix-BIC
method get close to those of the weighted methods as the
ratio p(C)/p(A) increases. Based on the directional MCC
(dMCC) metric, the values reduce, but performance pat-
terns are similar. We also compare performance based on
the ratios of edges in the clusters to those in the entire
graph, e(C)/e(A), which is shown in Figure 2. The perfor-
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mance patterns are similar to those based on p(C)/p(A).
The methods with layer-dependent weights based on BIC
criteria (the Var-BIC-h1 and the Var-BIC-h2 methods) show
better performance than others, and performances are ro-
bust against the e(C)/e(A). The Var-BIC-h2 method shows
a slightly better performance than the Var-BIC-h1 method
in the range of small ¢(C)/e(A), but their performances be-
come similar in the range of large e¢(C)/e(A). In addition,
the performance pattern when d=4 or 6 are similar to that
when d=2 (Appendix A and B in Supplementary Mate-
rials http://intlpress.com/site/pub/pages/journals/items/
sii/content /vols/0010/0004/s003). However, the perfor-
mance difference is not shown clearly since overall perfor-
mances of all methods decrease.

We also compare computational times especially when
p=1000. In order to obtain computational times, we ran the
simulations under the workstation with E5-2630 v3 CPU


http://intlpress.com/site/pub/pages/journals/items/sii/content/vols/0010/0004/s003
http://intlpress.com/site/pub/pages/journals/items/sii/content/vols/0010/0004/s003

Table 2. Simulation results from independent or dependent variables under one child structure

d P n Scenario 1 Scenario 2 Scenario 3
@ BIC, GCV @ BIC), GCV @ BIC), GCV

4] 50 | 100 69 (17) .94 (.08) .25 (.04) 77 (14) 95 (07) .24 (.04) 88 (.07) 1.00 (01) .25 (.05)
4| 50 200 1.00 (.00) .97 (.06) .26 (.04) 1.00 (.00) .96 (.06) .25 (.04) 98 (.05) 1.00 (.00) .25 (.04)
4| 50 | 500 1.00 (.00) .99 (.03) .27 (.04) 1.00 (.00) .98 (.05) .25 (.04) 1.00 (.00)  1.00 (.00) .33 (.05)
4 | 50 | 1000 1.00 (.00) .99 (.03) .25 (.03) 1.00 (.00) .99 (.03) .30 (.04) 1.00 (.00) 1.00 (.00) .25 (.04)
4| 100 | 100 .59 (.19) .95 (.07) .14 (.03) .66 (.18) .95 (.07) .14 (.03) 87 (.07)  1.00 (.00) .14 (.02)
4| 100 | 200 99 (.04) .96 (.06) .18 (.02) 1.00 (.01) .96 (.06) .18 (.02) 97 (.06)  1.00 (.00) .19 (.02)
4 | 100 | 500 1.00 (.00) .98 (.04) .20 (.02) 1.00 (.00) .98 (.04) .17 (.02) 1.00 (.00) 1.00 (.00) .21 (.05)
4 | 100 | 1000 1.00 (.00) .99 (.04) .19 (.02) 1.00 (.00) .98 (.05) .22 (.02) 1.00 (.00) 1.00 (.00) .18 (.02)
4 [200 | 100 A48 (24) .94 (07) .15 (.01) 56 (21) .94 (08) .15 (.01) 85 (.06) 1.00 (.00) .17 (.01)
4 | 200 | 200 96 (.07) .98 (.05) .10 (.02) 1.00 (.02) .97 (.05) .10 (.02) 96 (.06) 1.00 (.00) .11 (.01)
4| 200 | 500 1.00 (.00) .99 (.04) .13 (.02) 1.00 (.00) .99 (.03) .13 (.01) 1.00 (.00) 1.00 (.00) .11 (.02)
4 | 200 | 1000 1.00 (.00) .99 (.03) .14 (.01) 1.00 (.00) .98 (.04) .16 (.01) 1.00 (.00)  1.00 (.00) .13 (.01)
4 | 500 | 100 .30 (.27) .93 (.08) .18 (.00) 44 (.24) .93 (.08) .18 (.00) 83 (.08)  1.00 (.02) .19 (.01)
4 | 500 | 200 93 (.09) .97 (.05) .12 (.00) .98 (.05) .97 (.05) .12 (.00) 93 (.07)  1.00 (.00) .13 (.00)
4 | 500 | 500 1.00 (.00) .99 (.03) .06 (.00) 1.00 (.00) .99 (.04) .07 (.00) 1.00 (.00) 1.00 (.00) .09 (.00)
4 | 500 | 1000 1.00 (.00) .99 (.04) .10 (.00) 1.00 (.00) .99 (.04) .07 (.02) 1.00 (.00) 1.00 (.00) .09 (.00)
5] 50 | 100 55 (20) .77 (12) .27 (.05) 65 (13) .76 (.13) .28 (.05) 91 (.09) .87 (17) .14 (.01)
5| 50 | 200 98 (.05) .82 (.11) .28 (.04) 99 (.03) .81 (.13) .28 (.04) 82 (.08) .94 (.08) .19 (.01)
51 50 500 1.00 (.00) .86 (.13) .30 (.05) 1.00 (.00) .84 (.11) .28 (.04) 1.00 (.02) .94 (.09) .09 (.01)
5| 50 | 1000 1.00 (.00) .88 (.09) .30 (.05) 1.00 (.00) .85 (.10) .33 (.08) 91 (.04) .96 (.07) .14 (.01)
5 [ 100 | 100 A4 (23) 76 (.15) .15 (.03) 51 (.16) .76 (11) .16 (.03) 1.00 (00) .94 (09) .13 (.01)
5| 100 | 200 94 (.09) .83 (.12) .19 (.03) 98 (.05) .81 (.12) .20 (.03) 1.00 (.00) .95 (.07) .15 (.01)
5| 100 | 500 1.00 (.00) .87 (.10) .22 (.03) 1.00 (.00) .85 (.10) .20 (.02) 1.00 (.00) .98 (.05) .11 (.03)
5 | 100 | 1000 1.00 (.00) .88 (.08) .22 (.02) 1.00 (.00) .86 (.10) .26 (.04) 1.00 (.00) .97 (.05) .18 (.01)
5 | 200 | 100 31(26) .27 (22) .17 (.01) 38 (25) .42 (31) .18 (.01) 88 (.09) 22 (21) .16 (.00)
5| 200 | 200 90 (.11) .83 (.12) .11 (.02) 94 (.08) .80 (.12) .12 (.02) 78 (.09)  .82(.26) .21 (.01)
5| 200 | 500 1.00 (.00) .87 (.10) .14 (.02) 1.00 (.00) .84 (.10) .15 (.01) 99 (.04) .94 (.10) .11 (.00)
5 | 200 | 1000 1.00 (.00) .89 (.09) .16 (.01) 1.00 (.00) .86 (.09) .18 (.03) .90 (.03) 94 (.09) .15 (.01)
5 [ 500 | 100 16 (.23) .20 (.00) .20 (.00) 22 (24) 20 (01) .20 (.01) 1.00 (.00) .94 (.09) .07 (.00)
5| 500 | 200 82 (.12) .83 (.12) .13 (.00) 90 (.09) .82 (.11) .14 (.00) 1.00 (.00) .95 (.06) .11 (.00)
5| 500 | 500 1.00 (.00) .87 (.09) .08 (.00) 1.00 (.00) .85 (.09) .08 (.00) 1.00 (.00) .97 (.08) .07 (.00)
5 | 500 | 1000 1.00 (.00) .88 (.10) .11 (.02) 1.00 (.00) .85 (.10) .08 (.00) 1.00 (.00) .96 (.06) .12 (.01)

and linux OS with R. The curves of computational times
based on p(C)/p(A) are shown in Figure 3. Overall, the
Fix-BIC-method shows smaller computational times than
other methods except for the range after p(C)/p(A) when
d=2. It was expected since the Fix-alpha method uses only
one penalty parameter based on Equation 10. The compu-
tational time of the Fix-BIC method as well as variable BIC
approaches is higher than that of the Fix-alpha method.
However, all of the approaches show reasonable computa-
tional times if we focus on the estimation of networks around
the target genes. For example, when d=2, the computational
time is less than 2 hours if the subnetwork is 50% of the
whole one (i.e., p(C)/p(A)<0.5). If d=4 or 6, the computa-
tion time is less than 2 hours if the subnetwork is 60%~70%
of the whole one (i.e., p(C)/p(A)<0.6~0.7). Thus, the Var-
BIC-h2 method shows the better performance than or as
good as those of other approaches with comparative com-
putational time.

5.3 Simulation results for multiple
subnetworks

We also compare three different community detection al-
gorithms to estimate multiple subnetworks by simulation
study: the walktrap, fastgreedy, and leading eigenvector al-
gorithms. We first estimate the entire undirected graph with
the lasso linear regression in (8) with the penalty param-
eter (10). Then, we apply the community detection algo-
rithm to find the cluster. We examine whether different al-
gorithms affect performance of estimation in subnetworks.
Figure 4 shows PPV (dPPV) or MCC (dMCC) plots based
on p(C)/p(A) when d=2. Given p(C)/p(A), PPV (dPPV)
and MCC (dMCC) are almost similar. Since the commu-
nity detection algorithm defines clusters in terms of con-
nection by edges, the ratio of the number of nodes within
clusters is irrelevant to the detection performance. On the
other hand, the ratio of e(C)/e(A) is related to performance
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Figure 1. PPV or MCC plots based on p(C)/p(A) when d=2
dashed black line indicates the Fix-BIC method. The solid gray

. The solid black line indicates the Fix-alpha method, and the
line indicates the Var-BIC-h1 method, and the dashed gray line

indicates the Var-BIC-h2 method.

in terms of PPV or MCC. Figure 5 shows the PPV (dPPV)
or MCC (dMCC) plots based on e¢(C)/e(A). The fastgreedy
algorithm is the heuristic search algorithm. PPV or MCC
from the fast greedy algorithm are high at small e¢(C)/e(A),
and they become reduced as ¢(C)/e(A) increases. For exam-
ple, when p = 500, PPV is close to 0.9 at e(C)/e(A)=0.2,
and it is close to 0.7 at e(C)/e(A)=1.0.

For the walktrap algorithm, similar patterns are ob-
served. However, the PPV or MCC of the walktrap algo-
rithm are generally smaller than those of the fastgreedy
algorithm given the same e(C)/e(A). Furthermore, when
p = 1000, the PPV (dPPV) or MCC (dMCC) decreases
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sharply as the e¢(C)/e(A) increases until e(C)/e(A)=0.6. Af-
ter ¢(C)/e(A)=0.6, they increase smoothly. This down-and-
up pattern is clearly shown as p is high. The leading eigen-
vector algorithm shows a more severe down-and-up pattern
than the walktrap algorithm. When p = 500 or p = 1000, the
PPV decreases as e(C)/e(A) increases until e(C)/e(A)=0.35.
After e(C)/e(A)=0.35, the PPV or MCC increases, and after
e(C)/e(A)=0.6, they become stable. Overall, the fastgreedy
algorithm generally gives a slightly better and more con-
sistent performance in terms of the ratio e(C)/e(A) than
the other two algorithms’ performance. In addition, we also
compare the performances of three approaches when d=4
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Figure 2. PPV or MCC plots based on e(C)/e(A) when d=2. The solid black line indicates the Fix-alpha method, and the

dashed black line indicates the Fix-BIC method. The solid gray line indicates the Var-BIC-h1 method, and the dashed gray line
indicates the Var-BIC-h2 method.
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Figure 3. Computational time of the combined steps when p=1000. The solid black line indicates the Fix-alpha method, and
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Figure 4. PPV or MCC plots based on p(C)/p(A) when d=2. The solid black line indicates the Walktrap algorithm, and the
dashed black line indicates the Fastgreedy algorithm. The solid gray line indicates the Leading eigenvector algorithm.

or 6, and their performances are very similar, and the per-
formance difference is not shown clearly since overall per-
formances of all methods decrease (Appendix C and D in
Supplementary Materials).

We also compare computational times when p=1000 un-
der the environment of workstation with E5-2530 v3 CPU
and Linux OS with R. The curves of computational times
based on p(C)/p(A) are shown in Figure 6. Overall, the com-
putational times of three approaches are very similar, espe-
cially if p(C)/p(A) is less than 0.8. If p(C)/p(A) is greater
than 0.8, the fast greedy algorithm shows the shortest com-
putational time when d=2, but the leading eigenvector algo-
rithm shows the shortest computational time when d=4 or 6.

666 S. W. Han et al.

However, the computational times of all approaches are less
than 30 minutes under the entire range of p(C)/p(A), which
indicates the computational efficiency for the estimation of
networks when p=1000.

6. APPLICATION

In this section, we illustrate how to apply our proposed
approach to the gene expression dataset, for example, of
breast cancer. It is reported that the incidence of breast
cancer is about 1.3 million per year over the world, and
the number of deaths is about 450 thousand [12]. Recently,
the National Cancer Institute (NCI) and National Human
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Figure 5. PPV or MCC plots based on e(C)/e(A) when d=2. The solid black line indicates the Walktrap algorithm, and the
dashed black line indicates the Fastgreedy algorithm. The solid gray line indicates the Leading eigenvector algorithm.

computational time (min)

d=2

-—

computational time (min)

0 - T - — T
02 04 06 08
P(C)/p(A)

1.0

d=4

30 -
25
20
15
10
5_
01 __smmmmer,
02 04 06 08 1.0
P(CYP(A)

J

d=6

computational time (min)

0 c =<

02 04 06 08
P(C)p(A)

1.0

Figure 6. Computational time of the combined steps when p=1000. The solid black line indicates the Walktrap algorithm, and
the dashed black line indicates the Fastgreedy algorithm. The solid gray line indicates the Leading eigenvector algorithm.

Directed subnetworks for gene network problems 667



Table 3. Three most significant gene sets found in each cluster

Cluster |Source gene Found gene set names the number of | p-value | FDR

number overlapped genes g-value
1 CDKNI1B CREIGHTON ENDOCRINE THERAPY RESISTANCE 2 14 8.14E-12|2.81E-08
JOHNSTONE PARVB TARGETS 2 DN 9 1.20E-07|0.000156
MASSARWEH RESPONSE TO ESTRADIOL 5 3.66E-07|0.000316
2 CDH1 |CHARAFE BREAST CANCER LUMINAL VS MESENCHYMAL UP 24 3.66E-21|1.26E-17
ROYLANCE BREAST CANCER 16Q COPY NUMBER UP 12 6.46E-18|1.67E-14
NIKOLSKY BREAST CANCER 16Q24 AMPLICON 8 1.71E-11|1.27E-08
3 RB1 FARMER BREAST CANCER BASAL VS LULMINAL 53 4.15E-64|4.29E-60
SMID BREAST CANCER BASAL DN 53 2.45E-46|1.27E-42
VANTVEER BREAST CANCER ESR1 UP 34 7.86E-452.71E-41
4 AKT1 GRAESSMANN APOPTOSIS BY DOXORUBICIN DN 40 7.85E-16|1.16E-12
GRAESSMANN RESPONSE TO MC AND DOXORUBICIN DN 24 9.15E-13|6.31E-10
ELVIDGE HYPOXIA DN 8 6.88E-07|8.20E-05
5 MLL3 GRAESSMANN APOPTOSIS BY DOXORUBICIN DN 50 1.24E-27|4.27E-24
PIK3CA JOHNSTONE PARVB TARGETS 3 DN 38 8.02E-27|2.08E-23
JOHNSTONE PARVB TARGETS 2 DN 15 1.29E-11|5.12E-09
6 MAP3K1 SMID BREAST CANCER BASAL DN 43 1.23E-31|1.28E-27
MASSARWEH TAMOXIFEN RESISTANCE DN 18 9.09E-15|1.34E-11
RAF UP.V1 DN 16 2.13E-14|2.45E-11
7 BRCA1 GRAESSMANN APOPTOSIS BY DOXORUBICIN DN 31 1.27E-12(2.62E-09
GRAESSMANN RESPONSE TO MC AND DOXORUBICIN DN 15 2.87E-07]9.20E-05

MCBRYAN PUBERTAL BREAST 5 6WK DN 7 1.00E-06| 0.00024

Genome Research Institute (NHGRI) collaborated on the
Cancer Genome Atlas (TCGA) project to accumulate gene
expression data for breast cancer [12]. The data for breast
invasive carcinoma was downloaded from TCGA website
(https://tcga-data.nci.nih.gov/tcga/tcgaHome2.jsp).  We
applied the proposed method to derive subnetworks from
1,045 primary tumor samples based on mRNA expression
data of the level 3 RNA SeqV2 platform. From previous
literature, important cancer genes implicated in breast can-
cer include AKT1 (v-akt murine thymoma viral oncogene
homolog 1), BRCA1 (breast cancer 1, early onset), CDH1
(cadherin 1, type 1, E-cadherin (epithelial)), CDKN1B
(cyclin-dependent kinase inhibitor 1B (p27, Kip1)), GATA3
(GATA binding protein 3), MAP3K1 (mitogen-activated
protein kinase kinase kinase 1), MLL3 (myeloid/lymphoid
or mixed-lineage leukemia 3), PIK3CA (phosphoinositide-3-
kinase, catalytic, alpha polypeptide), PTEN (phosphatase
and tensin homolog), RB1 (retinoblastoma 1), and TP53
(tumor protein p53), which are illustrated in [12] and [62].

In what follows, we aim at finding subnetworks among
genes to determine regulatory encoding genes and regu-
lated target encoding genes in each subnetwork. We com-
bine the procedures used in this paper. From the simula-
tion study of subsection 5.2, the Var-BIC-h2 method shows
the best performance. In step 1, starting from the impor-
tant cancer genes mentioned above, we estimate proba-
bilistic neighbors with the Var-BIC-h2 of Cy=1. For the
purpose of illustration, we search the neighbors up to
the network size of 3,000. In step 2, we detect clusters
and estimate subnetworks in each cluster. We use the
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fast greedy algorithm to identify the clusters. After that,
we investigate how many genes in each cluster account
for similar genetic functions. To obtain the information
of gene functions, we use Gene Set Enrichment Analy-
sis (GSEA, http://www.broadinstitute.org/gsea/index.jsp).
Based on the Molecular Signatures Database (MSigDB) in
the GSEA software, annotated gene sets are collected. The
GSEA software first identifies overlapping between the gene
set we provide and the gene set extracted from MSigDB,
and then categorizes genes by biological functions. It also
measures statistical significance of the overlapping gene sets
via p-values based on hypergeometric test [7] and FDR
g-values [8, 9]. Table 3 and 4 show the most significant
three gene sets found in each cluster related to breast
cancer and the detailed descriptions of the sets, respec-
tively.

For the next step, we estimate the directed acyclic
graph within the clusters. We compare the estimated
edges with known interactions introduced in previous lit-
eratures. Such known gene-gene interactions provided in
NetBox (http://cbio.mskec.org/tools/netbox/index.html),
which extracts the information from four data sources: NCI-
Nature Pathway Interaction Database [58], Human Pro-
tein Reference Database [34], MSKCC Cancer Cell Map
(http://www.mskcc.org/), and Reactome [33, 45].

Figures 7, 8, 9, and 10 show the estimated directed
networks in each cluster containing biologically important
genes. The nodes corresponding to significant gene sets are
colored by blue (the first significant gene set), green (the
second significant gene set), and purple (the third signif-



Table 4. Explanation of three significant functional sets in each cluster

Found gene set names in Cluster 1

- CREIGHTON ENDOCRINE THERAPY RESISTANCE 2: The ‘group 2 set’ of genes associated with acquired endocrine therapy resistance in
breast tumors expressing ESR1 and ERBB2 [GeneID=2099;2064].

- JOHNSTONE PARVB TARGETS 2 DN: Genes down-regulated upon overexpression of PARVB [GeneID=29780] in MDA-MB-231 cells (breast
cancer) cultured in 3D collagen I and 3D Matrigel only.

- MASSARWEH RESPONSE TO ESTRADIOL: Genes rapidly up-regulated in breast cancer cell cultures by estradiol [PubChem=5757].

Found gene set names in Cluster 2

- CHARAFE BREAST CANCER LUMINAL VS MESENCHYMAL UP: Genes up-regulated in luminal-like breast cancer cell lines compared to
the mesenchymal-like ones.

- ROYLANCE BREAST CANCER 16Q COPY NUMBER UP: Genes in discrete regions of gain within 16q region detected in individual invasive
breast cancer tumors.

- NIKOLSKY BREAST CANCER 16Q24 AMPLICON: Genes within amplicon 16q24 identified in a copy number alterations study of 191 breast
tumor samples.

Found gene set names in Cluster 3

- FARMER BREAST CANCER BASAL VS LULMINAL: Genes which best discriminated between two groups of breast cancer according to the
status of ESR1 and AR [GeneID=2099;367]: basal (ESR1- AR-) and luminal (ESR1+ AR+).

- SMID BREAST CANCER BASAL DN: Genes down-regulated in basal subtype of breast cancer samples.

- VANTVEER BREAST CANCER ESR1 UP: Up-regulated genes from the optimal set of 550 markers discriminating breast cancer samples by
ESR1 [GenelD=2099] expression: ER(+) vs ER(-) tumors.

Found gene set names in Cluster 4

- GRAESSMANN APOPTOSIS BY DOXORUBICIN DN: Genes down-regulated in ME-A cells (breast cancer) undergoing apoptosis in response
to doxorubicin [PubChem=31703].

- GRAESSMANN RESPONSE TO MC AND DOXORUBICIN DN: Genes down-regulated in ME-A cells (breast cancer; sensitive to apoptotic
stimuli) exposed to doxorubicin [PubChem=31703] in the presence of medium concentrate (MC) from ME-C cells (breast cancer; resistant to
apoptotic stimuli).

- ELVIDGE HYPOXIA DN: Genes down-regulated in MCF7 cells (breast cancer) under hypoxia conditions.

Found gene set names in Cluster 5

- GRAESSMANN APOPTOSIS BY DOXORUBICIN DN: Genes down-regulated in ME-A cells (breast cancer) undergoing apoptosis in response
to doxorubicin [PubChem=31703].

- JOHNSTONE PARVB TARGETS 3 DN: Genes down-regulated upon overexpression of PARVB [GeneID=29780] in MDA-MB-231 cells (breast
cancer) cultured in 3D Matrigel only.

- JOHNSTONE PARVB TARGETS 2 DN: Genes down-regulated upon overexpression of PARVB [GeneID=29780] in MDA-MB-231 cells (breast
cancer) cultured in 3D collagen I and 3D Matrigel only.

Found gene set names in Cluster 6

- SMID BREAST CANCER BASAL DN: Genes down-regulated in basal subtype of breast cancer samples.

- MASSARWEH TAMOXIFEN RESISTANCE DN: Genes down-regulated in breast cancer tumors (formed by MCF-7 xenografts) resistant to
tamoxifen [PubChem=5376].

- RAF UP.V1 DN: Genes down-regulated in MCF-7 cells (breast cancer) positive for ESR1 [Gene ID=2099] MCF-7 cells (breast cancer) stably
over-expressing constitutively active RAF1 [Gene ID=5894] gene.

Found gene set names in Cluster 7

- GRAESSMANN APOPTOSIS BY DOXORUBICIN DN: Genes down-regulated in ME-A cells (breast cancer) undergoing apoptosis in response
to doxorubicin [PubChem=31703].

- GRAESSMANN RESPONSE TO MC AND DOXORUBICIN DN: Genes down-regulated in ME-A cells (breast cancer; sensitive to apoptotic
stimuli) exposed to doxorubicin [PubChem=31703] in the presence of medium concentrate (MC) from ME-C cells (breast cancer; resistant to
apoptotic stimuli).

- MCBRYAN PUBERTAL BREAST 5 6WK DN: Genes down-regulated during pubertal mammary gland development between week 5 and 6.

icant gene set). The estimated edges among nodes from
significant gene sets are colored by black, otherwise col-
ored by gray. The overlapping edges between the known
interactions and estimated ones are colored by red. Inter-
estingly, several of the edges are consistent with a priori
biological knowledge, and so the identified sub-networks ef-
ficiently capture biological significance related to breast can-
cer. BRCA1 and ACACA in Figure 10 are good examples.
It is widely known that breast cancer-associated mutations,
which are associated with the BRCT domains of the tumor
suppressor gene BRCAL, alter the function of BRCA1 to
interact with acetyl coenzyme A carboxylase alpha (a.k.a
ACACA or ACCA), the rate-limiting enzyme catalyzing de
novo fatty acid biogenesis [10]. Precisely, the formation of
the BRCA1/P-ACCA (i.e., inactive form of ACCA) complex
controls ACCA activity by refraining P-ACCA dephospho-
rylation. In addition, [48] also experimentally verified that
RNA inhibition-mediated down-regulation of BRCA1 ex-
pression was molecularly consistent with germ line BRCA1

mutations, while in the absence of the BRCA1ACCA in-
teraction. Importantly note that such underexpression of
BRCA1 is sporadically observed in breast and ovarian can-
cers. Related to CCND1 and RB1 in Figure 8 (a), the previ-
ous literature highlighted mutations, amplification and over-
expression of this gene, which distort cell cycle progression,
contribute to tumorigenesis in a range of cancers [44]. The
pathogenic relationship between CCND1 and RB1 has been
extensively studied across diverse species. For instance, the
presence of down-regulated expression of CCND1 and RB1
appeared in human breast and pancreatic cancers [29, 43|
and transgenic mice bladder tumors [24]. Taken together, we
believe that our proposed method performs effective network
inference in pursuit of detecting true molecular mechanisms.

Taken together, this example of the estimation of sub-
networks clearly confirms the biological applicability of the
proposed algorithm to real data, and demonstrates how to
extract the network information from ultra high dimen-
sional data. We also apply other cluster approaches, walk-
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Figure 7. Sub-network plots including CDKN1B or CDH1.

trap and leading eigenvector algorithms, to identify clusters
from the probabilistic neighbors estimated by the Var-BIC-
h2 of ¢;=1. Subnetwork in each cluster by those algorithms
are shown in Appendix E and F of Supplementary Materi-
als. Different algorithms identify subnetworks with different
size, and many parts of the subnetworks detected by those
algorithm are overlapped with the subnetworks identified
by the fast greedy algorithm. Computational times for the
subnetwork estimation based on three cluster approach are
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39.67 minutes (fastgreedy), 39.43 minutes (walktrap), 40.54
minutes (leading eigenvector), respectively.

7. CONCLUSION

In this paper, we discuss two different types of problems
to estimate subnetworks in ultra high dimensional data. The
first problem is to estimate DAGs of a subnetwork adjacent
to a target gene, and the second problem is to estimate
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DAGs of multiple subnetworks without information about a
target gene. To address each problem, we propose efficient
methods to estimate subnetworks, which are to use layer-
dependent weights with BIC criteria and to use community
detection approaches to identify clusters as subnetworks. In
order to estimate a target sub-network, we show that the
BIC criteria gives better performance than the technique
using the alpha formula, and that the approach with layer
dependent weights in BIC outperforms the approach with

fixed weights. In addition, to estimate multiple subnetworks
without knowing target genes, a certain type of community
detection algorithms such as the fast greedy algorithm gen-
erally gives a slightly better than and more stable perfor-
mance than the other approaches.

[61] showed consistency in variable selection to estimate
an entire network of the DAG under the Ll-likelihood
when variable order is known. [22] discussed the consis-
tency in model selection for estimating an entire network
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Figure 9. Sub-network plots including CDKN1B or CDH1.

of the DAG when the variable order is unknown. BIC cri-
teria in variable selection are known to satisfy the con-
sistency. However, it is not clear whether the BIC with a
lasso approach satisfies the consistency in estimating an en-
tire network, even directed subnetworks. Instead, we show
the performance of simulations for our proposed method
such as MCC or PPV based on the ratio of the number
of true edges (or nodes) within clusters to that in an entire
graph.
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APPENDIX

We provide a brief description of the solution search algo-
rithm for the optimization problem in terms of of a; or A in
Equation (13) with constraints (14) and (15). The solution
search algorithm is based on the discrete improving search
technique, used in [26]. Equation (13) is convex, but with
constraint, the optimization problem is a NP-Hard, mixed
integer problem with acyclic constraints. This search algo-
rithm tries to find the sequence of solutions which decrease
the objective function values in (13) in addition to satisfy-
ing the acyclic constraint (14). There are three steps in the
algorithm. The first step is finding an entering edge among
unselected edges to improve the objective function in (13).
If the entering edge causes cycles, the second step is finding
a leaving edge among previously selected edges to eliminate
cycles. A leaving edge is selected, which breaks cycles by giv-
ing the least increment in the objective function values in
(13). The third step is updating the A and T matrix and the
objective function value. This search procedure is performed
within neighborhood structure matrix, N.
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