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Nonparametric verification bias-corrected
inference for the area under the ROC curve of a

continuous-scale diagnostic test

GIANFRANCO ADIMARI* AND MONICA CHIOGNA

For a continuous-scale diagnostic test, the area under the
receiver operating characteristic curve (AUC) is a popular
summary measure to assess the test’s ability to discrimi-
nate between healthy and diseased subjects. In some stud-
ies, verification of the true disease status is performed only
for a subset of subjects, selected possibly on the basis of the
test result and of other characteristics of the subjects. Es-
timators of the AUC based only on this subset of subjects
are typically biased; this is known as verification bias. Some
methods have been proposed to correct verification bias, but
they require parametric models for the (conditional) proba-
bility of disease and/or the (conditional) probability of ver-
ification. A wrong specification of such parametric models
can affect the behaviour of the estimators, which can be in-
consistent. To avoid misspecification problems, in this paper
we propose a fully nonparametric method for the estima-
tion of the AUC of a continuous test under verification bias.
The method is based on nearest-neighbor imputation and
adopts generic smooth regression models for both the prob-
ability that a subject is diseased and the probability that it
is verified. The new AUC estimator is consistent under the
assumption that the true disease status, if missing, is miss-
ing at random (MAR). A simple extension which deals with
stratified samples is also provided. Simulation experiments
are used to investigate the finite sample behaviour of the
proposed methods. An illustrative example is presented.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62G05,
62G20; secondary 62P10.

KEYWORDS AND PHRASES: Missing data imputation,
Nearest-neighbor imputation, ROC analysis.

1. INTRODUCTION

The evaluation of the ability of a diagnostic test to sepa-
rate diseased from non-diseased subjects is a crucial issue in
modern medicine. Typically, in evaluating a diagnostic test’s
discriminatory ability, the available data come from medical
records of patients who undergo the test. The accuracy of
the test under study is ideally evaluated by comparison with
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a gold standard test, which assesses the disease status with
certainty. In practice, however, a gold standard may be too
expensive, or too invasive or both for regular use. Hence,
only a subset of patients undergoes disease verification, and
the decision to send a patient to verification is often based
on the test result and other patient’s characteristics. How-
ever, summary measures of test performance based only on
data from patients with verified disease status may be badly
biased. This bias is usually referred to as verification bias.

For a diagnostic test that yields a continuous test re-
sult, the receiver operating characteristic (ROC) curve is
a popular tool for displaying the test’s ability to discrimi-
nate between healthy and diseased subjects. The continu-
ous test result can be dichotomized at a specified cutpoint.
Given a cutpoint, the sensitivity is the probability of a true
positive, i.e., the probability that the test correctly iden-
tifies a diseased subject. The specificity is the probability
of a true negative, i.e., the probability that the test cor-
rectly identifies a non-diseased subject. When one varies the
cutpoint throughout the entire real line, the resulting pairs
(1—specificity, sensitivity) form the ROC curve.

A commonly used summary measure that aggregates per-
formance information across the range of possible cutpoints
is the area under the ROC curve (AUC), that can be inter-
preted as the probability that a randomly selected diseased
case will have a test result worse (for example bigger, if large
test values are more likely to be linked to disease) than a
randomly selected nondiseased case. Reasonable values for
the AUC range from 0.5 to 1. The larger the AUC value,
the more accurate the diagnostic test is. An AUC of 0.5
means that the diagnostic accuracy in question is equiva-
lent to that which would be obtained by flipping a coin (i.e.,
random chance).

In the presence of verification bias, under the assumption
that the true disease status, if missing, is missing at ran-
dom (MAR), estimation of the AUC of a continuous test
is discussed in [5], where an estimator based on the inverse
probability weighting approach is proposed. MAR, assump-
tion states that the probability of a subject having the dis-
ease status verified is purely determined by the test result
and the subject’s observed characteristics, and is condition-
ally independent of the unknown true disease status. This
corresponds to a so called ignorable missingness, which is
often assumed in practice. Estimation of the AUC when the
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true diseased status is subject to non-ignorable missingness
is tackled in [10] and [6]. Under different model settings,
these papers develop AUC estimators based on imputation
and/or reweighting methods. Clearly, such estimators ap-
ply also when the missingness is ignorable, i.e., under the
stronger MAR assumption.

However, known methods to inference on the AUC of a
continuous test require specification of parametric regres-
sion models for the probability of a subject being diseased
and/or verified. Typically, suitable generalized linear regres-
sion models are employed to this end.

In real-world applications, a correct specification of the
disease model and/or the verification model could be cum-
bersome. As suggested in [6], in some circumstances re-
searchers could collect necessary information on the reason
of missing gold standard and disease mechanism, and this
makes it still possible to build approximately correct models
from the scientific point of view. Without any information
about the selection and disease mechanisms, a prudent ap-
proach that avoids misspecification problems consists in re-
sorting to nonparametric methods. To the best of our knowl-
edge, no such methods are available for inference on the
AUC of a continuous-scale diagnostic test.

In this paper, we propose a fully nonparametric method
for the estimation of the AUC under verification bias. The
proposed method, which follows the lines drawn in [1] for the
estimation of the ROC curve, is based on nearest-neighbor
imputation and adopts generic smooth regression models
for both the probability that a subject is diseased and the
probability that is verified. The estimator for the AUC ob-
tained by the new approach is shown to be consistent under
the MAR assumption. A simple extension which deals with
stratified samples is also provided, and estimation of the
standard deviation of the proposed estimators is discussed.
Several simulation experiments are used to investigate the
finite sample behaviour of our proposals. An application to
a real dataset is also presented.

The paper is organized as follows. In Section 2, we de-
scribe the proposed approach, whose theoretical justification
is given in Appendix 1, Supplementary Material (http://
intlpress.com/site/pub/pages/journals/items/sii/content/
vols/0010/0004/s002). Section 3 presents the results of four
simulation studies, and Section 4 contains the illustrative
example. Some final remarks are reported in Section 5.

2. THE PROPOSED METHOD

2.1 Nonparametric AUC estimator

Let T; denote the continuous test result from a diag-
nostic test, and let D; denote the binary disease status,
i =1,...,n, where D; = 1 indicates that the i-th patient
is diseased and D; = 0 indicates that the i-th patient is
free of disease. Without loss of generality, we assume that
a high test result indicates a high probability of disease;
then, the AUC represents the probability that a diseased
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subject has a larger test result than a non-diseased one, i.e.,
AUC = PT(T; > TﬂDi = 1,Dj = O)

Let V; denote the binary verification status of the i-th
patients, with V; = 1 if the i-th patient has the true dis-
ease status verified, and V; = 0 otherwise. In practice, some
information, other than the results from the test, may be
obtained for each patient. Let X; be a vector of observed
covariates for the i-th patient that may be associated with
both D; and V;. Hereafter, we assume X to be a continuous-
valued random vector.

When all patients are verified, i.e., V; = 1,1 =1,...,n,
a complete data set is obtained. In this case, it is well
known that a nonparametric AUC estimator is given by the
Wilcoxon statistic

D ic i, g L(Ti > Tj)Di(1 = D;)
Z?:l Z?:l, j#i Di(l - Dj) ’

where I(-) is the indicator function. If only a subset of pa-
tients has the disease status verified, some labels D; are
missing in the sample (T}, X;, D;,V;), i = 1,...,n. Hence,
in order to obtain a verification bias-corrected version of the
Wilcoxon statistic, one could use some suitable nonparamet-
ric imputation technique to impute the missing D;’s.

In what follows, we propose to use a K-nearest-neighbor
(KNN) imputation method to obtain a nonparametric ver-
ification bias-corrected AUC estimator. Let p; = Pr(D; =
1|T;, X;) denote the probability that the i-th patient is dis-
eased given the test result and covariates. For a finite pos-
itive integer K and a suitable distance measure, a nearest-
neighbor imputation estimate of p;, for a subject with true
disease status not verified, could be defined as

| X
Pri = E;Di(j)’
=

where {(Y;;y, Dijy) : Vigy = 1,5 = 1,..., K} is a set of
K observed data pairs and Yj(;) denotes the j-th nearest
neighbor to Y; = (T}, X, )" among all Y’s corresponding to
the verified patients, i.e., to those Dy’s with V}, = 1. Then,
the estimate pg; could be used as imputation value for the
missing label D;. This leads to the proposed nonparametric
verification bias-corrected AUC estimator:

Dic1 i, g L(Ti > Tj)Di(1 = Dy)
Z?:l Z?:L j#i D;(1 - Dj)

with D; = V;D; + (1 — V;)pKi- In Appendix 1, Supplemen-
tary Material, we show that, if the MAR assumption holds,
ie. Pr(V = 1|D,Y) = Pr(V = 1|Y) where Y = (T, X )T,
the functions p(y) = Pr(D = 1]Y = y) and 7(y) = Pr(V =
1Y = y) are first-order differentiable and E(1/7(Y)) < oo,
then the KNN imputation estimator A/U\C, based on the
sample (T;, X;, D;, Vi), i = 1,...,n, is consistent. More-
over, in the same appendix, elements arise that lead us to
conjecture that the KNN imputation estimator is asymptot-

(1) AUC =

i
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ically normally distributed, a conjecture also supported by
results of numerical studies in Section 3.

Being X in our theoretical setting a continuous-valued
random vector, distance ties in the nearest neighbors iden-
tification occur with probability 0. Nevertheless, in real ap-
plications, continuous variables are often measured on a dis-
crete scale, so that distance ties may occur. In this case, it is
necessary to identify a suitable tie-breaking strategy. Among
the solutions proposed in the literature, a simple approach
consists in artificially enlarging the feature space by adding
to X a continuous random component, generated indepen-
dently of all other variables (see [4], Chapter 11). This is the
approach that we employ in the application of Section 4.

Estimator (1) modifies in an obvious way when no co-
variates are measured, i.e., when Y = T. Moreover, a simple
extension of our AUC estimator, that could be used when
categorical variables are also observed for each patient, is
possible. Without loss of generality, we suppose that a sin-
gle factor C, with m levels, is observed together with Y.
We also assume that C' may be associated with both D and
V. In this case, the sample can be divided into m strata,
i.e. m groups of units sharing the same level of C. Then, if
the MAR assumption and first-order differentiability of the
functions p(y) and m(y) hold in each stratum, a consistent
estimator of the AUC of the test T is

— 1 M cond
AUCS = - Y AUC;  n;,

j=1

(2)

_— cond

where n; denotes the size of the j-th stratum and AUC)
is the KNN estimator of the conditional AUC, i.e., the KNN
AUC estimator (1) obtained from the patients in the j-th
stratum. Of course, we must assume that, for every j, ratios
n;/n have finite and nonzero limits as n goes to infinity.
Finally, we observe that, from a theoretical point of view,
the use of the proposed estimator is not restricted to any
special type of distance measure, nor to any particular choice
of the neighborhood size K. However, to apply the method,
such choices have to be taken. These aspects will be dis-
cussed in the Section 3, where the impact of the choices of
K and the distance measure on the estimator’s performance
will be empirically investigated in a simulation scenario.

2.2 Confidence intervals

An important issue, which is crucial in many appli-
cations, is the estimation of the standard deviation of
the proposed KNN AUC estimator. To address the prob-
lem, we propose to employ a simple bootstrap procedure,
based on the following steps. From the sample at hand
(T;, X, D;,V;), i = 1,...,n, obtain B bootstrap samples
(T, X2 D V), b =1,...,B, and i = 1,...,n, and

compute the bootstrap estimates A/U\C*b. Due to the na-
ture of bootstrap samples, each bootstrap estimate needs to
be computed using a version of (1) that takes into account
the presence of ties in the sample, i.e.,

n n b 7y*b y*b

A/U\C*b _ 2 Zj:L j#i IijNDi (1 _NDj )
D Z?:L i Dy(1 - D;b)

with I;kjb = I(Tr* > ij"b) + 0.51(Trb = T;‘b), and D* =

VDb + (1 — Vi*b)pib.. Here, p32, denotes the nearest-

neighbor imputation value for a missing label D;® in the

bootstrap sample. Then, the bootstrap estimator of the
standard deviation of AUC is

(3)

1 B _—— xb — % 2
ﬁZ(AUC —AUC),
b=1

t;\d:

where AUC™ is the mean of the B bootstrap estimates
—— *b

AUC

Once the estimate of the standard deviation of the KNN
estimator is obtained, under the conjectured asymptotic
normality of the estimator, inference on the AUC can be
made using the pivot (A/U\C - AUC)/s/Ei. In particular, a
confidence interval with nominal coverage 1 — v is given
by AUC + 21_7/2571, where z, denotes the y-quantile of a
standard normal random variable. It is known that confi-
dence intervals based on the crude normal approximation
approach may behave poorly when the sample size is small.
A classical method to improve their accuracy is based on ap-
propriately transforming the parameter of interest. Suitable
transformations, which turn out to be useful in this setting
are, for instance, the logit and the probit transformation. In
particular, considering the logit transformation, one can set

¢ = HAUC) =log (4465, ¢ = ((ATC), so that (¢ - )
is approximately normal with mean zero and standard devi-
sd
AUC(1-AUC)
construct confidence intervals on the ( scale, which are then
converted back to the AUC scale by the inverse transforma-
tion £~1. The transformation also provides range-respecting
confidence intervals.

Both effectiveness of the suggested bootstrap procedure
and accuracy of the above discussed confidence intervals
based on AUC' will be investigated by the simulation stud-
ies described in the next section. Of course, there are other
methods to obtain confidence intervals via bootstrap proce-
dures. For instance, one could resort to bootstrap calibration
to retrieve the appropriate quantiles of the distribution of
the estimator AUC. This method does not depend on the
normal approximation of the estimator; but is computation-
ally more expensive, and in our view, less manageable for
practitioners.

ation estimated by . This result can be used to

3. SIMULATION STUDIES

In this section, we present the results of four Monte Carlo
studies. In the first study, the aim is to assess the behaviour
of the proposed KNN AUC estimator (1) in samples of small
to moderate sample sizes, also investigating the effects of the
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choice of K as well as of the distance measure for the defini-
tion of the neighborhood. In the second study, the objective
is to evaluate the performance of the bootstrap estimator
for the standard deviation of the proposed estimator. In the
third study, we assess the behaviour of estimator (2) which
deals with stratified samples and finally, in the last study,
we compare our proposal with alternative estimators. Such
estimators, discussed in [10], [5], and [6], require specifica-
tion of parametric regression models for the disease and/or
the verification processes. For the reader’s convenience, we
report here the expression of such estimators. The full im-
putation (FI) estimator is

it 2o, g LT > Tj)pi(1 = pj)
Z:’l:l Z?:l, i f’i(l - ﬁj)

Parametric models, such as logistic regression models, have
to be specified to obtain the estimates p; of p; = Pr(D; =
17;, X;), i = 1,...,n, using only data from verified sub-
jects. Mean score imputation (MSI) is another possible ap-
proach that only imputes the disease status for unverified
subjects. In this case,

it 2, g LT > T;)Di(1 - D;)
Z?:l Z?:L j#i Di(l - Dj)

with D; = V;D; + (1—V;)pi. The inverse probability weight-
ing (IPW) estimator weights each verified subject by the
inverse of the probability that the subject is selected for
verification. Therefore the estimator is

A/U\CFIZ

AUCys1 =

)

A/U\CIPW =
Dic1 2y, jpi LT > Ty)ViDiV (1 — Dy) /(i)
Dlim1 2o, jpi ViDiVi(1 = Dy)/ (7idt;) ’
where 7; is some parametric estimate of m; = Pr(V; =

1|T;, X;). Finally, the semiparametric efficient (SPE) esti-
mator is

Dict 2o, g LT > T;)Di(1 - D;)
Z?:l Z?:l, e Di(l - Dj)
with D; = ViD; /i 4+ (1—V;/7;)p;. Under MAR assumption,

the SPE estimator is doubly robust in the sense that it is
consistent if either 7;’s or p;’s are estimated consistently.

A/U\CSPE =

)

Study 1 and Study 2. Simulation settings in the first
two studies are similar to those in [2] and [5]. Starting
from two independent random variables Z; ~ N(0,0.5)
and Zs ~ N(0,0.5), the disease indicator D is specified as
D = I(g(Z1,Z2) > v). The threshold v determines the dis-
ease prevalence and different specifications of the function
9(Z1, Zs) give rise to different disease processes. The diag-
nostic test result 7" and an auxiliary covariate X are gener-
ated to be related to D through Z; and Z5. More precisely,
T = h(Z1,Z5) + €1 and X = f(Z1,7Z3) + €3, for suitable
functions h(-,-) and f(-,-), where ¢; and €3 are indepen-
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dent N(0,0.25) random variables, independent also from Z;
and Z,. The verification probability 7 is set to be a suit-
able function of T' and X, in accordance with the MAR
assumption. In particular, we set g(Z1,22) = Z1 + Za,
f(Zl,ZQ) = B(Zl + ZQ), h(Zl,ZQ) = CY(Zl + ZQ), and
504081 T+85 X

(T, X) = Tiresoreminx- We fix g = 0.05, &1 = 0.9,
d9 = 0.7. This choice corresponds to a verification rate of
about 0.51. Moreover, we choose v to make the disease
prevalence equal to 0.25. As for «, we choose five differ-
ent values, i.e, 0.1, 0.25, 0.5, 1 and 1.5, giving rise to five
different values for the true AUC, i.e., 0.595, 0.714, 0.846,
0.943, 0.973, respectively. Finally, we set 8 =1 or § = 0.1:
in the first case, the resulting covariate X has itself high
accuracy (AUC of 0.943), while, in the latter case, its accu-
racy is low (AUC approximately equal to 0.6). The number
of replications in each simulation experiment is 5000.

In the first study, we fix three sample sizes (n = 75, 100,
and 200) and consider different distance measures to define
the estimators. Among the various possibilities, we consider
here the most commonly used distances, i.e., the Euclidean
distance, the Manhattan distance, the Lagrange distance
and the Mahalanobis distance (see Appendix 2, Supplemen-
tary Material, for the definitions). Table 1 shows Monte
Carlo means and standard deviations of the new KNN esti-
mators, with K =1, K =3, K =5, K = 10 and K = 20,
based on the Euclidean distance. Each block in the table
refers to a chosen pair (3, sample size). Rows denoted by
“Full” indicate the results for the Wilcoxon statistic, i.e.,
the AUC estimator based on complete data, which is used
as benchmark. Complete results of the study covering all
considered distance measures are given in Appendix 3, Sup-
plementary Material. Performances of the KNN estimators
are quite comparable for different choices of the distance
measure, with the Mahalanobis distance performing slightly
worse than competing distances. This might be due to the
fact that, in our simulation settings, there is not a large dis-
parity in the range of the data in each dimension. Results
show also that bias increases on increasing the number of
nearest neighbors — although such an effect tends to atten-
uate for increasing sample sizes — indicating that the use
of values of K which are large compared to the number of
the verified units in the sample fails to represent the local
pattern of the measurement space, i.e., of the Y space. This
might also be related to the dimension of the Y space. In
this study, where the feature space includes the diagnostic
test result 7" and the unidimensional auxiliary covariate X,
the evidence is that the choice of a small value of K (within
the range 1 to 3) seems a good choice. Similar conclusions
also come from the results of Study 4, where a covariate
X of dimension three is employed. Finally, from the results
in Table 1 (and Tables 1-6 in Appendix 3, Supplementary
Material) we observe that the standard deviation of the es-
timators increases when both a and § are small, i.e. when
both X and T are poorly associated with D.

In the second study, we consider the bootstrap esti-
mator for the standard deviation of our KNN estimators



Table 1. Study 1. Monte Carlo means and standard deviations of the KNN AUC estimators, for different values of «, different
choices of K and the Euclidean distance measure

a=0.1 a=0.25 a=0.5 a=1.0 a=1.5
MC mean MCs.d. MCmean MCs.d. MCmean MCsd. MCmean MCsd. MC mean MC s.d.
B =1 Sample size = 75
Full 0.594 0.077 0.717 0.069 0.845 0.050 0.944 0.027 0.973 0.016
INN 0.594 0.094 0.717 0.086 0.845 0.064 0.944 0.034 0.973 0.021
3NN 0.594 0.089 0.715 0.080 0.843 0.060 0.942 0.033 0.972 0.020
5NN 0.593 0.086 0.714 0.078 0.841 0.059 0.940 0.033 0.970 0.021
10NN 0.590 0.082 0.708 0.075 0.832 0.059 0.933 0.035 0.964 0.023
20NN 0.579 0.073 0.683 0.070 0.793 0.063 0.887 0.053 0.920 0.050
B = 0.1 Sample size = 75
Full 0.592 0.078 0.717 0.069 0.846 0.050 0.943 0.027 0.973 0.017
1NN 0.591 0.122 0.713 0.109 0.841 0.081 0.942 0.041 0.973 0.024
3NN 0.587 0.110 0.705 0.099 0.834 0.075 0.938 0.039 0.970 0.023
5NN 0.584 0.106 0.699 0.095 0.827 0.075 0.933 0.039 0.966 0.024
10NN 0.577 0.097 0.686 0.089 0.810 0.074 0.920 0.042 0.955 0.026
20NN 0.567 0.081 0.662 0.077 0.772 0.069 0.879 0.050 0.917 0.040
B =1 Sample size = 100
Full 0.595 0.066 0.716 0.060 0.846 0.043 0.944 0.023 0.972 0.014
INN 0.595 0.080 0.716 0.072 0.847 0.054 0.944 0.030 0.973 0.018
3NN 0.595 0.076 0.715 0.068 0.846 0.050 0.943 0.028 0.972 0.017
5NN 0.594 0.075 0.714 0.067 0.844 0.050 0.941 0.028 0.971 0.017
10NN 0.592 0.072 0.710 0.065 0.839 0.049 0.937 0.028 0.967 0.018
20NN 0.587 0.067 0.697 0.062 0.821 0.051 0.918 0.036 0.952 0.026
B = 0.1 Sample size = 100
Full 0.595 0.067 0.717 0.059 0.847 0.043 0.943 0.023 0.973 0.014
INN 0.590 0.104 0.712 0.093 0.844 0.067 0.943 0.035 0.972 0.021
3NN 0.588 0.094 0.707 0.084 0.837 0.063 0.940 0.033 0.970 0.020
5NN 0.585 0.091 0.702 0.082 0.832 0.062 0.936 0.034 0.968 0.020
10NN 0.581 0.085 0.692 0.078 0.819 0.062 0.927 0.035 0.961 0.022
20NN 0.573 0.075 0.673 0.070 0.793 0.061 0.902 0.039 0.939 0.026
B =1 Sample size = 200
Full 0.595 0.047 0.714 0.041 0.846 0.030 0.943 0.016 0.973 0.010
INN 0.595 0.057 0.714 0.051 0.846 0.038 0.944 0.020 0.973 0.013
3NN 0.595 0.054 0.714 0.048 0.845 0.036 0.943 0.019 0.972 0.012
5NN 0.595 0.054 0.713 0.047 0.845 0.036 0.942 0.019 0.972 0.012
10NN 0.594 0.052 0.712 0.046 0.843 0.035 0.940 0.019 0.970 0.012
20NN 0.592 0.051 0.709 0.045 0.838 0.035 0.936 0.019 0.967 0.012
B = 0.1 Sample size = 200
Full 0.594 0.046 0.716 0.041 0.846 0.031 0.944 0.017 0.972 0.010
INN 0.592 0.075 0.713 0.066 0.844 0.047 0.943 0.024 0.972 0.015
3NN 0.589 0.068 0.710 0.060 0.840 0.044 0.941 0.023 0.971 0.014
5NN 0.588 0.067 0.707 0.059 0.837 0.044 0.940 0.023 0.970 0.014
10NN 0.585 0.064 0.701 0.057 0.830 0.044 0.935 0.023 0.968 0.014
20NN 0.580 0.060 0.690 0.055 0.817 0.044 0.926 0.024 0.961 0.015

described in Section 2.2. Given the simulation results ob-
tained in the first study, we focus our attention on 1NN and
3NN estimators based on the Euclidean distance measure.
For each Monte Carlo sample of size n, we compute the AUC
estimates and the bootstrap standard deviations based on
200 bootstrap replications.

Table 2 and Table 3 contain the Monte Carlo means of
the bootstrap estimates of the standard deviations and the

Monte Carlo standard deviations for the KNN AUC estima-
tors at the chosen values of « and for different sample sizes,
for § = 1 and 8 = 0.1, respectively. Sample sizes increase
with increasing values of «, i.e., of the true AUC values. In
particular, we fix 100 and 200 when « is 0.1; 150 and 300
when « is 0.25; 200 and 400 when « is 0.5; 250 and 500 when
a is 1; 300 and 600 when « is 1.5. Table 2 and Table 3 also
report the empirical coverages of the confidence intervals
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Table 2. Study 2. Monte Carlo means of bootstrap standard deviations (bootstrap s.d.) and Monte Carlo standard deviations
(MC s.d.) for the INN and 3NN AUC estimators based on the Euclidean distance measure, for 3 = 1, different values of «
and different sample sizes. In the right side, empirical coverages of the confidence intervals for the AUC obtained through the
normal approximation approach, with the standard deviation of AUC estimated using the bootstrap method. Nominal
coverages: 0.99, 0.95, 0.90. Figures in bold denote the empirical coverages raised by the normal approximation method after
logit transormation

o sample size bootstrap s.d. MC s.d. empirical coverages
0.1 100 1NN 0.078 0.080 0.980 0.934 0.879
0.989 0.949 0.892
3NN 0.077 0.076 0.982 0.943 0.892
0.990 0.957 0.907
200 INN 0.055 0.056 0.981 0.933 0.881
3NN 0.054 0.054 0.986 0.941 0.893
0.25 150 1NN 0.057 0.058 0.979 0.926 0.875
0.992 0.947 0.891
3NN 0.056 0.055 0.981 0.936 0.890
0.993 0.955 0.901
300 1NN 0.040 0.041 0.982 0.934 0.880
3NN 0.039 0.039 0.987 0.944 0.898
0.5 200 INN 0.036 0.038 0.969 0.919 0.866
0.988 0.942 0.882
3NN 0.036 0.036 0.975 0.932 0.884
0.988 0.950 0.895
400 1NN 0.026 0.027 0.978 0.930 0.877
3NN 0.025 0.025 0.983 0.940 0.890
1 250 INN 0.017 0.018 0.958 0.909 0.859
0.990 0.941 0.880
3NN 0.017 0.017 0.968 0.924 0.875
0.992 0.949 0.897
500 INN 0.012 0.013 0.972 0.919 0.867
3NN 0.012 0.012 0.976 0.930 0.877
1.5 300 1NN 0.010 0.010 0.956 0.913 0.865
0.987 0.941 0.885
3NN 0.090 0.090 0.964 0.923 0.879
0.990 0.950 0.899
600 1NN 0.007 0.007 0.971 0.924 0.872
3NN 0.007 0.007 0.978 0.936 0.888

for the AUC obtained through the normal approximation
approach, with the standard deviation of AUC estimated
using the bootstrap method. The considered confidence in-
tervals have nominal coverage 0.99, 0.95, 0.90. For each value
of o and the corresponding smallest sample size, the tables
also give the empirical coverages raised by the normal ap-
proximation approach after logit transformation.

Results given in the tables seem to show effectiveness
of the bootstrap procedure in estimating the standard de-
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viation of the KNN AUC estimators and its usefulness in
the construction of confidence intervals. Evidently, also the
conjecture about asymptotic normality of AUC seems to
be supported. Overall, the 3NN AUC estimator seems to
achieve better results than the INN AUC estimator when
the objective of inference is the construction of confidence
intervals. Clearly, in practical situations, as suggested also
by the simulation results, we expect that the sample size
needed to achieve sufficiently accurate confidence intervals



Table 3. Study 2. Monte Carlo means of bootstrap standard deviations (bootstrap s.d.) and Monte Carlo standard deviations
(MC s.d.) for the INN and 3NN AUC estimators based on the Euclidean distance measure, for 8 = 0.1, different values of «
and different sample sizes. In the right side, empirical coverages of the confidence intervals for the AUC obtained through the
normal approximation approach, with the standard deviation of AUC estimated using the bootstrap method. Nominal
coverages: 0.99, 0.95, 0.90. Figures in bold denote the empirical coverages raised by the normal approximation method after
logit transormation

«a sample size bootstrap s.d. MC s.d. empirical coverages
0.1 100 1NN 0.104 0.099 0.965 0.921 0.869
0.988 0.944 0.889
3NN 0.094 0.096 0.974 0.933 0.889
0.989 0.951 0.909
200 INN 0.073 0.069 0.974 0.918 0.863
3NN 0.066 0.067 0.982 0.938 0.894
0.25 150 INN 0.076 0.071 0.968 0.915 0.855
0.986 0.935 0.879
3NN 0.070 0.069 0.975 0.932 0.881
0.988 0.945 0.893
300 1NN 0.052 0.049 0.977 0.927 0.873
3NN 0.048 0.049 0.985 0.942 0.889
0.5 200 INN 0.047 0.044 0.963 0.916 0.868
0.984 0.935 0.885
3NN 0.044 0.044 0.975 0.938 0.889
0.988 0.946 0.899
400 INN 0.033 0.031 0.975 0.921 0.871
3NN 0.031 0.031 0.981 0.942 0.896
1 250 INN 0.021 0.020 0.948 0.899 0.844
0.983 0.935 0.879
3NN 0.020 0.020 0.961 0.914 0.877
0.984 0.943 0.892
500 INN 0.015 0.014 0.965 0.914 0.861
3NN 0.014 0.014 0.973 0.933 0.886
1.5 300 1NN 0.011 0.010 0.947 0.897 0.848
0.982 0.935 0.875
3NN 0.011 0.010 0.957 0.917 0.875
0.985 0.944 0.889
600 INN 0.008 0.008 0.965 0.920 0.868
3NN 0.007 0.007 0.975 0.938 0.892

depends on the true AUC value and on the rate of verified
units (healthy as well as diseased) in the sample. High val-
ues of AUC and small verification rates will likely require a
high number of sample units. Generally speaking, the logit
transformation seems to greatly improve the coverage accu-
racy.

Study 3. We consider a simulation setting similar to that
adopted in studies 1 and 2, with Z; ~ N(0,0.5), Zy ~

N(0,05), D= I(Zl + Zy > I/)7 T = a(Z1 + ZQ) + €1, and
€1 ~ N(0,0.25). We choose v to make the disease preva-

lence equal to 0.3 and set 7(7T,C) = %7 where
do = 0.05, 01 = 0.9, 62 = 0.7, and C is a binary variable ob-
tained as C' = I(Z1 4+ Z3 + €2 > 0), with e3 ~ N(0,9). As for
«, we maintain the values 0.1, 0.25, 0.5, 1 and 1.5, that give
rise to the same five true AUC values 0.595, 0.714, 0.846,

0.943, 0.973. The number of replications in each simulation
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Table 4. Study 3. Monte Carlo means (MC mean), Monte Carlo standard deviations (MC s.d.) and Monte Carlo means of
bootstrap standard deviations (bootstrap s.d.) for the INN and 3NN AUC estimators (2) based on the Euclidean distance
measure, for different values of o and different sample sizes. In the right side, empirical coverages of the confidence intervals

for the AUC obtained through the normal approximation approach, with the standard deviation of /m estimated using the
bootstrap method. Nominal coverages: 0.99, 0.95, 0.90

« sample size MC mean MC s.d. bootstrap s.d. empirical coverages
0.1 200 1NN 0.592 0.072 0.068 0.971 0.923 0.864
3NN 0.591 0.065 0.066 0.976 0.937 0.893
400 1NN 0.590 0.049 0.047 0.981 0.933 0.880
3NN 0.590 0.045 0.046 0.986 0.947 0.905
0.25 200 1NN 0.708 0.064 0.060 0.974 0.922 0.867
3NN 0.706 0.059 0.059 0.981 0.937 0.890
400 1NN 0.707 0.044 0.042 0.983 0.935 0.880
3NN 0.706 0.040 0.041 0.987 0.950 0.902
0.5 200 1NN 0.839 0.046 0.044 0.972 0.931 0.877
3NN 0.836 0.043 0.043 0.980 0.941 0.897
400 1NN 0.839 0.032 0.030 0.980 0.936 0.879
3NN 0.838 0.029 0.030 0.983 0.946 0.896
1 200 1NN 0.940 0.024 0.023 0.956 0.914 0.867
3NN 0.938 0.023 0.023 0.969 0.931 0.892
400 1NN 0.940 0.016 0.016 0.976 0.934 0.883
3NN 0.939 0.015 0.015 0.981 0.948 0.901
1.5 200 1NN 0.971 0.014 0.014 0.950 0.914 0.874
3NN 0.970 0.013 0.014 0.961 0.930 0.895
400 1NN 0.970 0.010 0.009 0.970 0.928 0.880
3NN 0.970 0.009 0.009 0.975 0.942 0.898

experiment is 5000. We fix two sample sizes (n = 200, 400).
For each Monte Carlo sample, we compute our 1NN and
3NN AUC estimates (2) based on the Euclidean distance
measure with C as stratifying factor. Hence, we estimate
the standard deviations of the corresponding estimators by
200 bootstrap samples.

Table 4 shows Monte Carlo means, Monte Carlo standard
deviations and Monte Carlo means of bootstrap standard
deviations for the INN and 3NN AUC estimators based
on the Euclidean distance measure, for the chosen values
of a and sample sizes. The table also reports the empiri-
cal coverages of the confidence intervals for the AUC ob-
tained through the normal/a@roximation approach, with
the standard deviation of AUC® estimated using the boot-
strap method. Confidence intervals have nominal coverages
0.99, 0.95, 0.90.

Results show a good behaviour of the estimators and of
the boostrap procedure. Again, the 3NN AUC estimator
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achieves better results than the INN AUC estimator when
the objective of inference is the construction of confidence
intervals, in particular for low sample sizes. On the other
hand, as in the previous study, we expect that the cover-
age accuracy may be generally improved on using the logit
transformation.

Study 4. Monte Carlo experiments are used to compare,
with respect to bias and standard deviation, the new method
with the existing approaches MSI, IPW and SPE. We do not
consider the FI method because of its similarities with the
MSI method. Again, we focus our attention on 1NN and
3NN estimators based on the FEuclidean distance measure,
and we consider a vector X = (;X,2X,3X)" of three ob-
served covariates. The number of replicates in each simula-
tion experiment is 5000.

The MST method is based on a parametric model for p(y),
the IPW method is based on a parametric model for = (y),
and the SPE method is based on both models. Clearly, a



Table 5. Study 4 (i). Monte Carlo means and standard deviations of the KNN AUC estimators and competitors, for different
values of a. X has dimension 3. Models for p(y) and 7(y), chosen to obtain MSI, IPW and SPE estimators, are both correctly

specified
a=0.1 a=0.25 a=0.5 a=1.0 a=1.5
MC mean MCs.d. MCmean MCs.d. MCmean MCsd. MCmean MCsd. MCmean MC s.d.

sample size = 200
Full 0.627 0.043 0.774 0.035 0.897 0.022 0.967 0.011 0.985 0.006
Naive 0.569 0.058 0.708 0.051 0.843 0.038 0.937 0.023 0.965 0.015
INN 0.624 0.047 0.769 0.039 0.891 0.027 0.963 0.014 0.982 0.009
3NN 0.622 0.044 0.766 0.037 0.887 0.025 0.960 0.014 0.980 0.009
MSI 0.626 0.047 0.774 0.038 0.897 0.025 0.967 0.012 0.985 0.007
IPW 0.622 0.067 0.770 0.055 0.893 0.034 0.964 0.016 0.982 0.010
SPE 0.627 0.048 0.774 0.039 0.897 0.026 0.967 0.012 0.984 0.007

sample size = 500
Full 0.627 0.026 0.774 0.022 0.897 0.014 0.967 0.007 0.984 0.004
Naive 0.571 0.036 0.708 0.032 0.843 0.024 0.937 0.014 0.965 0.010
INN 0.625 0.030 0.770 0.024 0.893 0.017 0.964 0.009 0.983 0.005
3NN 0.624 0.028 0.769 0.023 0.891 0.016 0.963 0.008 0.982 0.005
MSI 0.627 0.029 0.774 0.024 0.897 0.016 0.967 0.007 0.984 0.004
IPW 0.626 0.041 0.772 0.034 0.895 0.022 0.966 0.010 0.983 0.006
SPE 0.627 0.030 0.774 0.024 0.897 0.016 0.967 0.008 0.984 0.004

wrong specification of such models may affect the estima-
tion. Hence, in this study we consider the following scenar-
ios: (i) the models for p(y) and 7(y), chosen to obtain MSI,
IPW and SPE estimators, are both correctly specified; (ii)
the models for p(y) and m(y), chosen to obtain MSI, IPW
and SPE estimators, are both misspecified. Scenario (i) al-
lows to evaluate the behaviour of the KNN estimators in
settings where the MSI, IPW and SPE estimators are ex-
pected to well behave. On the other side, scenario (ii) allows
to look for weaknesses of existing methods and to highlight
the potential advantages of the new proposal.

Moreover, we consider also another scenario: (iii) in the
estimation process, a covariate which is not involved neither
in the disease nor in the verification processes is introduced
and a relevant covariate is omitted. Clearly, this scenario
allows us to evaluate possible effects of a particular kind of
misspecification on all estimators (including KNN estima-
tors).

(i) Models for p(y) and 7(y) both correctly specified.

The simulation setting is a generalization of that of Study
1. Starting from four independent random variables, Z; ~
N(0,0.5) to Z4 ~ N(0,0.5), the disease indicator D is spec-
ified as D = I[Zy + Zo + Z3 + Z4 > v]. The threshold v
determines a disease prevalence of about 0.31. The diagnos-
tic test result T and the auxiliary covariates are generated
as follows:

T = O‘Z?:l Z;i + €1,

1X =0.1 Z?:l Zz + €2,

2X = O5Z]_ + 2Z2 + 15Z3 + 3Z4 + €3,
3X = 2Z1 — 05Z2 + Z3 + O5Z4 + €4,

where €;, i = 1,...4, are independent N(0,0.25) random
variables, independent also from Z;, i = 1,...,4. In accor-
dance with the MAR assumption, the verification probabil-
ity 7 is set to be

eSo+01T+65 X

(T, X) = 1t dotorTHo] X

with 6y = 0.05, §; = 0.9, & = (0.7,0.4,0.2) ". This choice
corresponds to a verification rate of about 0.55. Finally, as
for a, we again choose the values 0.1, 0.25, 0.5, 1 and 1.5,
that give rise to values of the true AUC ranging between
0.62 and 0.85, approximately. We fix two sample sizes: a
moderate one, i.e., n = 200, and a relatively high one, i.e.,
n = 500. For the IPW, MSI and SPE estimators, conditional
disease probabilities and conditional verification probabili-
ties are estimated using correctly specified models. More
precisely, we use a generalized linear model for D given T'
and X with probit link (see [2]). The conditional verification
probabilities are estimated from a logistic regression model
with V as the response and T and X as predictors.

Table 5 shows Monte Carlo means and standard devia-
tions of the AUC estimators. Results concern the estima-
tors IPW, MSI, SPE and the new proposals INN and 3NN
based on the Euclidean distance. Rows denoted by “Naive”
indicate the results for the Wilcoxon statistic (the nonpara-
metric AUC estimator) computed by using the verified cases
only. Again, the Full estimator is used as benchmark.

From the simulation results it is clear that all (partially)
parametric methods behave well if models for p(y) and 7 (y)
are both correctly specified, with the IPW method showing
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Table 6. Study 4 (ii). Monte Carlo means and standard deviations of the KNN AUC estimators and competitors, for different
paires of (o, 8). X has dimension 3. The models for p(y) and m(y), chosen to obtain MSI, IPW and SPE estimators, are both
misspecified. Sample size = 500. The SPE estimator produces estimates outside of the [0, 1] interval with rate equal to 6.5%,
22%, 65% and 25% when the pair (o, 8) is (0.15,3), (0.5,2), (1.5,1) and (5,0.6), respectively. The row denoted by “SPE*”
gives the results for the SPE estimator when the estimates outside of the [0, 1] interval are truncated to be either 0 or 1

MC mean MC s.d. MC mean MC s.d. MC mean MC s.d. MC mean MC s.d.
a=015 =3 =05 B=2 a=15B=1 a=5 6=06
Full 0.608 0.025 0.713 0.023 0.848 0.017 0.929 0.011
Naive 0.552 0.064 0.628 0.063 0.766 0.051 0.866 0.036
INN 0.624 0.052 0.713 0.058 0.831 0.051 0.920 0.030
3NN 0.625 0.041 0.713 0.050 0.822 0.048 0.911 0.030
MSI 0.516 0.054 0.577 0.054 0.703 0.053 0.864 0.033
IPW 0.655 0.114 0.774 0.097 0.906 0.062 0.955 0.029
SPE 0.658 1.849 0.922 2.947 1.186 5.546 0.972 0.065
SPE* 0.681 0.155 0.821 0.154 0.944 0.158 0.960 0.041

slightly poorer performances in some circumstances. How-
ever, in terms of bias and standard deviation, the new pro-
posals compare very well with existing estimators, and the
estimators 1NN and 3NN seem to achieve similar perfor-
mances.

(ii) Models for p(y) and 7(y) both misspecified.

Starting from four independent random variables Z; to Zy,
such that Z;/v/0.5 ~ EXP(1), the disease indicator D is
specified as D = I[Z1Z5 + Z4 > v]. The threshold v de-
termines a disease prevalence of about 0.38. The diagnostic
test result 7" and the auxiliary covariates are generated as
follows:

o T = O[(lez + BZB + Z4) + €1,

2
e 1 X =05 (Z;’l:l Zl) + €9,
o o X =0.527 4273 + 1.5Z3 + 3Z3 + €3,
o 3 X =277 - 0525+ Z3 +0.5Z3F + eu,

where €;/1/0.25, i = 1,...4, are independent EX P(1) ran-
dom variables, independent also from Z;, i = 1,...,4. We
consider four values for the pair (o, 8), i.e., (0.15,3), (0.5,2),
(1.5,1) and (5,0.6) giving rise to four different true AUC
values. Finally, the verification probability 7 is set to be

(T, X) =0.0540.1I[T > 2, 2X > 2] + 0.85I[; X5X > 2.

This choice corresponds to a verification rate of about 0.2.

The aim in this scenario is to compare the estimators
when the complete data set provides a great amount of in-
formation, in order to highlight possible weaknesses of com-
petitors of our KNN estimators. Therefore, the required size
for generating samples should be high enough to guaran-
tee both reliable estimates from the complete data set and
a sufficiently high number of verified healthy and diseased
subjects. This has led us to the choice of n = 500.

For the (partially) parametric estimators IPW, MSI,
SPE, to estimate the conditional disease probabilities, we
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use a generalized linear model for D given T and X with
logit link; this model is clearly misspecified. The conditional
verification probabilities are estimated from a logistic re-
gression model with V' as the response and T as predictor.
Clearly, also this model is misspecified.

Results are given in Table 6. They evidently show a very
poor behaviour of the estimators MSI, IPW and SPE. In
particular, the performance of the SPE estimator is surpris-
ingly negative, providing a high number of estimates outside
of the [0,1] interval. Our INN and 3NN estimators, instead,
show a good behaviour. Moreover, it is worth noting that,
in this setting, the function m(y) used to mimic the verifica-
tion process is not smooth. Hence, the KNN AUC estimators
seem to show also some degree of robustness against viola-
tion of smoothness assumptions.

(iii) Substituting a relevant variable with an independent
one.

The simulation setting is the same as that of Study 4(i).
There is only one difference: at each simulation run, in ad-
dition to the random variables Z1, Z5, Z3 and Z4, we gener-
ate also another variable Z5 ~ N(0,0.5), independent of all
others. Hence, the AUC estimates are obtained substituting
in turn Z5 to 1X, 2 X and 3X in the estimation process.
Sample size is n = 200.

Simulation results are given in Table 7. Based on these
results, the effect of such a misspecification seems to be gen-
erally weak, and slightly more significant for the KNN esti-
mators. As expected, however, for all estimators the worst
results occur when the missing covariate in the estimation
process is 9 X, i.e. the variable more strongly associated with
D and V, and the correlation between T' and 2 X is low (ap-
proximately 0.24, when o = 0.1, and 0.51, when a = 0.25).

4. AN ILLUSTRATION

To illustrate the application of the proposed method, we
used a data set within the Uniform Data Set (UDS) of



Table 7. Study 4 (iii). Monte Carlo means and standard deviations of the KNN AUC estimators and competitors, for different
values of a. X has dimension 3. Sample size = 200. Estimators are computed using Zs in place of one covariate (1.X, 2 X or
3X ) belonging to the data generator model

a=0.1 a=0.25 a=0.5 a=1.0 a=1.5
MC mean  MC s.d. MC mean  MC s.d. MC mean  MC s.d. MC mean MC s.d. MC mean  MC s.d.

Full 0.627 0.043 0.774 0.035 0.897 0.022 0.967 0.011 0.985 0.006
Z5 instead of 1 X

Naive 0.571 0.057 0.708 0.052 0.844 0.039 0.937 0.023 0.965 0.015

INN 0.624 0.047 0.768 0.039 0.890 0.027 0.962 0.014 0.981 0.009

3NN 0.623 0.044 0.765 0.037 0.887 0.025 0.959 0.015 0.980 0.009

MSI 0.627 0.047 0.774 0.039 0.898 0.025 0.967 0.012 0.985 0.007

IPW 0.625 0.065 0.769 0.053 0.894 0.034 0.965 0.016 0.982 0.009

SPE 0.628 0.047 0.774 0.040 0.897 0.026 0.967 0.012 0.985 0.007
Z5 instead of 2 X

Naive 0.571 0.058 0.708 0.052 0.843 0.038 0.936 0.022 0.965 0.015

INN 0.584 0.058 0.717 0.056 0.852 0.045 0.953 0.021 0.979 0.012

3NN 0.581 0.050 0.708 0.049 0.839 0.041 0.945 0.022 0.976 0.012

MSI 0.595 0.055 0.744 0.049 0.883 0.031 0.964 0.013 0.984 0.008

IPW 0.591 0.068 0.740 0.063 0.878 0.043 0.962 0.018 0.981 0.010

SPE 0.593 0.062 0.743 0.057 0.882 0.037 0.964 0.014 0.984 0.008
Z5 instead of 3.X

Naive 0.570 0.056 0.708 0.051 0.843 0.039 0.937 0.022 0.966 0.015

INN 0.617 0.049 0.760 0.044 0.883 0.033 0.961 0.017 0.982 0.009

3NN 0.615 0.045 0.756 0.041 0.878 0.031 0.957 0.018 0.980 0.011

MSI 0.621 0.048 0.769 0.041 0.895 0.027 0.967 0.012 0.985 0.007

IPW 0.617 0.068 0.764 0.056 0.891 0.035 0.964 0.017 0.982 0.010

SPE 0.621 0.051 0.769 0.043 0.894 0.029 0.966 0.013 0.984 0.007

National Alzheimer’s Coordinating Center (NACC), which
came from 32 Alzheimer’s Disease Centers throughout
North America since 2006. The patients were referred or
self-referred for evaluation of possible dementia, or recruited
specifically to participate in clinical research. Most patients
underwent clinical evaluation and neuropsychological tests
for cognitive impairment at enrollment. During the follow-
up period, the patients received periodical re-evaluation
and cognitive tests. Among these cognitive tests, the mini-
mental state examination (MMSE) is a brief 30-point ques-
tionnaire test that is widely used to screen for cognitive
impairment. In general, scores of 27 or above (out of 30) are
considered normal. Although the MMSE score is measured
on a discrete scale, in medical studies is quite commonly
treated as a continuous measurement (see, for example, [8]).
In the progression of dementia, the amnestic mild cognitive
impairment (aMCI) is an important transitional stage. Pa-
tients with aMCI could still revert to normal, but dementia
is generally believed to be irreversible.

[7] previously used this data set to investigate the one-
year progression from aMCI to dementia, and find out how
well the baseline MMSE score classifies the patients who
progressed to dementia and those who did not in one year.
The authors included in the study patients who aged over 65
and were diagnosed to be aMCI at their first visit. If a pa-

tient made a visit about one year (within the 6-18 months
window) after the baseline, his/her cognitive status is ob-
served, with D = 1 indicating progression to dementia and
0 otherwise. The disease status was missing if the patient
only made the baseline visit, or the follow-up visits were all
outside the 6-18 months window. The covariates used by
[7] in the ROC analysis included age, gender, race, mari-
tal status, living situation, stroke, and history of cardiovas-
cular diseases. Other disease history variables, and clinical
dementia rating (CDR) sum of boxes were considered as
the predictor for the missingness mechanism and the disease
model. Subjects with missing covariates were excluded. Rel-
evant conclusions emerged from the study were as follows.
(a) The progression of dementia is complicated and not fully
understood, and in this study, the missingness could be due
to various reasons; hence, the SPE method is recommended
in this example, which protects the model misspecification
under the MAR assumption. (b) The SPE AUC estimator
showed that MMSE has some classification accuracy only
for patients with no stroke and with more than 17 years of
education.

In light of statement (a), we decided that it was important
to check the accuracy of the MMSE score in the subgroup of
patients specified in (b) by using a fully nonparametric ap-
proach. To this end, we used the KNN method to estimate
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the AUC of the MMSE score, for patients with more than
17 years of education and without stroke. The sample for
the analysis consisted of 975 subjects, for 595 of which the
cognitive status was observed at the second visit. Within the
verified sample, the progression to dementia was observed
148 times (approximately 25%). To obtain KNN AUC esti-
mates, we included in the disease model the MMSE score
(T'), the disease history information (CDR sum of boxes),
the age of onset of cognitive decline and an artificial real val-
ued random component (generated from a standard normal
variate) to break distance ties. Due to the MMSE measur-
ing scale, INN and 3NN AUC estimators were computed
by using formula (3) (after changing the sign of T'), which
accommodates for the presence of score ties. By using the
Euclidean distance, we obtained the estimates 0.708 (1NN)
and 0.705 (3NN), with estimated standard deviations equal
to 0.025 and 0.023, respectively (95% CI: 0.658, 0.758 and
0.659, 0.752). Using the Mahalanobis distance, instead, we
obtained the estimates 0.697 (INN) and 0.698 (3NN), with
estimated standard deviations equal to 0.026 (95% CT: 0.645,
0.748 and 0.647, 0.750). Therefore, our results seem to con-
firm that the MMSE score is not a satisfactory marker for
predicting progression to dementia, and suggest caution in
its use.

A final remark concerns the computational burden. In
this example, having a sample size of about 1000, a dimen-
sion of Y equal to 4 and a missingness rate of about 39%,
with a fast matrix programming language like GAUSS, the
estimates are computed in few seconds, and approximately
40 seconds are required to get confidence intervals (with 200
bootstrap replications).

5. DISCUSSION

In this paper we have developed an approach to verifica-
tion bias-corrected inference on the AUC of a continuous-
scale diagnostic test, that does not rely on parametric as-
sumptions about the disease and/or selection models. The
approach foresees the presence of continuous covariates and
it is naturally extended to stratified samples in which strata
are defined according to the presence of categorical vari-
ables. The proposed approach works under MAR assump-
tion.

The new AUC estimators are fully nonparametric. They
represent an alternative to the classic (partially) parametric
estimators, and their use can reduce the effects of possible
misspecifications to the inference, as shown by the results of
our simulation Study 4(ii). Of course, if one uses the new es-
timators in situations where the disease and the verification
models can be correctly specified, one expects a loss of effi-
ciency compared to the use of parametric alternatives. Such
loss may be small, as show, for example, in our Study 4(i),
but it may certainly be significant in certain circumstances,
especially when the sample size is small.

The new method is based on the K-nearest-neighbor im-
putation, which requires the choice of a value for K as well as
a distance measure. In our simulation Study 1, performance
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of the KNN estimators are quite comparable for different
choices of the distance measure. In practical situations, how-
ever, the selection of a suitable distance is generally dictated
by features of the data, possible subjective evaluations and
by computational concerns, so that a general indication on
an adequate choice is difficult to express. As for the choice of
the size of the neighbor, our simulation results suggest that
a value for K around 3 could to be adequate as long as the
dimension of Y is not large. A similar conclusion also arises
in [1], where K-nearest-neighbor imputation is applied to
estimate a ROC curve and in [9], where K-nearest-neighbor
imputation is applied to estimate a mean functional. How-
ever, if the dimension of Y increases, it could be conve-
nient to consider higher values for K. The selected value
must be compatible with (i.e. not too big with respect to)
the number of verified units present in the sample. Gener-
ally speaking, a possible strategy to choose a suitable value
for K in practice could be cross-validation, as illustrated
in [1].

Standard deviation of our KNN estimators can be esti-
mated by a simple bootstrap procedure. Our simulation re-
sults show effectiveness of this procedure. Nevertheless, due
to its fully nonparametric nature, the proposed approach
requires sufficient information from the data to provide ac-
curate inference on the AUC. In particular, as indicated by
our simulation results, when the objective is to build con-
fidence intervals, we expect that the sample size needed to
achieve sufficient accuracy may depend on the true AUC
value and on the rate of verified units (healthy as well as
diseased) in the sample. High values of AUC and small ver-
ification rates will likely require a high sample size. From
a practical point of view, however, to improve the accuracy
of the confidence intervals obtained using the approach pro-
posed in the paper, we strongly recommend the use of the
logit transformation.

We are aware that, when auxiliary data X come in the
form of a high-dimensional feature vector, appeal of our
estimators diminishes, at least from a technical point of
view. Firstly, the nearest neighbors search is computation-
ally demanding. More generally, the dimensionality curse
phenomenon states that in high dimensional spaces dis-
tances between nearest and farthest observations from a
given subject become almost equal. This is often cited as
“distance functions losing their usefulness in high dimen-
sionality”. In the data mining literature, various solutions
are proposed both to cut the computational costs of the
nearest neighbors search and to provide measures of simi-
larities between data points able to better grasp divergence
between the maximum and minimum distances (see, for ex-
ample, [11] as a general reference). However, from a classical
statistical perspective, relevance of such drawbacks is soft-
ened by the consideration that, in practice, analysts model-
ing complex data rarely use all available information. There-
fore, a sound solution to problems caused by high dimen-
sionality relies on a screening and selection of the auxiliary
variables, see [3].



We conclude with a last remark. Often, the auxiliary co-
variate vector X is directly associated with the marker T'
under study. In this case, one can be interested in studying
the covariate-specific ROC curves and the related covariate-
specific AUCs (see, for example, [7]). We believe that the
KNN strategy could be usefully employed in this context
and plan future research on such theme.

ACKNOWLEDGEMENTS

The authors wish to thank National Alzheimer’s Coordi-
nating Center (NACC) for providing the data for analysis
and the Referees for their helpful comments on an earlier
version of the paper.

Received 15 September 2015

REFERENCES

(1] AbpmvAarl, G. and CHIOGNA, M. (2015). Nearest-neighbor estima-
tion for ROC analysis under verification bias. The International
Journal of Biostatistics, 11, 109-124. MR3341515

(2] ALonzo, T. A. and PEPE, M. S. (2005). Assessing accuracy of a
continuous screening test in the presence of verification bias. Jour-
nal of the Royal Statistical Society. Series C (Applied Statistics),
54(1), 173-190. MR2134605

[3] Bupczies, J., KoszryLA, D., VON TORNE, C., STENZINGER, A.,
DARB-ESFAHANI, S., DIETEL, M., and DENKERT, C. (2014). Can-
cerclass: An R package for development and validation of diagnos-
tic tests from high-dimensional molecular data. Journal of Statis-
tical Software, 59.

[4] DEVROYE, L., GYORFI, L., and Lucosi, G. (1996). A Probabilistic
Theory of Pattern Recognition. Springer. MR 1383093

[5] HE, H., LynEss, J. M., and McDERMOTT, M. P. (2009). Direct
estimation of the area under the receiver operating characteristic
curve in the presence of verification bias. Statistics in Medicine,
28, 361-376. MR2655685

[6] Liu, D. and Zuou, X. H. (2010). A model for adjusting for non-
ignorable verification bias in estimation of the ROC curve and its
area with likelihood-based approach. Biometrics, 66, 1119-1128.
MR2758499

[7] Liu, D. and ZHou, X.-H. (2013). Covariate adjustment in esti-
mating the area under ROC curve with partially missing gold
standard. Biometrics, 69, 91-100. MR3058055

[8] NewsowM, J., JoNEs, R. N., and HOFER, S. M. (Editor) (2012).
Longitudinal Data Analysis: A Practical Guide for Researchers in
Aging, Health, and Social Sciences. Routledge, Taylor & Francis
Group.

[9] Ning, J. and CHENG, P. E. (2012). A comparison study of non-

parametric imputation methods. Statistics and Computing, 22,

273-285. MR2865070

ROTNITZKY, A., FARAGGI, D., and SCHISTERMAN, E. (2006). Dou-

bly robust estimation of the area under the receiver-operating

characteristic curve in the presence of verification bias. Jour-

nal of the American Statistical Association, 101, 1276-1288.

MR2328313

SHAKHNAROVICH, G., DARRELL, T., and INDYK, P. (2006).

Nearest-Neighbor Methods in Learning and Vision: Theory and

Practice. The MIT Press.

[10]

(11]

Gianfranco Adimari

Department of Statistical Sciences

University of Padova

Via C. Battisti, 241-243

35121 Padova

Italy

E-mail address: gianfranco.adimari@unipd.it

Monica Chiogna

Department of Statistical Sciences
University of Padova

Via C. Battisti, 241-243

35121 Padova

Italy

E-mail address: monica.chiogna@unipd.it

Verification bias-corrected inference for AUC 641


http://www.ams.org/mathscinet-getitem?mr=3341515
http://www.ams.org/mathscinet-getitem?mr=2134605
http://www.ams.org/mathscinet-getitem?mr=1383093
http://www.ams.org/mathscinet-getitem?mr=2655685
http://www.ams.org/mathscinet-getitem?mr=2758499
http://www.ams.org/mathscinet-getitem?mr=3058055
http://www.ams.org/mathscinet-getitem?mr=2865070
http://www.ams.org/mathscinet-getitem?mr=2328313
mailto:gianfranco.adimari@unipd.it
mailto:monica.chiogna@unipd.it

	Introduction
	The proposed method
	Nonparametric AUC estimator
	Confidence intervals

	Simulation studies
	An illustration
	Discussion
	Acknowledgements
	References
	Authors' addresses

