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Detection of threshold points for gene expressions
under multiple biological conditions

DiANLIANG DENG*, HONG-BIN FANG, KIAN RAZEGHI JAHROMI,

JIUZHOU SONG, AND MING TAN

Temporal gene expression data is of importance in the
classifications of gene functions and have been extensively
used in biomedical studies, such as cancer diagnostics. How-
ever, since temporal gene expressions vary over time, after
the initial time periods, many genes exhibit some kind of
stability, which means that gene expressions keep constant
or fluctuate slightly after those time points. Thereby, this
threshold point is a key in the study of behaviours of gene
expressions, which can be used to decide the measuring time
period and to distinguish the gene expressions. In this paper
three methods are presented to detect the threshold points
for the gene expressions. In particular, the first-order and
second-order change rates are used to construct the test
statistics for detecting the threshold points. The simulation
study shows that the proposed methods have a good perfor-
mance for the detection of threshold points. A real dataset
with 21 genes in P. aeruginosa expressed in 24 biological
conditions is used to illustrate the proposed methodology.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62H15,
62G20; secondary 62P10.

KEYWORDS AND PHRASES: Relative change rate, Temporal
gene expression, Empirical distribution, High dimensional
data, Threshold point.

1. INTRODUCTION

Gene expressions are widely used in biological and
biomedical studies as they contain rich information for
human beings. By using high throughput methods such
as oligonucleotide and DNA microarray, serial analysis of
gene expression (SAGE) and RNA-sequencing, discrete
functional data can be generated on gene expressions (Bjar-
nason et al., 2003; Cho et al., 1998; Spellman et al., 1998;
Yuan and Lin, 2007). From the observed measurements
of gene expressions, we would be able to classify gene
expression patterns, and find gene regulatory network and
gene environmental interaction (Duan et al., 2012). As
a result, the longitudinal observations with appropriate
number of time points are significantly useful for studying
the change of individual gene over time and the effects of
other factors. In recent decade, many statistical techniques
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have been developed to interpret gene expression data.
From the point of gene classification, the frequently used
methods are various clustering procedures, fold changes,
ANOVA, etc. (Draghici et al., 2003; Eisen et al., 1998; Li et
al., 2002). Most of these methods are related to the classical
and parametric statistical methods. However, when the
number of observed values for each time point is less than
the number of observed time points, the classical para-
metric methods of classification are no longer performing
appropriately and cannot be used to analyse the gene data.
To solve this problem, the reduction of dimensionality for
the vector or function of observed measurements is a key in
the discrete time points for gene expressions.

For this reason many methods were developed for the
reduction of dimensionality to random vector or random
function such as principal component analysis (PCA) (An-
derson, 2003; Yeung and Ruzzo, 2001), kernel principal com-
ponent analysis (Kernel PCA) (Schoélkopf and Miller, 1998)
or smooth spline (Hastie and Tibshirani, 1990). Further, one
can be able to define a specific model using smooth spline
method to estimate the mean and corresponding variance
functions of gene expressions (Fang et al., 2012). All of the
aforementioned methods are to indirectly reduce the dimen-
sionality by using the small number of variables or param-
eters to represent the high-dimensional vector or function.
On the other hand, in functional data analysis, if we can
directly eliminate some abundant negligible measurements
from some time points, the remaining observed values can
be efficiently analyzed by the classical statistical methods,
which is also a kind of strategies of high throughput data
analysis.

In many cases, gene expressions show some changeability
within a certain time period and then keep stable or change
faintly after that period. In other words, the observing time
can be partitioned into two time periods such that for the
first period the behaviour of gene expressions exhibit some
variability over time and then gene expressions maintain a
stable state or vary slightly during the second period. As a
result, we are able to eliminate from second time period the
observed measurements, which contain less effective infor-
mation for the gene expressions, and keep the measurements
observed at the first time period.

As a motivating example, we consider the data set with
18 genes in P. aeruginosa expressed in 24 conditions (see Ta-
ble 1). For each condition, each gene was measured every 30
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Table 1. 18 genes in P. aeruginosa expression

Code Name Protein Ratio Remarks
e 48 % similar to putative
A6 PA5283 iroliz];)cl)i transcriptional 99.68 % transcriptional regulator
& (Bacillus subtilis)
Ribosomal large o
B3 2‘?1123)75 subunit pseudouridine 99.68 % T:g?:g;lftlzgn(ieRggation
synthase C P & &
B4 PA4991 Hypothetical protein 100 % Unknown
B5 PA5237 Cons?rved hypothetical 100 % 8? % similar to hypothetlca.l
protein yigC gene product of E. coli
C4 PAD287 3—guan1d1n0prop lonate 100 % Transport of small molecules
(gpuP) transport protein
PA3115 .. - Membrane proteins;
D1 (fimV) Motility protein FimV 100 % Motility & Attachment
PA3879 Two-component response 74 % similar to E.coli
b2 (narL) regulator NarL 99.67 % NarL protein
D3 PA0894 Hypothetical protein 99.02 % Unknown
41 % similar to alkaline
E5 PA1875 P;“(())tbe?zlerzgierzﬁembrane 100 % pro-tease secretion
p p protein AprF
E6 PA0573 Hypothetical protein 100 % Unknown
F2 PA3902 Hypothetical protein 100 % Unknown
65 % similar to putative
Probable ATP-binding amino acid abc transporter,
k3 PA3212 component of ABC transporter 100 % ATP-binding protein
(Helicobacter pylori J99)
PA2997 Na+translocating NADH:
F5 (nqrC) ubiquinone oxidoreductase 100 % Energy metabolism
d subunit Nrq3
Energy metabolism;
PA0649 Anthranilate synthase Blosyntbe51s of co—factor?,,
G2 (trpG) component 11 100 % prosthetic groups & carriers;
p b Amino acid biosynthesis
& metabolism
61 % similar to putative
Probable enoyl-CoA enoyl-coA hydratase
G5 PA1T48 hydratase/isomerase 8.2% EchA3
(Mycobacterium tuberculosis)
Probable transcriptional 54 % similar to a region of
G6 PA3771 P 99.22 % putative regulatory protein
regulator .
(Streptomyces coelicolor)
. . 43 % similar to hypothetical
H3 PA1841 Hypothetical protein 100 % veaK gene product of (E. coli)
70 o0 o factor As a control

minutes for 21 hours and, finally, each gene has 43 observa-
tions. From the gene expression data we can see that under
most of the conditions, observations for many genes look
stable after some time points. Figure 1 shows the gene ex-
pressions for genes PA4491 and PA6287 under 24 conditions.
It is observable that under most of the conditions, observa-
tions for gene PA4491 look stable after seven and half hours.
Similar to PA4491, gene PA6287 has similar behaviour after
six and half hours. Theoretically, the visualizations of gene
expressions demonstrate that for each gene after a thresh-
old time point, which is between starting time point and the
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ending time point, the measurements under the conditions
are rather stable or fluctuate slightly. Therefore, after the
threshold time point the gene expression has less informa-
tion on the gene behaviour and the most information for the
gene can be captured by the measurements observed before
the threshold time point. In other words, the measurements
observed after the threshold point is not as important as
that observed before the threshold point and thus can be
eliminated for further analysis. Furthermore, from the point
of application, if we detect the threshold time point such
that after that time the gene expression keeps stable or fluc-
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Figure 1. Gene expression for gene PA1841 (left) and PA0287 (right) and the dash line in both figures indicates the time
point which after that point curves either look stable or fluctuate slightly.

tuates very slightly, the observations can be terminated after
this threshold time point and thus the observing time can
be shortened and cost of observations can be saved. Mean-
while, genes can be classified based on the threshold time
points they take to get stable. Moreover, for the purpose of
comparison for gene expressions we only need to collect or
use few time points instead of collecting information for a
longer period. Also, when two genes have the significantly
different threshold time points, it is obvious that the var-
ied behaviours of two genes are different from each other.
We found that two gene expressions may have the similar
behaviour when they have the same or close threshold time
points. Anyway, two gene expressions can be compared by
using the classical methods if the reduced vectors of mea-
surements for these two gene expressions have less dimen-
sions than sample sizes. Furthermore, it means that having
the similar values of threshold time points for two genes is
the necessary (not sufficient) condition for the similarity of
two gene expressions. However, it does not means that two
gene expressions with same or close threshold time points
have the similar behaviour. On the other hand, by detect-
ing the threshold time points for all gene expressions, some
singular gene expressions can also be found if most of gene
expressions have the similar values of threshold time points
but the threshold time points for specific gene expressions
have the very small/large values or these gene expressions
exhibit some other singularity. For example, we found gene
PA/491 shows some singularity because it exhibits some
kind linearity but others keep constant after threshold time
points.

It should be pointed out that the threshold point dis-
cussed in the current paper is different from the change-
point, at which, the sequential data exhibit the abrupt
changes in the generative parameters of the static or dy-
namic stochastic system. The change-point problem, first

introduced in the quality control context, has since devel-
oped into a fundamental problem in the areas of statisti-
cal control theory, stationarity of a stochastic process, es-
timation of the current position of a time series, testing
and estimation of change in the patterns of a regression
model, and most recently in the comparison and match-
ing of DNA sequences in microarray data analysis. Numer-
ous methodological approaches have been implemented in
examining change-point models. Maximum-likelihood esti-
mation, Bayesian estimation, isotonic regression, piecewise
regression, quasi-likelihood and non-parametric regression
are among the methods which have been applied to resolv-
ing challenges in change-point problems. Grid-searching ap-
proaches have also been used to examine the change-point
problem. The pioneer work for the detection of change points
can be retrospected in Page (1954, 1955) and Lorden (1971).
On the contrary the threshold point problem arises in the
functional data, in which the observed curve exhibits some
variability before the threshold point and then keep sta-
ble until the last observing time point. There is no abrupt
change for the curve at the threshold point.

In the current paper several algorithms are constructed
to detect the threshold time points based on the classical
Hotelling statistic, high dimensional test statistic and em-
pirical distribution based statistic of sample derivatives for
gene expressions. The remainder of this paper is organized
as follows. Three fundamental methods and corresponding
algorithms are introduced in Section 2 for detecting the
threshold time points in case of finite number of time points.
Also, in Section 3, simulation studies are used to check the
efficiency of each method and compare the results for all
methods proposed in Section 2. The aforementioned gene
expression data are analyzed by using proposed methods in
Section 4, which follows with a concluding remarks in Sec-
tion 5. The theoretical proofs are given in Appendix.

Detection of threshold points for gene expressions 645
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Figure 2. Gene expressions for genes PA1841 (left) and PA0287 (right) and the dash lines in both figures indicate the time
points after which curves either look stable or fluctuate slightly.

2. METHODS FOR DETECTION OF
THRESHOLD TIME POINT

Let Y;;(tix) denote the realization of gene expression of
the i*" gene at time t;; (t;, < T) under condition j which
i=1,---,9,j=1,--,¢and k = 1,--- ;p;+ 1. Eq. (1)
shows the considered model to realize the gene expressions.

(1) Yij(tin) = pij(tin) + €i5(tix)

In Eq. (1), €;;(tg,) is the random error with mean zero and
variance o2 (t;1). For a given gene (fixed value of i), Eq. (1)
is expressed as follows

(2) Yj(te) = pltr) + € (tx)

where k=1,2,..,p+1land j=1,...,c.

We say a gene expression has the threshold time point,
denoted by 7 if this gene expression demonstrates some kind
variability before 7 and keeps stable after 7. Ideally, the
mean function p(t) of this gene expression changes over the
time period [0, 7] and keeps a constant when ¢ > 7. Hence,
the model for gene expression with the threshold time 7 can
be written as

3)

where p, is a constant and 7 is the threshold time point.
Now, finding reasonable estimate for 7 is the main attempt
in this paper. Since the relative change rate of gene ex-
pression is zero for ¢ > 7 from the model (3), the thresh-
old point can be detected by modeling the relative change
rate Z(t) for the gene expression Y (t), which can be de-
fined as the derivative of Y (¢). Now from the observations
Y(ti)(k = 1,2,...,p + 1), the observations of change rate
Z(t) can obtained as

Y(t) = It <7) 4 p-I(t > 7) +€(t)

Y(ter1) —Y(te)

Z(t) =
(tr) P—
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where ), = (tg41 + tx)/2 for k =1,--- ,p. Therefore, when
the mean function is stable for any ¢ > 7 and, relative change
rate Z(t) for the gene expression with the threshold point 7
can be modeled as follows:

(4) Z(t) = pz(O)I{t <7} +ez(t)

where pz(t) is the mean function of Z(t) and ez(t) is the
error variable with zero mean and variance 0% (t). From this
model, one can see that the mean function of relative change
rate Z(t) for gene expression equals zero when ¢t > 7.

Figure 2 shows the relative change rates for genes PA1841
and PA6287 under 24 conditions. As it is shown in this
figure, the relative change rate for ¢ > 7.5 hours is approxi-
mately zero on gene PA1841. Also, gene PA6287 has similar
patter and its relative change gets near to zero after 7 = 6.5
hours.

Based on the discussion above, to detect the threshold
point for the gene expression, we need to find the time
point 0 < 7 < T such that pz(¢t) = 0 for ¢ > 7. This
question can be transferred into the hypothesis testing. To-
wards this end, the appropriate value for the threshold point
7 should satisfy that at the significance level a, the null
hypothesis Hy : u.(t) = 0 for ¢ > 7 cannot be rejected
and at the same significance level Hy : uz(t) = 0 is re-
jected for some t < 7. Since the gene expression are ob-
served at discrete time points, the threshold time point 7
for gene expression can be decided if the null hypothesis

Hy : pz(ty) = pz(ty) = .. = pz(t,) = 0 can not be
rejected at the significance level o and Hy : pz(t,_,) =
pz(ty) = pz(t_y) = ... = pz(t,) = 0 is rejected at the

same significance level for the time point ¢),. The backward
procedure can be used to find ¢}. At first, the null hypoth-
esis Ho : puz(t,) = 0 is tested for the last observed time
point t; of a specific gene expression. If Hy is not rejected
at this stage then Hy : puz(t},) = pz(t,_;) = 0 will be tested.
This procedure is continued as long as such null hypothe-
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Algorithm 1: Detecting 7 using Hotelling’s 72
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Figure 3. This figure indicates the general scheme of the
method that can be used to find the approximate value for T.

sis is not rejected. Otherwise, the first time point ¢}, such
that Ho : pz(t),_;) = ... = pz(t,) = 0 is rejected could be
an appropriate estimate for 7. A scheme of this method is
indicated in Figure 3.

In what follows we propose several procedures for the
detection of threshold time point for the gene expression.

2.1 Hotelling’s statistic

Now based on the model (3), if it is assumed that the er-
ror variable €(t) is normally distributed, then the error term
€z(t) can also be normally distributed. Hence, Hotelling’s
T? can be used as test statistic for detecting the threshold
time point. Note that under the normal assumption, Z;(t})
for k = 1,....,p and j = 1,..,c are normally distributed.
Then for | = 1,2,...p, Z\" (Zi(8))sooes Zi(E))T ~
MVN(;L(ZI)7 Z(Zl)) where u(Zl) and E(Zl) are the mean and the

variance of Z§-l)

esis Hy : ,u(ZZ) = 0, the statistic Sy given in Eq. (5) follows

F distribution with p — I+ 1 and ¢ — (p — I + 1) degrees of
freedom, provided that (p —1) < c.

, respectively. Hence, under the null hypoth-

T? c—(p—1+1
SH: i ¢ (p l+)

(5)

c—1 p—-1+1
where
le _ CZ(Z)TSl—lz(l)
and
L &Ko o0\ (0 50\
s- (20 -2") (70 -2")
j=1
S0 L~ ,0
z7=-3> 175

Jj=1

Now, for given [ the hypothesis Hy : pz(t;) = ... =
pz(t,) = 0 can be tested using Hotelling’s T for a specific
gene. Therefore, the approximate value of 7 is calculated
using Algorithm 1.

-

. Letl=p—1.

. Compute T7.

3. If Sy is greater than F, ,_j 11 c—(p—i1+41), 80 to step 7.
Else go to step 4.

4. Let l:=1-1.

5. If (p — 1) > c go to step 6. Else return to step 2.

6. This method can not be used any more as number of

time points (p —1+1) is greater than the sample size

(¢).

7. The value of estimate for 7 is t;_1.

V]

Algorithm 2: Detecting 7 using orthogonal
transformations

1. Let [:=p— 1.

2. Test H; : /j,gl()(tz) =0, .., Hy: p()? (t,) = 0 simultane-
ously using ¢-test. The significance level for each test
is equal to g = 1 — (1 —)®~+1) where « is the sig-
nificance level to test Ho : uz(t)) = ... = pz(t},) = 0.

3. If for all value of I < r < p H, : pux(t.) = 0 is not

rejected for oy go to step 7; else go to step 4.
l:=1-1.

If p— 1 > ¢ go to step 6; else return to step 2.

6. This method can not be used any more as number of
time points (p —I+1) is greater than the sample size
(o).

7. The value of estimate for 7 is ;.

bl

Meanwhile, it is possible to make this method more sim-
ple using orthogonal transformations. Let A, .., A, are the
eigenvalues of E(Zl) and B, = (Br1, .-, Brp)T are the corre-
sponding eigenvectors of A, (r = [,...,p). Without loss of
generality we can assume that norm of each eigenvector is
1. Also, let 8 = (B4, ---»B,,) be the matrix which consists

= 5(Z)TZ(Z). The mean of X' is

of eigenvectors and Xg-l) J ;

Mg? = ﬂ(l)T,u(Zl) and the variance is

AN O - 0
0 X -+ 0
=0 = gy g0" - S
0 0 Ap
Since B(;) contains orthogonal vectors ,B(l)ﬁ(l)T = I

T
Therefore, ﬁ(l) u(Zl) = 0 is equivalent to M(Zl)

instead of testing Hy : M(Zl) = 0 we can test Hy : ug? = 0.
Further, since ¥() is diagonal, X;(}), ..., X; () are indepen-
dently distributed and we can test Hj : ,ugl() () =0,..,Hy:
ug?(t;) = 0 simultaneously using t-test for each of the hy-
pothesizes. Therefore, using Algorithm 2 for a given gene we
are able to find the suitable value of 7.

= 0. Hence,

Detection of threshold points for gene expressions 647



2.2 High-dimensional test statistic

Based on the Algorithms 1 and 2 for each step one time
point is added until the threshold is detected. It means af-
ter a while the number of time points will be more than
the sample size (c), which means we are dealing with high-
dimensional data. As a result, Hotelling’s 72 statistic does
not work when the number of selected time points for hy-
pothesis test are more than the sample size. To overcome
this problem the high-dimensional test statistic used to test

pe(t]) = .. = pz(ty) = 0 is
Z" 7
tI‘(Sl) '

ThH =

Further, under the null hypothesis with normal assumption,
T¥ approximately is normally distributed (Nishiyama et al.,
2013). Meanwhile, the density function of T can be approx-
imated as Eq. (6) and the approximate upper percentile of
T, using Eq. (7).

l
PUE <2)=06) - 30) | Caha(o)+

1 1
]704h3(z) + 1706%(2) + —} hi(z) +O(p'~3/?)

1\/_Cl3
VNG

l ﬂ o 2a — —@ « 2Oé
+ 2 ()@@ -3 - S aeeeda) | +

= ®(a) +

(#*(a) = 1)

a

S 0(a) +O(p'*?)

\/_a's

37

where p’, Cs, C4, Cg and & are defined as p — [ + 1,

Qa4
2a2 9 9a2 9

bo, and b3 are defined as follows

and 2(%, respectively. Also, ay, as, as, ay, bo, by,
1

& = tr(Sl)

p/
~ c? 2 tr(Sh)?
2= et Y [“(S”‘ . ]
Gy = ¢

(c—=1D)(c—2)(c+2)(c+4)

(s

—3(c+2)(c—1)ajas — cp’za‘;’}

tr(S4
64 = b ( I‘; ) —p b ay pIQanQaQ — p/bgCLQ — Cp 36411)
bo = c(c®+6c2+21c+18), by =2¢(2¢* 4 6¢+9)
by = 2¢(3¢+2), bz=c(2¢* +5c+T7).

Eventually, using Algorithm 3 the value of threshold point
can be determined.
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Algorithm 3: Detecting 7 using high-dimensional test

1. Let [ :=p—1.
2. Calculate Té) = Ctzrl(szll)
3. Let 2(1 _ %) be equal to

201~ 5)+ \/1_?:(/6‘_3 -2

1
o men- -5 -3-

)—1

2

(%

2.

2a3(1)(
2

o3 2)(2<I>2(a))} + 2—c<I>(1 —

L

If |Th| is greater than Z(1 -
to step 5.

Let l:=1-1.

If I = 0 go to step 7; Else return to step 2.

No threshold was detected.

The value of estimate for 7 is ¢;.

$) go to step 8; Else go

e S

2.3 Empirical distribution based test

Another way to find the approximate value of 7 is to use
the properties of empirical distribution for relative change
rate of gene expression. From model (4), it is known that
uz(t) = 0 for t > 7. Further, if Z(¢) is normally dis-
tributed, then Fy;(0) is equal to & for ¢ > 7. Note that
FZ( )(x) can be estimated by the empirical distribution
Fau (@) =
number implies that FZ(t’ )(x) converges to Fyz (4 () almost
surely for any value of z. Also from Central Limit T heorem,
\ﬁ(FZ(f)( )—1/2) — N(0, 1) in distribution. Furthermore,
to detect the threshold time point for the gene expression,
we need the following theorem, the proof of which is given
in Appendix.

1 D ( ;(t) < x) and strong law of large

Theorem. Let Z;(t},) be normally distributed for j =1, ...,c
and k = 1,...,p. Also, for t; > 7, uz(t;) = 0. Then, the
distribution of Eq. (8) converges to standard normal distri-
bution as ¢ — 0.

Xt sy Pz (0) = 3)

(8) Z; = 1

VARG =)+ T ea Fa 2w (0,0)]
where A = {(r,s)|r £s,t. >Tandt, > 7} and ¢, =
#{r;t,. > 1}

Based on above theorem, we can construct an algorithm
to find the approximate value for 7. For this reason we first
set 7 = ¢;, and find the asymptomatic test statistic (8) to
test Ho : pz(t,) = 0. If Hy is not rejected at significance
level of o, we repeat this test for 7 = ¢,_; and if H; :~ Hy
is not significant, this loop is continued. The appropriate



Algorithm 4 Estimating 7 using empirical distribution

Algorithm 5: Estimating 7 using empirical distribution

function for Z(t)

1. Let l:=pand 7 =1

2. Compute Z,.

3. If |Z,| > @ 1(1 — a/2), then go to step 5; Else go to
step 4. (®(.) is the distribution of standard normal
random variable)

4. Let [ :=1—1 and go to step 2.

5. The value of estimate for 7 is ¢].

value for 7 is the time point before the first time point for
which H; is significant. (See Algorithm 4).

Usually, as the time increases the relative change for each
specific gene approaches zero gradually, which affects our
method for determining the appropriate estimate of 7. To
overcome this problem we can use the sample second-order
derivative instead of the sample change rate (first-order
derivative) and the method explained in the change rate
can be applied to the second-order derivative. The sample
second-order derivative at ;) = (., + }.)/2 is defined as

Z;(t) — Z;(t]
thpr — U,
for £k = 1,2,...,p — 1. Similar to the first-order deriva-

tive we can use the sample second-order derivative for the
method introduced above. As a result, instead of testing
Hy @ pz(t,) = 0 for tj, > t; (t; is the time point cor-
responding to the steps in our algorithm), we try to test
Hy : pw (t)) = 0 for ¢} > 7/ for some 7'. Here, whenever H
is not rejected, it means the pz(t},) = C for t’ > 7’ where
C'is a constant, and the next step is to test HO C =0. For
this sake we can define U7 " as

= > Zi(t)

tr>7

and it is clear that U /, Uz " are mutually independent
and have identical normal distributions Therefore, under

has standard normal dis-

the null hypothesis, Z{]' =5 /\/_

tribution, where

ZUJ, Sy = 1

Now, using Algorithm 5, we can detect the threshold time
point based on the second-order derivative of the gene ex-
pression. Simulation results obtained by using the sample
second derivative demonstrate that the accurate approxi-
mation to true value of 7 can be obtained.

c

(] 0Ty

3. SIMULATION STUDY

To find the advantages and disadvantages of proposed
methods the simulation studies are designed. For this

function for W(t)

-

. Letl:=p—1.

. Let 7/ =t

3. Compute W, by using the expression in (8) where
instead of sample change rate, sample second-order
derivatives are used (note that W, has same asymp-
totic distribution as Z;).

4. If W] > ®(1 — «/2), then go to step 6; Else go to

step 5.

. Let [ :=1—1 and get to step 2.

6. If | 27| > ®(1 — a/2) (t = t;_1, then there is no time
point 7/ such that the mean function p(t) keeps stable
for t > 7/; else go to step 7.

7. The value of estimate for 7 is ti/—r

N

[S)]

reason, Eq. (9) is considered as the mean function.

(=5t o

p(t) =
Also, we consider 25 equally spaced time points between
0 and 1 as ti,...,t25 and 7 is fixed as t19. In addition,
Z; = (Z;(t1),..., Zj(tp)) is normally distributed with mean
function

pz(t) = <sin(27rt) —4(t — 2)3 + 1) I(t <71)

and variance ¥z = 0?GRG (this covariance structure ex-
plained in Fang et al., 2012, where p = 0.5, a = 2, 02 = 0.2.
Figure 4 demonstrates the mean function, first-order deriva-
tive, and second-order derivative for ¢ € [0,1] and the verti-
cal dashed line indicates the threshold time point.

The simulation results based on 10000 replications for
three different numbers of conditions (¢ = 20,40, 60) are
given in Table 2. Results show that the best method for
detecting 7 is the empirical distribution test based on the
sample second-order derivatives of gene expression (Algo-
rithm 5), which gives the better approximation to the true
value of 7 than the same method based first-order deriva-
tives (Algorithm 4). Moreover, as the number of conditions
increases the detected threshold time point based on the
second-order derivatives suffers less change than the other
methods (see Mean Absolute Deviation(MAD)). Meanwhile,
when ¢ = 20, the estimate of 7 based on empirical distri-
bution test of second-order derivatives is close to the true
value of 7 for all three different significant values («). In
summary, empirical distribution test based on the second-
order derivative can detect the threshold time point most
accurately among these methods.

In order to further investigate the performance of Algo-
rithms 3-5, we consider the scenarios in which the number
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Table 2. The detected values of T = 19 with MAD using the proposed algorithms 1-5

Method o c=20 c=40 c=60

Detected Value MAD Detected Value MAD Detected Value MAD

0.10 17.0612 1.9539 16.6804 2.3660 16.0435 1.9915

Algorithm 1 0.05 17.0172 1.9915 16.3954 2.6502 15.9730 3.0331
0.01 16.8626 2.1661 16.0342 2.979 15.5013 3.5388

0.10 18.8212 2.1778 18.6503 1.8401 18.7409 1.7005

Algorithm 2 0.05 18.8089 2.1545 18.6832 1.8544 18.7607 1.7182
0.01 18.7718 2.1321 18.6756 1.8404 18.7387 1.7148

0.10 19.9177 1.3021 19.9073 1.1658 19.371 0.5149

Algorithm 3 0.05 19.6042 1.1962 19.8014 0.9884 19.5960 0.7092
0.01 18.3078 1.1881 19.5960 0.8535 19.3146 0.5092

0.10 16.9828 2.6259 17.2211 2.3526 17.3517 2.1981

Algorithm 4 0.05 16.6951 2.7269 17.0805 2.3714 17.1648 2.2149
0.01 16.5043 2.8140 16.6433 2.5593 16.8009 2.3642

0.10 19.3012 0.7233 19.2844 0.7021 19.2917 0.7107

Algorithm 5 0.05 19.2021 0.5939 19.2080 0.5987 19.1769 0.5498
0.01 19.1250 0.4675 19.0736 0.3552 19.0611 0.3236

of time points between 7 and T is more than the number of
conditions. The mean function considered here is as follows:

w(t) = (sin(47rt) —2(t— 2)3 - 12.1936t> It <)

As a result, the first change rate has the following mean
function:

pz(t) = <47T cos(4mt) — 6(t — 2)2 - 12.1936) It <71)

and similar to the previous model we can use the follow-
ing covariance structure Xz = 0?GRG where p = 0.5,
a = 2, 02 = 0.2. Also, the 50 equally spaced time points
between 0 and 1 as tq, ..., t59 are chosen and 7 is fixed as to5.
Now, we try to compare methods which are more compati-
ble with high-dimensional cases. We know Algorithms 3, 4
and 5 can still be used for detecting the threshold time point
even when the number of time points between the thresh-
old point 7 and T is greater than the number of conditions.
According to Table 2, Algorithms 1 and 2 do not perform
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as well as Algorithms 3, 4 and 5. Thus we only compare
Algorithms 3, 4 and 5. We choose the number of conditions
¢ = 10,15, 20 for Algorithm 3 and ¢ = 20, 25,30 for Algo-
rithms 4 and 5. From the simulation results it can be realized
that these three methods perform really well and are close
to each other. Generally, we can say Algorithm 5 performs
better than the other methods in terms of mean absolute
deviation. However, Algorithm 3 is preferable for the small
number of conditions.

4. EXAMPLE

Now, we consider the analysis of the data set of 18 genes
in P. aeruginosa expressed in 24 conditions (see Table 1
in Section 1). For each condition, each gene was measured
every 30 minutes for 21 hours and, finally, each gene has
43 observations. To find the appropriate value of 7, at first
the empirical test based on the second derivative is used to
find 7 such that V¢t > 7 we have uw (t) = 0, which means
YVt > 7 pz(t) = C. For the second step as explained before,
t-statistics can be used to test Hy : C' = 0 for each of these



Table 3. The detected values of T = 25 with MAD using Algorithms 3, 4 and 5

M Detected Value | MAD Detected Value | MAD Detected Value | MAD
ethod «@
c=10 c=15 c=20
0.10 25.8344 1.2968 25.2288 0.3684 25.1202 0.1614
Algorithm 3 0.05 25.1362 0.2574 24.8628 0.1804 24.7738 0.2290
0.01 24.8580 0.2628 24.6290 0.3762 24.5454 0.4546
c=20 c=25 c=30
0.10 25.4335 0.9271 25.4050 0.8681 25.5068 0.8850
Algorithm 4 0.05 24.9539 0.4840 25.0891 0.5183 25.1347 0.5101
0.01 24.8850 0.4271 24.9421 0.1364 25.0179 0.4057
c=20 c=25 c=30
0.10 25.0854 0.1134 25.0712 0.1037 25.0665 0.0961
Algorithm 5 0.05 25.0412 0.0541 25.0506 0.0817 25.0613 0.0571
0.01 25.0381 0.0421 25.0503 0.0805 25.0475 0.0347

Table 4. Estimated value of T for 18 genes based on testing sample second derivative

Estimated 7 The value of test statistic

Gene

95% Confidence

Interval for C Simillar genes

(in hours) for Testing Ho : C' =0 Tower Bound Upper Bound

PA5283 16.5 0.4045 -0.1129 0.0743 —
PA2975 6.5 1.3752 -0.1027 0.0180 PA0649
PA4991 13 2.2714 -0.0819 -0.006 —
PA5237 14.5 1.1681 -0.0956 0.0242 —
PA0287 6.5 0.4994 -0.0899 0.0534 —
PA3115 12 1.6327 -0.1358 0.0124 —
PA3879 8 0.5422 -0.0718 0.0407 —
PA0894 10.5 1.6587 -0.0602 0.0050 PA377T1
PA1875 9.5 0.6356 -0.1297 0.2542 —
PA0573 10 0.4966 -0.1156 0.0689 PA3771, PA3902
PA3902 11.5 0.4663 -0.0859 0.0529 PA3771, PA0573
PA3212 8.5 0.5109 -0.0962 0.1640 —
PA2997 14 1.8172 -0.1243 0.0047 —
PA0649 7.5 0.3682 -0.0816 0.0558 PA1748, PA1941, PA2975
PA1748 6.5 0.6283 -0.0943 0.0485 PA0649
PA3771 9 0.0544 -0.1283 0.1356 PA0894, PA0573, PA3902
PA1841 8.5 1.0206 -0.1064 0.0335 PA0649

o70 10.5 0.5394 -0.1378 0.0783 —

18 genes (as simulation study indicates even the number of
conditions ¢ is close to 20, the algorithm 5 works well). For
each step the significance level « is equal to 0.025.

Table 4 gives the results for the detected threshold time
points, test statistic for Hy : pz(t) = 0 and confident in-
tervals for all 18 different genes by using Algorithm 5. The
first column of Table 4 lists the names of all 18 genes. The
second column in this table gives the estimated threshold
time points such that pw (t) = 0 (which is equivalent to
uz(t) = C) for t greater than or equal that time point for
the gene expression in each row. Also, the third column of
Table 4 shows the values of test statistic Z{J/ for all genes
to test Hy : C' = 0 (which is equivalent to puz(t) = 0) for
t > 7 for 18 genes, respectively. Lower bounds and upper
bounds of confidence intervals for the constant C are given
in Columns 4 and 5 of Table 4, respectively. At first we note

that the null hypothesis Hy : C' = 0 is rejected at the sig-
nificance level @ = 0.05 only for gene PA4991, which means
the gene PA/991 increases (decreases) linearly after the time
point ¢t = 13. Contrastably, the other genes keep stable after
the corresponding estimated time point 7. In some sense,
gene PA4991 has no threshold time point and thus has the
different behaviour from other genes. Also, the number of
observed time points cannot be reduced for this gene ex-
pression. Further, if we review Table 4 carefully, we can find
gene PA5283 has the largest value 16.5 hours of 7 among the
other genes. After gene PA5283, genes PA5237 and PA2997
have the second and third largest values 14.5 hours and 14
hours of 7, respectively. Genes PA2975, PA0287, PA1748
have the same smallest value 6.5 hours of 7 among the other
genes and gene PA0649 has the second smallest value 7.5
hours of 7. Therefore, if we consider the pairwise difference
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Figure 6. Sample visualised results for gene PA0287.

of 7 values, we can find that some of gene pairs such as
[PA5283, PA2975], [PA4991, PA0287], [PA2997, PA3771],
and etc. are quite significantly different. In this particular
case the genes with two hours difference in estimated 7 val-
ues are considered to have different mean functions. How-
ever, when this difference for a pair of genes is less than or
equal two hours, the statistical test is performed to compare
the mean functions for two genes at 5% significance level us-
ing the method, which was introduced by Nishiyama et al.
(2013). The last column indicates the genes with equivalent
mean functions to the specified gene in each row. Eventu-
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ally, we can find the mean function for PA0649, PA2975,
PA1748, and PA1841 are not significantly different. Also,
we have the same situation for PA3771, PA089/, PA0573
and PA3902.

In particular, we present the results in Figures 5 and
6 for the analysis of genes PA5283 and PA0287, respec-
tively, by using Algorithm 5. Each figure contains four sub-
plots. The left top sub-plot presents the original observed
gene expressions for all conditions and the vertical dash line
shows the approximate value of 7. Also, the thick black dot
line represents the sample mean for the specific gene. The



right sides sub-plots on first row and second row indicate
the same thing as aforementioned plot but for sample first-
order derivatives and second-order derivatives, receptively.
The left bottom subplot indicates the estimated first-order
derivative mean and the confidence band of gene expression.
From these plots one can see that genes PA5283 and PA0287
have the significantly different threshold points, which shows
that genes PA5383 and PA0287 exhibit the different behav-
iors. Gene PA0287 becomes stable only after 6.5 hours and
gene PABH283 needs a little longer time 16.5 hours to keep
constant.

5. CONCLUDING REMARKS

Finding genes with similar behaviors and classifying them
into the same category using statistical methods are the
main concern on recent gene expression studies. Since we
have high-dimensional data sets for analysing the proper-
ties of gene expressions, the methods for dimensional de-
duction are utilized significantly in this case. The existing
methods such as PCA, KPCA, and etc. deal with the reduc-
tion of dimensionality using a combination of observations
in the data sets. However, the current paper is proposing a
strategy to eliminate the observations for some time points
with relative change rate close to zero, instead of consider-
ing the combination of observations for different time points.
To apply this strategy, three methods and their correspond-
ing algorithms are proposed. The first method is based on
Hotelling’s T? which is one of the classical testing meth-
ods for multivariate data sets. The second method is similar
to the first model. But instead of using 72 statistic, the
test statistic based on high-dimensional data is used. As for
the third method, the method based on empirical distribu-
tion for the sample first-order and second-order derivatives
is proposed to find the threshold time point. As indicated
from the simulation study, the method based on the empir-
ical distribution of sample second-order derivative can de-
tect the values of threshold time points more accurately for
the gene expressions. Since the multiple threshold would be
more common than single threshold homeostasis, we should
develop the method to detect the multiple thresholds and
apply this method to the high throughput gene expression
data. In fact, multiple threshold points could be detected us-
ing the modified method from the current algorithms. What
we need to do is to slightly change each algorithm and use
it to detect multiple thresholds.

Usually, after the number of observations has been re-
duced, we are able to compare the mean functions together.
For this purpose, several existing statistical methods could
be available under two situations. First situation is that co-
variance matrices for two genes are equal and second one is
covariance matrices are different from each other. In the sec-
ond case we may confront Behrens-Fisher problem. Overall,
the best case to use the explained strategies for reducing the
number of observations is when the number of time points

are close to the number of conditions. The proposed method
can make the gene expression data appropriate for using
classical methods for classification of gene expressions. Also,
the threshold points can be used to distinguish among the
gene expressions. We have done some research on the clas-
sification of gene expressions based on the threshold time
points. In general, if two genes have the significantly differ-
ent threshold points, one can easily conclude that these two
gene expressions have obviously different behaviours. If the
threshold points of two genes are close each other, we may
further consider testing the equality of mean functions for
these two gene expressions.

Further, from Section 4, one can see there exists a peak
point for the relative change rate of each gene expression.
This point is the fastest increasing point for gene expres-
sion. We would like to know if this peak time point has
its own meaning in the gene research and if this point can
help to explain the behavior of gene expression. The po-
tential statistical question is how to detect this peak point.
Furthermore, the time interval between the peak point and
threshold point has its own interest because this interval
shows the time period that the gene expression change from
the fastest increasing point to the point with zero change
rate.

Finally, for the convenience of users, we upload the Mat-
lab scripts for the detection of threshold point used in the
simulation section and example section to GitHub and ev-
eryone can have access to these files using the following link:
https://github.com/jahromi/DTPGE.

Also, users can contact the developer from GitHub di-
rectly.
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APPENDIX. PROOF OF THEOREM 1

Consider V; = 3 ¢, o I(Z;(t;) < 0) for j =1,....c.
Since Z1,..., Z. are mutually independent and identically
distributed, Vi,...,V, are also mutually independent and
identically distributed. Based on central limit theorem, the

—E(\V)

L. . \
distribution of )
distribution.

Meanwhile, we have

Y B0 = XY LIz <0)

{r:it/ >} {r:t! >7} =1

Iy Y <=ty -y

=1 {r:t! >7}

converges to the standard normal

(A1)
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Also,

P

(A.2) =E ( " Fau)(0)
{r:t!. >7}
%:—Zl{t >T}——

{r:t! >7}

and

var(Z) = var

Y Fru)(0)

{r:t;. >71}

Y Fuuy(0),

{r:t.>71}

Z ﬁZ(t’T)(O)

{rit.>7}

= Z Var(ﬁz(t;)(O))wL Z COV(ﬁZ(t;)(O)aﬁZ(tg)(O))

{r:t;.>7} (r,s)€A

Z Fzy(0)(1 = Fz1)(0))

{r:t;.>7}

+ Z COV(ﬁZ(t’T)(O)vﬁZ(t’s)(O))'
(r,s)€A

where A = {r, s|r # s,t, > 7 and t, > 7}. Now

COV(ﬁZ(t;) (0), F\Z(t’s) (0))

c C

- —ZZE(I(Z( ) < 0)I(Z;(ty) <0)))

c c

— 3> Y EU(Z(t) <0)E(I(Z(t,) < 0))

i=1 j=1

1(e—=1) 1 (% [° 1
ETJFE/,OO [m fz(t;,),z(t;)(zyy)dfvdy*Z

1 0 0
= nt: / / fz@),z@) (z,y)dedy

Therefore,
(A.3)
var(Z) =var Z ﬁzj(t;)(o)
{r:t/.>71}
Cr 1 1
PR > [Fz).z)(0,0) - n
(r,s)€A
== l(2c —)+ Y. Fz).za,)(0,0)
g\ T 6 Z(t1), Z () \Vs

(r,s)€A

As we can see Eq. (A.1) indicates the expansion of V and
Eq. (A.2), (A.3) imply that
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Z{r:t}ZT} FZ(t;)(O) - %r
VAL Qe =)+ Y ea Fac.z0) (0,0)]

V-EV)
V/var(V)

Hence Eq. (8) converges to standard normal variable in dis-
tribution as ¢ — oo.
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