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The effect of the spatial domain in FANOVA

models with ARH(1) error term*

JAVIER ALVAREZ-LIEBANA AND M. DOLORES RUIZ-MEDINAT

Functional Analysis of Variance (FANOVA) from Hilbert-
valued correlated data with spatial rectangular or circu-
lar supports is analyzed, when Dirichlet conditions are as-
sumed on the boundary. Specifically, a Hilbert-valued fixed
effect model with error term defined from an Autoregressive
Hilbertian process of order one (ARH(1) process) is consid-
ered, extending the formulation given in [51]. A new statis-
tical test is also derived to contrast the significance of the
functional fixed effect parameters. The Dirichlet conditions
established at the boundary affect the dependence range of
the correlated error term. While the rate of convergence to
zero of the eigenvalues of the covariance kernels, charac-
terizing the Gaussian functional error components, directly
affects the stability of the generalized least-squares parame-
ter estimation problem. A simulation study and a real-data
application related to fMRI analysis are undertaken to il-
lustrate the performance of the parameter estimator and
statistical test derived.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 60G12,
60G15; secondary 62H25.
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1. INTRODUCTION

In the last few decades, functional data analysis tech-
niques have grown significantly given the new technologies
available, in particular, in the field of medicine (see, for in-
stance, [53]). High-dimensional data which are functional in
nature are generated, for example, from measurements in
time, over spatial grids or images with many pixels (e.g.,
data on electrical activity of the heart, i.e., electrocardiog-
raphy, data on electrical activity along the scalp, i.e., elec-
troencephalography, data reconstructed from medical imag-
ing, expression profiles in genetics and genomics, monitoring
of continuity activity through accelerometers, etc.). Effective
experimental design and modern functional statistics have
led to recent advances in medical imaging, improving, in
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particular, the study of human brain function (see, for ex-
ample, [22]). Magnetic Resonance Imaging (MRI) data have
been analyzed with different aims. For example, we refer to
the studies related with cortical thickness (see [42]), where
magnetic resonance imaging data are analyzed to detect the
spatial locations of the surface of the brain, where the cor-
tical thickness Y;(s) on subject 4, i = 1,...,n, is correlated
with an independent variable, such as age or gender (see
also [52]). Cortical thickness is usually previously smoothed
along the surface of the brain (see [20]). Thus, it can be con-
sidered as a functional random variable with spatial circular
support. In general, the following linear model is considered:
For subject i, 1 =1, ..., n,

(1)

where x; is a vector of known p regressors, and, for each
s € S, with S denoting the surface of the brain, parameter
B(s) is an unknown p-vector of regression coefficients. The
errors Z1,. .., 2y, are independent zero-mean Gaussian ran-
dom fields. In [56], this model is also considered to detect
how the regressors are related to the data at spatial loca-
tion s, by testing contrasts in 3(s), s € S. The approach
presented in this paper allows the formulation of model (1)
in a functional (Hilbert-valued) framework, incorporating
possible correlations between subjects, due to genetic char-
acteristics, breed, geographic location, etc.

The statistical analysis of functional magnetic resonance
image (fMRI) data also has generated an important activity
in research about brain activity, where the functional sta-
tistical approach implemented in this paper could lead to
important spatiotemporal analysis improvements. It is well-
known that fMRI techniques have been developed to address
the unobserved effect of scanner noise in studies of the au-
ditory cortex. A penalized likelihood approach to magnetic
resonance image reconstruction is presented in [9]. A new
approach which incorporates the spatial information from
neighbouring voxels, as well as temporal correlation within
each voxel, which makes use of regional kriging is derived in
[19]. Conditional Autoregressive and Markov Random Field
modelling involves some restrictions in the characterization
of spatially contiguous effect regions, and, in general, in the
representation of the spatial dependence between spatially
connected voxels (see, for example, [5]; [6]). Multiscale adap-
tive regression models assume spatial independence to con-
struct a weighted likelihood parameter estimate. At each

Yi(s) = z;8(s) + Zi(s)oi(s), s€S,
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scale, the weights determine the amount of information that
observations in a neighborhood voxel provides on the pa-
rameter vector to be estimated at a given voxel, under the
assumption of independence between the conditional distri-
butions of the responses at the neighborhood voxels, for each
scale. The weights are sequentially computed through differ-
ent scales, for adaptively update of the parameter estimates
and test statistics (see, for example, [43]).

In [64], a multivariate varying coefficient model is con-
sidered for neuroimaging data, under a mixed effect ap-
proach, to reflect dependence within-curve and between-
curve, in the case where coefficients are one-parameter func-
tions, although extension to higher dimension is straight-
forward. The approach presented in this paper adopts a
functional framework to analyze multivariate varying co-
efficient models in higher dimensions (two-dimensional de-
sign points), under the framework of multivariate fixed ef-
fect models in Hilbert spaces. Namely, the response is a
multivariate functional random variable reflecting depen-
dence within-surface (between voxels), and between-surface
(between different times), with Hilbert-valued multivariate
Gaussian distribution. Hence, the varying coefficients are es-
timated from the application of an extended version of gen-
eralized least-squares estimation methodology, in the multi-
variate Hilbert-valued context (see [51]), while, in [64], local
linear regression is applied to estimate the coefficient func-
tions. The dependence structure of the functional response
is estimated here from the moment-based parameter estima-
tion of the ARH(1) error term (see [7]). In [64], local linear
regression technique is employed to estimate the random
effects, reflecting dependence structure in the varying coef-
ficient mixed effect model. An extended formulation of the
varying coefficient model considered in [64] is given in [63],
combining an univariate measurement mixed effect model, a
jumping surface model, and a functional component analy-
sis model. In the approach presented in this paper, we have
combined a nonparametric surface model with a multivari-
ate functional principal component approach in the ARH(1)
framework. Thus, a continuous spatial variation of the {MRI
response is assumed, incorporating temporal and spatial cor-
relations (across voxels), with an important dimension re-
duction in the estimation of the varying coefficient functions.

The above-referred advances in medicine are supported
by the extensive literature on linear models in function
spaces parallely developed in the last few decades. We par-
ticularly refer to the functional linear regression context
(see, for example, [10]; [11]; [12]; [13]; [16]; [18]; [26]; [40],
among others). (See also [7], [8], [49] and [50], in the func-
tional time series context, and [27] and [28] in the functional
nonparametric regression framework). Functional Analy-
sis of Variance (FANOVA) techniques for high-dimensional
data with a functional background have played a crucial role,
within the functional linear model literature as well. Related
work has been steadily growing (see, for example, [3]; [23];
[34]; [36]; [38]; [39]; [45]; [48]; [54]; [55] and [58]). The paper
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[51] extends the results in [65] from the L2([0, 1])-valued con-
text to the separable Hilbert-valued space framework, and
from the case of independent homocedastic error compo-
nents to the correlated heteroscedastic case. In the context
of hypothesis testing from functional data, tests of signifi-
cance based on wavelet thresholding are formulated in [25],
exploiting the sparsity of the signal representation in the
wavelet domain, for dimension reduction. A maximum like-
lihood ratio based test is suggested for functional variance
components in mixed-effect FANOVA models in [35]. From
classical ANOVA tests, an asymptotic approach is derived
in [17], for studying the equality of the functional means
from k independent samples of functional data. The test-
ing problem for mixed-effect functional analysis of variance
models is addressed in [1] and [2], developing asymptoti-
cally optimal (minimax) testing procedures for the signif-
icance of functional global trend, and the functional fixed
effects. The wavelet transform of the data is again used in
the implementation of this approach (see also [4]). Recently,
in the context of functional data defined by curves, con-
sidering the L2-norm, an up-to-date overview of hypothesis
testing methods for functional data analysis is provided in
[62], including functional ANOVA, functional linear mod-
els with functional responses, heteroscedastic ANOVA for
functional data, and hypothesis tests for the equality of co-
variance functions, among other related topics.

In this paper, the model formulated in [51] is extended
to the case where the error term is an ARH(1) process. Fur-
thermore, an alternative test to contrast the significance of
the functional fixed effect parameters is formulated, based
on a sharp form of Cramér-Wold Theorem derived in [15],
for Gaussian measures on a separable Hilbert space. The
simulation study undertaken illustrates the effect of the
boundary conditions and the geometry of the domain on
the spatial dependence range of the functional vector er-
ror term. Specifically, in that simulations, we consider the
case where the Gaussian error components satisfy a stochas-
tic partial differential equation, given in terms of a frac-
tional power of the Dirichlet negative Laplacian operator.
The auto-covariance and cross-covariance operators of the
functional error components are then defined in terms of
the eigenvectors of the Dirichlet negative Laplacian oper-
ator. The eigenvectors of the Dirichlet negative Laplacian
operator vanish continuously at the boundary, in the case
of the regular domains studied (the rectangle, disk and cir-
cular sector), with decay velocity determined by the bound-
ary conditions and the geometry of the domain. Thus, the
boundary conditions and the geometry of the domain di-
rectly affect the dependence range of the error components,
determined by the rate of convergence to zero of the Dirich-
let negative Laplacian eigenvectors at the boundary. The
influence of the truncation order is studied as well, since
the rate of convergence to zero of the eigenvalues of the
spatial covariance kernels, that define the matrix covari-
ance operator of the error term, could affect the stability of



the generalized least-squares estimation problem addressed
here. Furthermore, in the fMRI data problem considered,
the presented functional fixed effect model, with ARH(1)
error term, is fitted. In that case, the temporal dependence
range of the error term is controlled by the ARH(1) dy-
namics, while the spatial dependence range is controlled by
the boundary conditions. Thus, the performance of the func-
tional least-squares estimator and the functional significance
test introduced in this paper is illustrated in both cases, the
simulation study and the real-data example considered. A
comparative study with the classical approach presented in
[61] is also achieved for the fMRI data set analyzed (freely
available at http://www.math.mcgill.ca/keith/fmristat/).

The outline of this paper is as follows. The functional
fixed effect model with ARH(1) error term is formulated in
Section 2. The main results obtained on generalized least-
squares estimation of the Hilbert-valued vector of fixed ef-
fect parameters, and the functional analysis of variance are
also collected in this section. Linear hypothesis testing is
derived in Section 3. The results obtained from the simula-
tion study undertaken are displayed in Section 4. Functional
statistical analysis of fMRI data is given in Section 5. Con-
clusions and open research lines are provided in Section 6.
Finally, the appendix introduces the required preliminary
elements on eigenvectors and eigenvalues of the Dirichlet
negative Laplacian operator on the rectangle, disk and cir-
cular sector.

2. MULTIVARIATE HILBERT-VALUED
FIXED EFFECT MODEL WITH ARH(1)
ERROR TERM

This section provides the extended formulation of the
multivariate Hilbert-valued fixed effect model studied in
[51], to the case where the correlated functional compo-
nents of the error term satisfy an ARH(1) state equation. In
that formulation, compactly supported non-separable auto-
covariance and cross-covariance kernels are considered for
the functional error components, extending the separable
case studied in [51].

Denote by H a real separable Hilbert space with the inner
product (-, -);, and the associated norm || - || z. Let us first
introduce the multivariate Hilbert-valued fixed effect model
with ARH(1) error term

(2) Y()=XB()+e(),

where X is a real-valued n X p matrix, the fixed effect design
matrix, B(-) = [B1(+), ..., Bp(-)]T € HP represents the vector
of fixed effect parameters, Y () = [Yi(-),..., Y, (-)]T is the
H™-valued Gaussian response, with E[Y] = X3. The H"-
valued error term €(-) = [e1(),..., e, (+)]7 is assumed to be
an ARH(1) process on the basic probability space (2, A, P),
i.e., a stationary in time Hilbert-valued Gaussian process
satisfying (see [7])

3)

Em:p(gm—1)+y7rza m € Z,

where Fle,,] =0, m € Z, p denotes the autocorrelation op-
erator of the error process €, which belongs to the space of
bounded linear operators on H. Here, v = (v,,,, m € Z)
is assumed to be a Gaussian strong white noise, i.e., v is a
Hilbert-valued zero-mean stationary process, with indepen-
dent and identically distributed components in time, and
with 02 = E|vn|%} < oo, for all m € Z. Thus, in (2),
the components of the vector error term [e1(-),...,&,(-)]7,
corresponding to observations at times tq,...,t,, obey the
functional state equation (3) in time. Hence, the non-null
functional entries of the matrix covariance operator Re.
of () = [e1(*),...,en(-)]T are the elements located at
the three main diagonals. Specifically, E[e; ® ;] = Ry, if
j—1=1, E[Ei@)fj] =R}, ifi—j=1, and E[Ei®<€i] = Ry,
if ¢ = j, where R; and R} respectively denote the cross-
covariance operator and its adjoint for ARH(1) process
e = (g, 1 € Z), and Ry represents the auto-covariance oper-
ator of ¢ = (g;, i € Z). Equivalently, the matrix covariance
operator R, is given by

Ree = E[le1(), e [e1(), - oen ()]
[ E[El ®€1] E[El ®5n]
I E[{-:n.@{—jl] ,.:., E[sn.®5n]
Ry Ry ... ... 0
Rt Ry Rl ... O
(4) = S
| 0 ... ... Rl Ry

In the space H = H™, we consider the inner product

n

<f7 g>H” = Z<fzvgz>Ha vag c H"

i=1

It is well-known that the auto-covariance operator Ry of
an ARH(1) process is in the trace class (see [7], pp. 36-37).
Therefore, it admits a diagonal spectral decomposition

Ro = M @ ¢x,

k=1

in terms of a complete orthogonal eigenvector system
{¢r}r>1, defining in H a resolution of the identity
Y peq &k @ ¢. Here, for each k > 1, A, = Ap(Rp) is the
k-th eigenvalue of Ry, with Ro¢r = A\k(Ro)¢r. The follow-
ing series expansion then holds, in the mean-square sense:

(5) €= (i dr)y k= DV wmk(@)on, i =1,....m,
= k=1

k=1

where (i) = ﬁ(si,@g)}q, for k > 1, and i € N—{0}.

The following assumption is made:

Assumption AO0. The standard Gaussian random variable
sequences {ng(i), ¥ > 1}, i € N, with, for each k > 1,
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VAR (2) = (€4, i) gy, for every i € N, satisty the following
orthogonality condition: For every i,j € N,

(6) Enk(@)1p(3)] = Ok,

where § denotes the Kronecker delta function, and

kvp eN-— {0}7

Ry = > A(Ri)oy @ b
k=1

(7) R = ) M(R))bx ® .
k=1

Under Assumption A0, the computation of the general-
ized least-squared estimator of [81(-), ..., B,(-)]7 is achieved
by projection into the orthogonal basis of eigenvectors
{1}~ of the auto-covariance operator Ry of ARH(1) pro-
cess € = (g, 1 € Z). Denote by ®* the projection opera-
tor into the eigenvector system {¢},~, acting on a vector
function f € H = H" as follows: -

() = {®} (Ot = {100 i) }
(8) = {(fkly--wfkn)T}kZl:{flz}k217

where ®®* = Idy—_p~, with

o0 o0 T
¢ ({fkT}kZl) = (Z fk1¢ka~~-72fkn¢k) .
k=1 k=1

For A be a matrix operator such that, for i,j =1,...,n, its
functional entries are given by

k>1

Ay = hijbr © i

k=1

with >°p | vE ; < 0o. The following identities are straight-
forward:

9)
(10)

AP = {Ti}4s.

¢<{Fk}k21) * = A,

where, for each k > 1, the entries of T'y are I'y;; = g5, for
,7=1,...,n.
Applying (8)—(10), we directly obtain

(11) @*Rge(]:) = {Ak}k21’ (P*Re_elq) = {Alzl}k21

R;sl (f.g) = @*R;;@ ({)*f’ {)*g) = <f7g>R;51
(12) = > ffA ‘g, Vf, g e R (H")
k=1
oo

(13)  [Ifll3= S EIA e, VE € R (H™),
k=1

where, for each k > 1, Ay = ® R Py is given by
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(14)
)\k(RO) )\k(Rl) . 0
Me(RT) Ae(Ro)  Ax(Ra) 0
A = : : : : :
0 » (R (R

with A,;l denoting its inverse matrix.

Remark 1. In Section j, we restrict our attention to
the functional error model studied in [51], considering the
Hilbert-valued stochastic partial differential equation system
framework. In that framework, matrices Ax, k > 1, are
known, since they are defined from the eigenvalues of the
differential operators involved in the equation system. Par-
ticularly, in that section, for each k > 1, matriz Ay is con-
sidered to have entries Ay;; given by

Apij = exp (—7/\kj+{\kj> (i # )
Mt = = (Ifi(-Ap)) = A ((-Ap,) 7201,
(15) = e ((=Ap,))

with v; € (0,d/2), i = 1,...,n, and (—Ap,) representing
the Dirichlet negative Laplacian operator on domain Dy, for
I =1 (the rectangle), | = 2 (the disk) and l = 3 (the circular
sector). However, in practice, as shown in Section 5 in the
analysis of fMRI data, matrices A, k > 1, are not known,
and should be estimated from the data. Indeed, in that real-
data example, we approzximate the entries of A, k > 1,
from the coefficients (eigenvalues and singular values), that
define the diagonal spectral expansion of the empirical auto-
covariance Ry and cross covariance Ry operators, given by

(see [7])

o~

Ry

1 n
*Z&@Ei
n <
1=1
- 1 n—1
R = — 25i®5i+1
1=

1 n
261‘ RKEj—1-
n—1 pa

We also consider here the following semi-orthogonal con-
dition for the non-square design matrix X:

(16) R =

Assumption A1l. The fixed effect design matrix X is semi-

orthogonal non-square matrix. That is,
(17) XTX =1d,.

Remark 2. Assumption A1 implies (see [51])

(18) Ztrace (XTA,;lX)71 < 00.

k=1

The generalized least-squares estimation of [Bi(:),...,
By(:)]T is achieved by minimizing the loss quadratic func-



tion in the norm of the Reproducing Kernel Hilbert Space
(RKHS). Note that, for an H-valued zero-mean Gaussian
random variable with auto-covariance operator Rz, the
RKHS of Z is defined by H(Z) = Rlz/2 (H) (see, for ex-
ample, [21]).

From equation (13) we get

BIY - X2,

‘R;é j{:lauek 6k ”A_l

(19)

R

ZEH€k IBk‘ ||A 1,

where, in the last identity, for each & > 1, matrix jAXk
represents the empirical Counterpart of Ak7 constructed
from the eigenelements of Ro, R1 and R1 , considered
when Ry and R; are unknown. Here, ¢ = Y — X3 and
er (By) = ®; (Y —Xp3), for all k£ > 1. The minimum of
equation (19) is attached if, for each k > 1, the expectation
Ellex (By) 3 -+ is minimized, with, as before, A;! defining
the inverse O%C matrix Ay given in (14) (and approximated
by jAXk, when Ry and R; are unknown). That is,

(X"AX) ™

~ — T
(20) By = (Bt o Brn) = XTAY,

and given by

— _—\T ~—1 —1 ~—1
(21) (Bkla v 7ﬁkp) = (XTAk X) XTAk Yk
in the case where Ry and R; are unknown. Here, Y, =
®; (Y) is the vector of projections into ¢y, of the components
of Y, for each k > 1.
In the remaining of the section, we restrict our attention

to the case where Ry and R; are known. In that case,

oo oo T
(22) B= ({ﬂ?}p) = <kzl B, .,;mmk)

The estimated response is then given by Y = XB
Under Assumption Al,

(5w

(23) Ztraee XA X) ™+ 1Bl3 < oo,

k=1

i.e., B € H? almost surely (see [51] for more details).

Remark 3. In the case where Ry and Ry are unknown, un-
der the conditions assumed in Corollary 4.2 in [7], pp. 101-
102, strong consistency of the empirical auto-covariance op-
erator Ro holds. Moreover, under the conditions assumed
in Theorem 4.8, in [7], pp. 116-117, the empirical cross-

covariance operator I/%B is strong consistent. Therefore, the
plug-in functional parameter estimator (21) satisfies (23),
for n sufficiently large.

The Functional Analysis of Variance of model (2)—(3) can
be achieved as described in [51]. Specifically, a linear trans-
formation of the functional data should be considered, for
the almost surely finiteness of the functional components of
variance, in the following way:

(24) WY = WX3 + We,

where W is such that

> wiiidk @ éi > wiindk @ ¢k
k=1 k=1
W = :
> Wkn1dk © di > Wknnok ® b
k=1 k=1

and satisfies
(25) Z trace (A;lwk) < 0.

k=1

Here, for each k > 1, Ay is defined in (14). The functional

components of variance associated with the transformed
model (24) are then given by

SST = (WY,WY),_
(26) = > Y{WIA'WLY,
k=1
SSE = (W (Y—?) ,W(Y—?))R;
= j{:(hﬁkVVkY%JTiAglhdk\VﬁY%
k=1
(27) SSR = SST - SSE.
where My, = Tdpxn — X (XTA;'X) " XTA; Y, for each
k> 1.
The statistics
SSR
SSE

provides information on the relative magnitude between
the empirical variability explained by the functional trans-
formed model and the residual variability (see Section 4).

3. SIGNIFICANCE TEST FROM
CRAMER-WOLD THEOREM

In [51], a linear functional statistical test is formulated,
with explicit definition of the probability distribution of the

The effect of the spatial domain in FANOVA models with ARH(1) error term 611



derived functional statistics under the null hypothesis:

(29) Hy: KB =C,

against Hy : KB # C, where C€ H™ and K : HP — H™
is a matrix operator such that its functional entries Kj;,
1=1,...,m,j=1,...,p, are given by, for f,g € H,

(30)  Kij (£)(9) =D A (Kij) (b, ), £
k=1

In particular, {(@ZK@k)}k21 = {Kk}k21 with

Ak (K11) Ak (K1p)
K, — . .

M (Kom) A (Komp)

mxp

At level a, there exists a test ¢ given by:

»= 1 if S, (Y) > C(Hy, o),
0 otherwise,

. The constant

where Sp,(Y) = <KB - C, KB - C>H_H

C(Hy, ) is such that

HD{SHb(Yq > CXfﬂhcﬂ,I(ﬂ:: Cﬂ
= 1-P{Syx,(Y) < C(Hy,a),KB = C}
1-F, =q,

where the probability distribution F on H = H™ has char-
acteristic functional given in equation (66) of Proposition 4
in [51].

Alternatively, as an application of Theorem 4.1 in [15],
a multivariate version of the significance test formulated in
[14] is considered here, for the fixed effect parameters (see,
in particular, Theorem 2.1 in [14]). Specifically, we consider

(31)

for h = (h,...,h)g><1 defining a random vector in HP,
with h generated from a zero-mean Gaussian measure pu
in H, with trace covariance operator R, (see, for ex-
ample, Da Prato, and Zabczyk, [21]). Here, B(h) =

T o
((Bl,h)H et <Bp,h>H)pX1, K is given by

Hg : KB(h) = C,

1 -1 0 0
1 0 -1 0
1 0 0 -1

p—1Xp

and C is a null p — 1 x 1 functional vector, i.e.,

Lok

p—1x1-

(33) C = (0,0,..
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From equations (32) and (33), for any p x 1 functional
random vector h = (h, ..., h);;rx 1 generated from a Gaussian
measure p on H, HY® can then be equivalently expressed as

HY By h)y = (Ba,hyy == (B, h),,.

The test statistic to contrast (34) is defined as

(34)

(3) T, = (KB - C) (KQuK")™' (KB(M) - C).

where K and C are respectively given in equations (32) and

(33), and
(36) Qn = X'AuX)™!
37)  Bh) = (XTA;'X)'XTA;'Y(h),

with Y(h) = ((Y1,h) g ,..., (Yn,h)y). Here, A isan xn
matrix with entries Ay(4,7), 4,7 =1,...,n, given by

An(i5) =D [(h dk) ] Me(Rig),  inj =1,...,m,

k=1

where, as before, A\;(R;;) denotes the kth coefficient in the
diagonal expansion of the covariance operator R;; with re-
spect to the basis {¢r ® ¢, k > 1}, i.e,, in the diagonal
expansion R;; = Y po Me(Rij)or @ ¢y, for 4,5 = 1,...,n.
Note that in the ARH(1) error term case described in Sec-
tion 2, from equation (14), Ax(R;;) = 0, for |i — j| > 1, for
every k > 1.

Assuming that the auto-covariance and cross-covariance
operator of the ARH(1) error terms are known, under the
null hypothesis H®, the conditional distribution of 7T}, in
(35), given Y = h, is a chi-square distribution with p — 1
degrees of freedom. Here, Y is a zero-mean H-valued random
variable with Gaussian probability measure p on H, having
trace covariance operator R,. Note that the last assertion
directly follows from the fact that, in equation (37), the
conditional distribution of ,@(h) given Y = h is

~

B(h) ~ N(B(h), Qn),

with Qp being introduced in equation (36), i.e., the con-
ditional distribution of B(h) given Y = h is a multivariate
Gaussian distribution with mean vector B(h) and covariance
matrix Qp.

From Theorem 4.1 in [15], and Theorem 2.1 in [14], if
Hy: Bi(-) = Ba2(-) = -+ = Bp(-) fails, then, for p-almost
every function h € H, H® in (31), or equivalently in (34),
also fails. Thus, a statistical test at level o to test HY is a
statistical test at the same level a to test Hy.

4. SIMULATION STUDY
In this section, we consider the real separable Hilbert

———L*(R?
space H = L% (D)) = C&° (Dy) ( ), the closure, in the



norm of the square integrable functions in R2, of the space
of infinitely differentiable functions with compact support
contained in Dy, for [ = 1,2,3. We restrict our attention to
the family of error covariance operators given in (15). Thus,
fori,j=1,...,n,

(38)

R.; = Ele ®¢y]

= (62‘4 exp < =gl > + 055/ )\kz)\kj) O @ G,
=1 >\k‘l + )\kj

where 67 ; ri=1- di,j, and 6; ; is the Kronecker delta func-

tion. As before, for 4,5 = 1,...,n, and for each k > 1,
li—J] ) Note that

Ai = Ap(Rir), and Ap(Rij) = exp (“M -
the above error covariance operator models correspond to
define, for ¢ = 1,...,n, the functional Gaussian error com-
ponent &; as the solution, in the mean-square sense, of the
stochastic partial differential equation

(—Ap) e =&, v €

(0,d/2),

with & being spatial Gaussian white noise on L?(D;), for
1=1,23.

To approximate
(39)

FMSEs = E[IB()=BCO) ),

v samples are generated for the computation of

Z 182 () = B2 () I

EFMSEg = Z =1 ;

14
v=1

(40)

the empirical functional
EFMSEg associated with the
{B.()= (Bl @rm) Bl @rown) | of

s=1,...,p, v=1,...,v
3, where L is the number of nodes considered in the regular
grid constructed over the domain Dy, [ = 1,2, 3.

Also, we will compute the following statistics:
(41)

mean-square
functional

error
estimates

5 (e (@13 Nl - -+ 1€ (22,92) 1)
v )

v=1

Ly () =

where €3, (2;,y;) = (6?35 (@55 95) € (Igvyj)), J
v ~v
L, and gy (z;,y;) = Bs (%5,y;) — B, (z,9;), s
1,...,p,7=1,...,Lyandv =1,...,v, with |- || denoting
the L°°-norm of the vectorial squared errors.

Let {Yf():(Yf ('Tl? y1>7 v 7Y11'}(xL7 yL))}i:l,‘..,n,vzl,...,V
be the generated functional samples. The empirical approx-
imation of
=Y () 7

FMSEy = E[||Y ()

with FMSFEvy being the FMSFE of Y, can be computed as
follows:

L IYr O =Y O
— Z =1 ]/

v=1

(42)  EFMSEy

Also, we will consider the statistics

(43)
oo = (e (@1,91) lloos - lle¥ry (@2, 92) ll)
LY () = Z ; v : )
v=1
where €%, (z;,y;) = (6%(f (@, y;) .- ,6%(2 (a:j,yj)), and

evy (z5,y5) = Y{ (z5,y5) — Y! (z5,y;), for i = 1,....m,
j=1,...,L,andv=1,...,v

In the following numerical examples, the functional anal-
ysis of variance is implemented from a transformed func-
tional data model, considering the matrix operator W such
that, for each k > 1, ;W = W, compensates the di-
vergence of the eigenvalues of A,jl. Thus, condition (25) is
satisfied. Hence, for all £ > 1, W can be defined as
(44) W, = ¥,Q (W) o1,
where Q (Wy) = diag (wg11, - - - , Wknn) and its elements are
defined by wyi; = w; (Ag) + —, under Y 7o 1o < oo We
have chosen a;, = k2. Here, for each k£ > 1, lIlk denotes
the projection operator into the system {wlk}l , of eigen-
vectors of matrix Ay, and {w; (Ax)}?, are the associated
eigenvalues (see [51]).

In practice, the infinite series defining the generalized
least-squares estimator, and the functional components of
variance is truncated at T'R. Specifically, in the rectan-
gle, we work with a two-dimensional truncation parame-
ter TR = TRy X TR, and, for circular domains, we fix a
one-dimensional parameter (the order k of Bessel functions),
thus, TRy = 1, and move the second truncation parameter
associated with the radius R (see Sections A.2 and A.3). We

then have
45 B ~ &({B,
(45) s <{ﬁk}k—1,...,TR>’
. TR
(46) SSE ~ > (MyWipYy)" A'MyW, Y,
k=1
o TR
(47)  SST ~ > Y{W{A'W,Y,,
k=1
(48) SSR SST — SSE,
(49) Ap = U Q(A)®} k=1,...,TR,
(50) W, U,.Q (W)L, k=1,...,TR.

From the transformed model (24), the finite-dimensional
approximations (46), (47) and (48) of SSE, SST, and SSR,
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respectively, are computed to obtain the values of the statis-
tics (28), reflecting the relative magnitude between the em-
pirical functional variability explained by the model and the
residual variability.

Also in the computation of the test statistics T}, a trun-
cation order is considered in the calculation of the elements
defining matrix Aj,.

In all the subsequent sections, the truncation order TR
has been selected according to the following criteria:

(i) The percentage of explained functional variance. In all
the subsequent numerical examples, the TR values con-
sidered always ensure a percentage of explained func-
tional variance larger or equal than 95%.

The rate of convergence to zero of the eigenvalues of the
covariance operators, defining the functional entries of
the matrix covariance operator of the H"-valued error
term. Specifically, in the simulation study undertaken,
according to the asymptotic order (rate of convergence
to zero) of such eigenvalues, we have selected the op-
timal TR to remove divergence of the spectra of the
corresponding inverse covariance operators.

The functional form of the eigenvectors, depending on
the geometry of the domain and the Dirichlet conditions
on the boundary. Small truncation orders or values of
TR are considered, when fast decay velocity to zero is
displayed at the boundary, by the common eigenvec-
tors of the auto-covariance operators of the error com-
ponents, since, in that case, the error dependence range
is shorter.

(i)

(iii)

Summarizing, lower truncation orders are required when
a fast decay velocity to zero is displayed by the covari-
ance kernel eigenvalues, since a sufficient percentage of ex-
plained variability is achieved with a few terms. Note that
larger truncation orders can lead to a ill-posed nature of the
functional parameter estimation problem, and associated re-
sponse plug-in prediction. In the subsequent sections, apply-
ing criteria (i)—(iii), a smaller number of terms is required
in circular domains than in rectangular domains.

4.1 Rectangular domain

The H"-valued zero-mean Gaussian error term € is gener-
ated from the matrix covariance operator Re., whose func-
tional entries Rc.c,, 4,7 = 1,...,n, are defined in equation
(38), with for i = 1,...,n, Ag; = Ax(Ry;) being given in
equations (15) and (60). Specifically, {¢r, k& > 1} are the
eigenvectors of the Dirichlet negative Laplacian operator on
the rectangle, associated with the eigenvalues of such an
operator (see equation (60) in the Appendix), arranged in
decreasing order of their modulus magnitude.

Define now the scenarios studied for the rectangular do-
main D; = H?Zl [as, b;], where v = 20 functional samples
of size n = 200 have been considered, for a given semi-
orthogonal design matrix X € R"*? such that XTX = Id,,.
These scenarios are determined from the possible values of
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Table 1. Scenarios for rectangular domains

Cases alp = a2 bl = b2 hz = hy P TR
(P1,a,C) 2 3 005 |4 4x4
(P1,b,C2) 2 3 005 |4]| 6x6
(P1,c,Cs) -2 3 0.05 4] 8x8
(P1,d,C1) 2 3 005 |4 ] 12x12
(P2,a,Cs) 2 3 0.05 9| 4x4
(Pz,b,C1) -2 3 0.05 9 6 x6
(P2,¢,C1) 2 3 005 | 9] 8x8
(P2,d,C>) 2 3 0.05 |9 ] 12x12

Tl o
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907
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oot
“%,’,711:15
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Figure 1. Case (P1,a,Cy). Simulated response with p = 4,

TR =16 and 3 of type C;.

the vector variable (P;, u, C;), where P; refers to the number
of components of 3, specifically, for i = 1, p = 4 components,
and for i = 2, p = 9 components. Here, u takes the values
a, b, c, d respectively corresponding to the truncation orders
TR=16 (u=a), TR=36 (u="5), TR =064 (u=c) and
TR = 144 (u = d). In addition, C;, i = 1,2, indicate the
shape of 3. Specifically, we have considered

e (s (x,y) =sin (”lfbl) sin (%) (C1)
e (s (x,y) = cos (mblzmal ) cos (yb2;;y“2> (C2),

where zy, = 5 (25+1) (b1 — ), Ta, = (. —a1), Y,
%(23+1)(b2*y)7 Yas = (y7a2) and s = 17"',p'

A summary of the generated and analyzed scenarios are
displayed in Table 1.

In Table 1, h, and h, refer to the discretization step size
at each dimension. In the cases (P1,a,C;) and (P3,a,Cs), a
generation of a functional value (surface) of the response is
respectively represented in Figures 1 and 2.
__ Figures 3 and 4 show the respective functional estimates
Y = X3 of the response values displayed in Figures 1 and

[\

The statistics (40) and (42) are evaluated in all the cases
displayed in Table 1 (see Tables 2 and 3, and Figures 5 and
6, for the statistics Lz’ and Ly, respectively).

As expected, the results displayed in Table 2, correspond-
ing to the empirical functional mean quadratic errors asso-
ciated with the estimation of 3, are less than the ones ob-
tained in Table 3 for the response, with order of magnitude
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Figure 2. Case (Ps,a,Cs). Simulated response with p = 9,
TR =16 and 3 of type C.
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Figure 3. Case (P1,a,C;). Estimated response with p = 4,

TR =16 and 3 of type (3.
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Figure 4. Case (Ps,a,Cy). Estimated response with p =9,
TR =16 and 3 of type Cs.

Table 2. EFMSEg for rectangular domain

EFMSEgs
(P17aacl) (P17b7c2) (Pl,C,Cz) (P17d7c2)
0.00107 0.00106 0.00104 0.00104
(P27a702) (P27b7cl) (P27Cacl) (P27d702)
0.00094 0.00093 0.00093 0.00091

1073 in all the scenarios generated. In Table 3, we can appre-
ciate a better performance of the generalized least-squares

Table 3. EFMSFEvy for rectangular domain

EFMSEy
(P1,2,C1) | (P1,b,C2) | (P1,¢,C2) | (P1,d,C2)
0.0142 0.0134 0.0102 0.0094
(P2,3,C2) | (P2,b,C1) | (P2,¢,C1) | (P2,d,C2)
0.0114 0.0106 0.0092 0.0074

m.mmmwtmnmMMMMMNMMWMMHWWWWWM

Figure 5. Ly for (P1,a,Cy ) case.
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Figure 6. LS for (Py,a,Cy) case.

served with associated empirical functional mean quadratic
errors having order of magnitude 1072 in all the cases dis-
played in Table 1 (see the above truncation order criteria
(i)—(iii)). It can also be observed that the number of com-
ponents of parameter 3, and their functional shapes do not
affect the accuracy of the least-squares generalized estima-
tions of the functional values of the response.

The statistics (28) is now computed, as an empirical
approximation of the relative magnitude between the ex-
plained functional variability and the residual variability, af-
ter fitting the transformed Hilbert-valued fixed effect model
(24). The results obtained are given in Table 4. It can be ob-
served that, in all the cases studied, the explained functional
variability exceeds the residual functional variability. The
truncation order, the number of components of 3, and the
functional shape of such components do not substantially
affect the goodness of fit of the transformed Hilbert-valued
fixed effect model (24).

Let us now compute the statistics T}, in (35) to contrast
the significance of parameter vector 8 in Case C;, when

estimator for the higher truncation orders. However, we have p = 4. To apply Theorem 4.1 in [15], and Theorem 2.1 in [14],

to note that, even for the smallest truncation order consid-
ered, i.e., for TR = 4 x 4 = 16, a good performance is ob-

we have generated eight realizations of a Gaussian random
function h, from the trajectories of the Gaussian random

The effect of the spatial domain in FANOVA models with ARH(1) error term 615



Table 4. Statistics (28) for rectangular domain

Cases (Pl,a,Cl) (Pl,b,Cg) (Pl,C,CQ) (Pl,d,Cl)
F 1.9263 1.7165 1.6731 1.6261
Cases (PQ,a,Cg) (PQ,b,C1) (PQ,C,C1) (PQ,d,Cz)
F 1.8974 1.8447 1.7611 1.6064

Table 6. Scenarios analyzed for the disk

Table 5. Rectangle. Percentage of successes for o = 0.05, at

the left-hand side, and averaged p-values at the right-hand

side, for each one of the eight realizations considered of the
Gaussian function h € L?([—2,3] x [-2,3])

D | % Success P
1 100 % 0
2 100 % 0
3| 9975 % | 1.9983(10)°°
4 100 % 0
5 99.8 % 7.5411(10)~"7
6 100 % 0
7 100 % 0
8 100 % 6.4410(10)~ ™

field &, solution, in the mean-square sense, of the following
boundary value problem:

(—A)E(x) = <(x)
X = (£B1,£E2) € [7273] X [7273]
6(7271‘2) = 6(3,.%2) = §(x17 72) = f(xlv?’) =0
(51) Z1,%2 € [_2’3] x [_2a3]a
where ¢ denotes a zero-mean Gaussian white noise on
L?([-2,3] x [-2,3]), i.e., a zero-mean generalized Gaussian
process satisfying

/ F)Els(y)s(x)]dx = £(y)
[=2,3]x[~2,3]

Vy € [-2,3] x [-2,3], Vf € L*([~2,3] x [~2,3]).

Table 5 reflects the percentage of successes, for o = 0.05,
and the averaged p-values over the 150 samples of the re-
sponse generated with parameter 3 of C; type having p = 4
components, and with size n = 150, for TR = 4 x 4.

A high percentage of successes and very small p-values
are observed in Table 5, i.e., a good performance of the test
statistics is observed.

4.2 Disk domain
In the disk Dy = {x€R?: 0< ||x|| < R}, the zero-

mean Gaussian H"-valued error term e is generated from
the matrix covariance operator R.., whose functional entries
R, i,j = 1,...,n, are defined in equation (38), consid-
ering the eigenvectors {¢y, k > 1} of the Dirichlet negative
Laplacian operator on the disk (see equation (62) in the
Appendix, Section A.2), arranged in decreasing order of the

616 J. Alvarez-Liébana and M. D. Ruiz-Medina

Cases R | hre | hg | TR | p
(P1,2,Cs) | 12 | B [ 22| 3 [4
(Pi,b,Co) | 18 | =[] 5 |4
(Pi,c,C1) | 25 [ |22 [ 7 |4
(P,,d,C1) [ 50 | &= | &= | 15 | 4
(P1,e,C2) [ 100 | £ | 22 | 31 | 4
(P1,fCs) [ 250 | B [ 22 ] 79 [4
(P2,2,Cy) [ 12 | 1221 3 [9
(P3,b,Co) | 18 | = [ == 5 |9
(P2,c,C3) [ 25 | = |22 ] 7 |9
(P2,d,Cs) [ 50 | A= [ 2= ] 15 |9
(P2,e,Cz) [ 100 [ 5 | 22 [ 31 |9
(Po,f,C1) [ 250 [ = [ 22 [ 79 |9

modulus magnitude of their associated eigenvalues. Specifi-
cally, here, for i = 1,...,n, A; = Ap(Ry;) in (38) is defined
in equations (15) and (62). Again, v = 20 functional sam-
ples of size n = 200 of the response have been generated.
The cases studied are summarized in terms of the vector
(P;, u, Cj), i« = 1,2, j = 1,2,3, with variable v =
a,b,c,d, e, f. Specifically, it is considered u = a for TR = 3,
u=>bfor TR=5 u=cfor TR=7 u=dfor TR = 15,
u = e for TR = 31, and u = f for TR = 79. Further-
more, P; indicates the number of components of 3, with
p=4fori=1,and p =9 for i = 2. Finally, the values
of C;, 7 = 1,2,3, refer to the shape of the components of
B, defined from their projections, in terms of the following
equations:

ﬂks - %G(TLCR

& )6,5+25—1

)7,5+2571P (s k)2‘5+2571

+elr'm
k=1,....,TR, s=1,...,p

1 otk
ﬁks = Ee n

P (S, k)3.5+25—1 7

(C1)

+ k cos ((—1)k 27r%> ,

k=1,....,TR, s=1,...,p (C2)
1 1.542s5—1

51@3:WP(37/<) )

k=1,....,TR, s=1,...,p (C3)

Pam=1s (L)

(TR—k—Fl
4+ =

(52) R

4
) ,k=1,....TR, s=1,...,p.

Table 6 reflects a summary with all the cases analyzed.

Figures 7 and 8 respectively reflect the generation of a
functional value of the response in the cases (P1,¢,C;) and
(Plaf,ci?o)'

The respective generalized least-squares functional esti-
mates are displayed in Figures 9 and 10.
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Figure 7. Case (Py,c,Cy). Simulated response with p = 4,
R =25 and 8 of type C;.

Peepses Yorghl: ) nthe gl

Figure 8. Case (Py,f,C3). Simulated response with p = 4,
R = 250 and B of type Cs.
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Figure 9. Case (Py,c,Cy ). Estimated response with p = 4,
R =25 and 3 of type C1.

The empirical functional mean quadratic errors (see equa-
tions (40) and (42)) are displayed in Table 7, for the esti-
mation of the functional parameter vector 3, and in Table
8 for the estimation of the response Y (see also Figures 11
and 12 for the statistics L3’ and LY, respectively). It can
be observed, as in the rectangular domain, that the order
of magnitude of the empirical functional mean quadratic er-
rors associated with the estimation of B is of order 1073,
and for the estimation of the response is 10~2. However, the
number of terms considered is less than in the case of the
rectangle, i.e., a finite dimensional space with lower dimen-
sion than in the rectangle is required, according to criterion
(iil) reflected in Section 4. It can also be observed that the

Reaporas Yestmend, 1) nthe ghd

Figure 10. Case (Py,f,C3). Estimated response with p = 4,

R = 250 and B of type C3.

Table 7. EFMSEg for disk domain

EFMSEg
(P1,a,03) (P1,b,02) (Pl,C,C1)
0.00075 0.00075 0.00074
(Pl,d,Cl) (Pl,e,Cg) (Pl,f,C;g)
0.00075 0.00076 0.00075
(Pz,a,c1) (PQ,b,CQ) (PQ,C,Cg)
0.00070 0.00071 0.00071
(P27d703) (P27e,02) (PQ,f,C1)
0.00079 0.00080 0.00080

Table 8. EFMSE~ for disk domain

EFMSEy
(Pl,a,Cg) (P1 ,b,Cg) (P1,C,Cl)
0.0478 0.0479 0.0479
(P17d,Cl) (Pl,e702) (Pl,ﬂCg)
0.0479 0.0480 0.0479
(PQ,&,C1) (Pz,b,CQ) (PQ,C,C3)
0.0497 0.0498 0.0498
(PQ,d,C3) (PQ,G,CQ) (PQ,f,Cl)
0.0498 0.0498 0.0498

number of components of 3 does not substantially affect the
quality of the estimates.

The statistics (28) is now computed (see Table 9), as an
empirical approximation of the relative magnitude between
the explained functional variability and the residual variabil-
ity, after fitting the transformed Hilbert-valued fixed effect

model (24). It can be observed that the values of S5R are

very close to one in all the scenarios analyzed. This fact
induces large values of (28) (see Table 9), since

53R _53R/S3T
SSE  1- 55R/ST

It can be observed, one time more, from criterion (iii), re-
flected in Section 4, that the boundary conditions and the
geometry of the domain allows in this case a more substan-
tial dimension reduction than in the rectangular domain

The effect of the spatial domain in FANOVA models with ARH(1) error term 617
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Figure 11. Values of the statistics Ly, for the case (Py,f,Cy).

Table 10. Disk. Percentage of successes for o = 0.05, at the
left-hand side, and averaged p-values at the right-hand side,
for each one of the eight realizations of the Gaussian function

h e Lz(D25)
D | % Success D
1 99.95% | 1.672(10)"°
2 99.5 % 9.746(10) "
3 100 % 0
4 99.9 % | 8.546(10)°
5 | 97.45% | 7.400(10)~7
6 100 % 0
7 100 % 8.775(10) 7
8 100 % 0

P8 0§ § s § 8§88
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Figure 12. Values of statistics LY, for the case (Ps,f,Cs).

Table 9. Values of statistics (28) over the disk domain

Cases (P1,a,C3) (Pl,b,Cg) ((P1,C,Cl)
F 1.1(10%) | 4.1(10%) 1.2(10°)
Cases | (P1,d,C1) | (P1,e,C2) | (P1,£,Cs)
F 3.9(10%) | 6.3(10%) 4.2(10%)
Cases (Pg,a,C1) (Pz,b,CQ) (PQ,C,C3)
F 2.2(10%) | 8.2(10%) 7.6(107)
Cases | (P2,d,Cs) | (P2,e,C2) | (P2,f,Cy)
F 2.5(107) | 1.4(107) 8.5(107)

case, since with lower truncation orders a better model fit-
ting is obtained.

The statistics T}, in (35) is computed to contrast the sig-
nificance of the parameter vector 3 in case Cy, with p =4
components. Again, eight realizations of Gaussian random
functions h are considered, generated from a Gaussian ran-
dom field &, solution, in the mean-square sense, of the fol-
lowing boundary value problem on the disk:

(—A)E(x) =<(x)
x = (x1,22) € Dys = {x € R%; 0 < [|x]| < 25}
£(0,25) =0, V6 e l0,2q]

where ¢ denotes a zero-mean Gaussian white noise on
L?(Ds5), i.e., a zero-mean generalized Gaussian process sat-
isfying
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/ F(0.0)ELS(8, 7)s(p,0))dipdv = £(0.7)
[0,27] % [0,25]
Y(0,r) € [0,27] x [0,25], Vf € L*(Dys).

Table 10 reflects the percentage of successes, for o = 0.05,
and the averaged p-values over the 150 samples, generated
with size n = 150, of the functional response having pa-
rameter vector B of type C; with p = 4 components, for
TR=T.

Table 10 again illustrates a good performance of the
statistics Ty, in (35). Indeed, it can be observed a high per-
centage of successes, and very small p-values, very close to
zero, that support the significance of the functional param-
eter vector, considered in the generation of the data set an-
alyzed.

4.3 Circular sector domain

In the circular sector

D3 ={(rcos(p), rsin(p)): 0<|Ir| <R, 0 < ¢ < w0}
of radius R and angle 76, the zero-mean Gaussian vector er-
ror term ¢ is generated from the matrix covariance operator
Ree, whose functional entries R..c,, 4,7 = 1,...,n, are de-
fined in equation (38). The eigenvectors {¢, k > 1} of the
Dirichlet negative Laplacian operator on the circular sector
are considered (see equation (66) in the Appendix, Section
A.3), arranged in decreasing order of the modulus magni-
tude of their associated eigenvalues. Specifically, here, R, is
defined in equation (38), with fori =1,...,n, A; = Ap(Ris)
being given in equations (15) and (66).

As in the above examples, v = 20 functional samples
of size n = 200 are generated. The cases studied are also
summarized in terms of the values of the vector (P;,u,C}),
1=1,2, u=ua,b,c,d,e, f, and 7 = 1,2, 3, with the values of
u having the same meaning as in the disk domain. Again,
P;-values provide the number p of components of 3, i.e.,
p=4ifi=1, and p=9if i = 2. The values C1, Cs and Cj
respectively correspond to the following functions defining



Table 11. Summary of scenarios considered for functional
data generated over the circular sector

Cases R | hg | he | TR | 0 | p
(P1,a,Cy) [ 12 [ £ |22 ] 3 |2 ]4
(P,b,Co) [ B | L 22| 5 | 2[4
(Pic,Cy) | 25 [ B |22 7 [2]4
(P1,d,C1) [ 50 | &= | &2 | 156 | 2[4
(P1,e,Cp) [ 100 [ = [ [ 31 |3 |4
(P,f,Cs) | 250 | L [ 2= [ 79 [ ]4
(P2,a,Cy) | 12 1?5 1217; 3 % 9
(P2,b,Co) | 18 [ L [ 22| 5 [2]9
(P2c,Cs) | 25 [ B2 221 7 [2]9
(P2,d,Cs) | 50 | Z= [ 22 | 15 [2 ]9
(P2,e,Cp) [ 100 | £ | 22 [ 31 [ 2 ]9
(Po,f,Cy) [ 250 | L [ 22 [ 79 [2]9

Peepanes Yorgna: ) It gl

Figure 13. Case (P3,e,Cs). Simulated response with p = 9,
R =100 and 3 of type Cs.

the components of 3, whose projections are given by:

B =1+ (k—-1s, k=1,....,TR, s=1,...,p (C1)
1 s+
Bo = Ee% + k cos <(1)k 277?) ,

k=1,....TR, s=1,....,p (C2)

( TR—k‘) ( p—s)
Bsi, = cos | m——— | cos 7 ,
k s

k=1,....TR, s=1,...,p (C3).

A summary of the cases analyzed is given in Table 11.

Figures 13 and 14 display the generation of a functional
value of the response in the cases (Pg,e,Cy) and (P1,f,C3),
respectively.

The functional estimates obtained from the finite-
dimensional approximation of the generalized least-squares
estimator of 3 are now given in Figures 15 and 16, for the
cases (P2,e,C2) and (P1,f,Cs), respectively.

As in the previous sections, the empirical functional mean
quadratic errors, associated with the estimation of 3 and Y,
are computed from equations (40) and (42). They are shown
in Table 12, for 3, and in Table 13, for Y. In addition, Fig-
ures 17 and 18 respectively display the statistics Lz’ and

P Yorghl:1)in b g

Case (Py,f,C3). Simulated response with p = 4,
R =250 and 3 of type Cs.

Figure 14.

Fiporme Yeutimatedt; 1) In the gid.

Case (Ps,e,Cy). Estimated response with p =9,
R =100 and B of type C,.

Figure 15.

Fieagoras Yeatmassd(, 1) it grd.

SRS RN NN

Figure 16. Case (P1,f,C3). Estimated response with p = 4,
R = 250 and B3 of type Cs.

LSP. These empirical functional mean quadratic errors are
very stable through the different cases considered, and their
order of magnitude is again 1072 for the parameter 3, and
1072 for the response. Here, the results displayed also corre-
spond to the projection into lower finite-dimensional spaces
than in the case of the rectangle, according to the functional
form of the eigenvectors (see truncation order criterion (iii)
in Section 4).

Statistics (28) is now computed. Its values are displayed
in Table 14. Again, as in the disk, the proportion of ex-
plained functional variability is very close to one leading to
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Table 12. EFMSEg for the circular sector

EFMSEg

(P17a703) (Pl,b,02) (Pl,C,C1)
0.00012 0.00011 0.00012

(Pl,d,Cl) (Pl,e,Cg) (P1,f703)
0.00012 0.00012 0.00011
(Pg,a,Cl) (PQ,b,CQ) (PQ,C,Cg)
0.00019 0.00020 0.00020

(PQ,d,C3) (PQ,G,CQ) (P2 ,f,C1)
0.00019 0.00019 0.00020

Table 13. EFMSE~ for the circular sector

Table 14. Statistics (28) for the circular sector

Cases (Pl,a,C3) (Pl,b,CQ) (Pl,C,Cl)
F 9.2(10%) | 3.1(10%) | 4.2(10°%)
Cases (P1,d,Cl) (P1,6,CQ) (Pl,f,c;g)
F 4.8(10%) | 5.8(10%) | 7.3(10%)
Cases (Pg,a,Cl) (PQ,b,CQ) (PQ,C,Cg)
F 1.8(10%) | 4.1(10%) | 2.6(107)
Cases (PQ,d,Cg) (PQ,G,CQ) (PQ,f,C1)
F 3.1(10°) | 6.8(10%) | 1.8(10%)

EFMSEy
(P1,a703) (Pl,b,CQ) (P1,C,C1)
0.00877 0.00881 0.00882
(Pl,d,C1) (Pl,e,CQ) (P1,f,Cg)
0.00882 0.00882 0.00881
(P27a,Cl) (PQ,b,CQ) (P2,C,C3)
0.00963 0.00967 0.00967
(Pz,d,Cg,) (PQ,Q,CQ) (Pg,f,cl)
0.00967 0.00968 0.00966

10t LiniYOF BETAS
T

4"? |

Figure 17. L for (P2,e,C2) case.

LintY OF RESPONSEB
T

Figure 18. LS for (P2,e,C2) case.

large values of statistics (28), as it can be observed in Table
14 for all the cases analyzed.
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Table 15. Circular Sector. Percentage of successes for
a = 0.05, at the left-hand side, and averaged p-values at the
right-hand side, for each one of the eight realizations of the
Gaussian function h € L?(CS)

D | % Success P
1 97.5 % 6.504(10) " °
2 100 % 0
3 100 % 3.600(10)®
4 100 % 0
5 938 % 2.006(10)°
6 99.5 % | 9.807(10)7°
7 100 % 0
8 99.5 % | 4.111(10)""

The statistics T, in (35) is computed to contrast the sig-
nificance of the parameter vector 3 in case Cy with p = 4
functional components. Eight realizations of a Gaussian ran-
dom function h are considered from a Gaussian random field
&, solution, in the mean-square sense, of the following bound-
ary value problem on the circular sector

(=A)E(x) = <(x)

x = (rcos(p), rsin(p));
O<|r| <R, 0<¢<mb
&(p,25) =0, Ve el0,70]

where 6 = 2/3, ¢ denotes a zero-mean Gaussian white noise
on the circular sector such that

/ F.0)Els(7,)s (s, v)]dgpdv = f(7,7)
[0,76] x[0,25]
Y(y,r) € [0,76] x [0,25], Vf € L*(CS),

with L?(C'S) denoting the space of square-integrable func-
tions on the circular sector. Table 15 reflects the percentage
of successes, for a = 0.05, and the averaged p-values over the
150 samples, with size n = 150, of the response, having C;-
type functional parameter vector 3 with p = 4 components,
considering TR = 7.

Table 15 again confirms the good performance of the test
statistics T}, showing a high percentage of successes, and
very small magnitudes for the averaged p-value (almost zero



values), according to the significance of the parameter vector
B considered in the generation of the analyzed functional
data set.

5. FUNCTIONAL STATISTICAL ANALYSIS
OF FMRI DATA

In this section, we compare the results obtained
from the application of the MatLab function fmrilm.m
(see [44] and [61]) from fmristat function set (available
at http://www.math.mcgill.ca/keith/fmristat), with those
ones provided by the implementation of our proposed func-
tional statistical methodology, based on Hilbert-valued fixed
effect models with ARH(1) error term. The fMRI data
set analyzed is also freely available in AFNI format at
http://www.math.mcgill.ca/keith/fmristat/. (AFNI Matlab
toolbox can be applied to read such a data set). In the next
section, structural information about such fMRI data is pro-
vided (see BrikInfo.m Matlab function).

The first step in the statistical analysis of fMRI data is to
modeling the data response to an external stimulus. Specif-
ically, at each voxel, denote by z(t) the (noise-free) fMRI
response at time ¢, and by s(t) the external stimulus at that
time. It is well-known that the corresponding fMRI response
is not instantaneous, suffering a blurring and a delay of the
peak response by about 6 s (see, for example, [44]). This fact
is usually modelled by assuming that the {MRI response de-
pends on the external stimulus by convolution with a hemo-
dynamic response function h(t) (which is usually assumed
to be independent of the voxel), as follows:

o0
(53) () = / h(u)s(t — u)du.
0

Several models have been proposed in the literature for
the hemodynamic response function (hrf). For example, the
gamma function (see [41]), or the difference of two gamma
functions, to model the slight intensity dip after the response
has fallen back to zero (see [30]).

The effects x;1...2;, of p different types of stimuli on
data, in scan 4, is combined in terms of an additive model
with different multiplicative coefficients /1, ..., 3, that vary
from voxel to voxel. The combined fMRI response is then
modeled as the linear model (see [31])

zi1f1(v) + -+ 2 p0p(v),

for each voxel v.

An important drift over time can be observed in fMRI
time series data in some voxels. Such a drift is usually linear,
or a more general slow variation function. In the first case,
i.e., for a linear function x; 4108k+1(V) + - - - 4+ Zjm (V) B (),
when the drift is not removed, it can be confounded with the
fMRI response. Otherwise, it can be added to the estimate
of the random noise €, which, in the simplest case is assumed

to be an AR(1) process at each voxel. In that case, the linear
model fitted to the observed fMRI data is usually given by

(54)
Yi(v) = i1 f1(v) + - + 248, (v)

+ X1 Ber1(V) + -+ T B (V) +&i(v), i =1,...,n,

for each one of the voxels v, in the real-valued approach
presented in [61]. In (54),

gi(v) = p(v)ei1(v) + &(v),  p(v)] <1,

where {§;(v), i = 1,...,n} are n random components of
Gaussian white noise in time, for each voxel v. This tempo-
ral correlation structure for the noise has sense, under the
assumption that the scans are equally spaced in time, and
that the error from the previous scan is combined with fresh
noise to produce the error for the current scan. In the pre-
sented Hilbert-valued approach, a similar reasoning can be
applied to arrive to the fixed effect model with ARH(1) error
term, introduced in Section 2. This model allows the repre-
sentation of fMRI data in a functional spatially continuous
form. Specifically, for the scan 4, a continuous spatial varia-
tion is assumed underlying to the values of the noise across
the voxes, reflected in the functional value of the ARH(1)
process, representing the error term. In the same way, the
H-valued components of the parameter vector 3(-) provide
a continuous model to represent spatial variation over the
voxels of the multiplicative coefficients 3:(-), ..., Bp(-), inde-
pendently of time. Since the fMRI response is subsampled
at the m scan acquisition times tq,...,t,, the fixed effect
design matrix X, constituted by the values of the fMRI re-
sponse (53) at such times, under the p different types of
stimuli considered, has dimension n x p. Note that in (53)
X is assumed to be independent of the voxel, according to
the definition of the hrf.

5.1 Description of the data set and the fixed
effect design matrix

Brain scan measurements are represented on a set of 64 x
64 x 16 voxels. Each one of such voxels represents a cube of
3.75x3.75x7 mm. At each one of the 16 depth levels or slices
S;, ¢ = 1,...,16, the brain is scanned in 68 frames, F'ry,
h=1,...,68. Equivalently, for i = 1,...,16, on the slice S;,
a 64 x 64 rectangular grid is considered, where measurements
at each one of the 68 frames are collected.

We restrict our attention to the case p = 2, where two
type of events are considered, respectively representing scans
hot stimulus (with a height hj) and scans warm stimulus
(with a height h,,). The default parameters, chosen by [32],
to generate the hrf as the difference of two gamma densities
is the row vector r = [5.4,5.2,10.8,7.35,0.35], where the
first and third parameters represent the time to peak of the
first and second gamma densities (I'; and I's), respectively;
the second and fourth parameters represent the approxi-
mate full width at half maximum (FWHM) of the first and
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Figure 19. Glover (1999) hrf model (without convoluting)
obtained by fmridesign.m Matlab function, for slices S;, with
i =1 (top) and i = 10 (bottom), until frame time
Friimes = 150 (from this, Glover hrf continues to be zero).

second gamma densities, respectively; and the fifth param-
eter (called also DIP) denotes the coefficient of the second
gamma density, for more details, see [32], about modelling
the hrf as the difference of two gamma density functions, in
the following way:

D prp (L) ,
maz(Iy) maz(Ts)

Considering TR; = 5 seconds as the temporal step
between each frame Frp, h = 1,...,68, in which
all slices are scanned, frame times will be Frymes =
(0,5,10,...,330,335) (see Figure 19). Remark that, for any
of the 68 scans, separated by TR; = 5 seconds, keep-
ing in mind that the first 4 frames are removed, 16 slices
Siy 1 =1,...,16, are interleaved every 0.3125 seconds, ap-
proximately.

The events matrix F, which will be convoluted with
the hrf, is a matrix whose rows are the events, and whose
columns are the identifier of the event type, the starting
event time, the duration of the event, and the height of the
response for the event, respectively. In our example, we have
considered a block design of 4 scans rest, 4 scans hot stim-
ulus, 4 scans rest, 4 scans warm stimulus, repeating 4 times
this block with 4 last scans rest (68 scans total). As noted
before, we remove the first 4 frames. The hot event is iden-
tified by 1 and the warm event by 2, such that h;, = 0.5 and
hy = 1. Event times, for hot and warm stimulus, will be
[20, 60, ..., 260, 300], since there are 8 frames between the
beginning of events (4 frames for the previous event and 4
frames rest). Then, our events matrix E considered is

(55) hrf =
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Design matrix X for slice 1

response

| 4 1

vV,

frame number

Design matrix X for slice 10
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20
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3

Figure 20. Design matrix X ; for the first 40 frames, and
slices S;, with i =1 (top) and i = 10 (bottom), obtained by
fmridesign.m Matlab function through the convolution of our

events matrix with the Glover (1999) hrf model.

1 20 5 05
2 60 5 1
1 100 5 05
2 140 5 1
(56) E=11 18 5 05
2 220 5 1
1 260 5 05
2 300 5 1

Convolution of matrix FE, in (56), with the hrf leads to
the set of real-valued 64 x 2 design matrices, {X;},_; 4,

implemented by fmridesgin.m Matlab function (see Figure
20).

5.2 Hilbert-valued fixed effect model fitting
to fMRI data. A comparative study

The estimation results obtained with the implementation
of the classical and Hilbert-valued linear model methodology
are now compared. Specifically, in the classical case, from the
linear model approach presented in [61], we consider fixed-
effect model fitting, in the case where the error term is an
AR(1) process, ignoring spatial correlation across the voxels.
In particular, the MatLab function fmrilm.m is implemented
to fit model (54) to a single run of fMRI data, allowing for
spatially varying temporal correlated errors. The parameters
of the spatial varying AR(1) models (from voxel to voxel) are
estimated from the sample autocorrelation of the residuals,
obtained after estimation of the fixed effect parameter by
ordinary least-squares, ignoring temporal correlation of the
errors, at each voxel. This procedure could be iterated. That
is, the estimated autocorrelation coefficient can be used to



pre-whitening the data at each voxel. Hence, the fixed effect
parameter is estimated by ordinary least-squares, from such
data. This iterative estimation procedure can be repeated
several times. However, as pointed out in [61], such itera-
tions do not lead to a substantial improvement in practice.
A variance reduction technique is then applied in [61] to
the estimated autocorrelation coefficient (reduced bias sam-
ple autocorrelation), consisting of spatial smoothing of the
sample autocorrelations. This technique reduces variability,
although slightly increases the bias.

In this subsection, we also implement the approach in-
troduced in Section 2, from the fMRI data set described in
Section 5.1. As commented before, our approach presents
the advantage of providing a continuous spatial description
of the variation of the fixed effect parameters, as well as of
the parameters characterizing the temporal correlated error
term, with autoregressive dynamics. Furthermore, the spa-
tial correlations are also incorporated to our functional sta-
tistical analysis, computed from the spatial auto-covariance
and cross-covariance kernels, respectively defining the oper-
ators Ry and R;, characterizing the functional dependence
structure of the ARH(1) error term.

Functional fixed effect model fitting is independently per-
formed at each slice S;, for ¢ = 1,...,16. Specifically, for
i = 1,...,16, as commented before, a real-valued n x p,
with p = 2, fixed effect design matrix X; is considered (see
Section 5.1). The effects of the two different events studied
are combined by the vector of functional fixed effect pa-
rameters 3;(-) = [61,i(), B2i()]T € H?. Here, H? is the
Hilbert space of 2-dimensional vector functions, whose com-
ponents are square-integrable over the spatial rectangular
grid considered at each slice. Furthermore, for i = 1,..., 16,
Yi() = [Yii()y.oo, Yai()]T is the H"-valued Gaussian
fMRI data response, with n representing the number of
frames (n = 64, since the first 4 frames are removed because
they do not represent steady-state images). In the compu-
tation of the generalized least-squares estimate of (3, the

are computed from the
k=1,..,TR

empirical covariance operators (16), where TR is selected
according to the required conditions specified, in relation to
the sample size n, in [7] (see, in particular, pp. 101-102 and
pp. 116-117 in [7], and Remark 3).

In the subsequent development, in the results obtained
by applying the Hilbert-valued multivariate fixed effect ap-
proach, we will distinguish between cases A and B, respec-
tively corresponding to the projection into two and five em-
pirical eigenvectors. For each one of the 16 slices, the tem-
poral and spatial averaged empirical quadratic errors, as-
sociated with the estimates of the response, computed with
the fmrilm.m MatLab function, and with the proposed Mul-
tivariate Hilbert-valued mixed effect approach, respectively
denoted as EFMSEy, smri and EFMSEYF, are displayed
in Tables 16 and 17.

It can be observed, in Tables 16 and 17, that the perfor-
mance of the two approaches is very similar. However, the

empirical matrices {Kk}

Table 16. EFMSEy, smrr and EFMSEy u for case A

Case A
Slices S; EFMSEYfI\/IRI EFMSEYF
1 2.4173(10) 3 | 3.4924(10) 3
2 3.0509(10)3 | 3.1191(10)"3
3 1.2027(10)°3 | 5.5226(10) 3
1 6.6657(10)"3 | 7.6896(10)" 3
5 8.0862(10)-3 | 9.0605(10)3
6 8.4617(10)"3 | 9.4336(10) 3
7 1.1078(10)"2 | 1.9195(10) 2
8 1.7203(10)-2 | 2.7199(10)~ 2
9 1.4991(10)"2 | 1.9141(10) 2
10 1.0356(10)"2 | 1.8510(10) 2
11 1.3079(10)-2 | 1.6339(10) 2
12 1.3023(10)"2 | 1.2992(10) 2
13 7.8493(10)-3 | 7.0387(10) 3
14 6.6307(10)"3 | 6.7299(10)~3
15 35111(10)°3 | 2.8316(10) 3
16 2.7706(10)"3 | 3.5398(10) 3

Table 17. EFMSEy, smuri and EFMSEy n for case B

Case B
Slices S; | EFMSEy uni | EFMSEyn
1 2.4173(10)°3 | 2.5924(10)" 3
2 3.0509(10)-3 | 3.1190(10)~3
3 1.2027(10)°3 | 4.7326(10) 3
1 6.6657(10)°3 | 7.6711(10)"3
5 8.0862(10)"3 | 9.0649(10)~3
6 8.4617(10) 3 | 8.4345(10) 3
7 1.1078(10)"2 | L.1199(10) 2
8 1.7203(10)-2 | 1.9193(10)" 2
9 1.4991(10)"2 | 1.5243(10) 2
10 1.0356(10)"2 | 1.0401(10) 2
11 1.3079(10)-2 | 1.4807(10)~ 2
12 1.3023(10)"2 | 1.2992(10) 2
13 7.8493(10) 3 | 7.9286(10)"3
14 6.6397(10)"3 | 6.7186(10)3
15 35111(10)° 3 | 2.8289(10) 3
16 2.7706(10)-3 | 3.5398(10)~3

advantage of the presented approach relies on the impor-
tant dimension reduction it provides, since, as commented
before, we have considered the truncations orders TR = 2
(Case A) and TR = 5 (Case B). Note that, for each slice, the
parameter vector has dimension 2 x (64)(64), in the model
fitted by fmrilm.m Matlab function. While the presented
approach fits the functional projected model, that, for the
the cases A and B studied, is defined in terms of a parameter
vector B with dimension 2 x 2 and 2 X 5, respectively. Fur-
thermore, the iterative estimation method implemented in
fmrilm.m requires several steps, repeated at each one of the
64 x 64 voxels in the 16 slices (data pre-whitening, ordinary
least-squares estimation of 3, and AR(1) correlation coeffi-
cient estimation iterations, jointly with the spatial smooth-
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Figure 21. Averaged in time (frames 5—68) estimated
response values for slices 1,5,10 and 15, obtained by applying
fmrilm.m MatLab function.

Figure 22. Averaged in time (frames 5—68) estimated
response values for slices 1,5,10 and 15, obtained by applying
the fixed effect approach with ARH(1) error term, for case A.

ing of the temporal correlation (reduced bias) parameter
estimates).

For the slices 1, 5, 10 and 15, the temporal averaged
(frames 5-68) estimated values of the response, applying
fmrilm.m MatLab function, and the fixed effect model with
ARH(1) error term, in cases A and B, are respectively dis-
played in Figures 21-23. The corresponding empirical time-
averaged quadratic errors are displayed in Figures 24-26,
respectively.

5.3 Significance test

We are interested in contrast the significance of the spa-
tial varying parameter vector 8 = (1(-), S2(+)), combin-
ing the effects of the two stimulus considered on the over-
all brain, in its real-valued, and H?2-valued version. The F
statistic in the MATLAB function fmrilm.m (fMRI linear
model), computed, as before, from a single run of fMRI data,
leads to the results reflected in Table 18, on the percentage
of brain voxels, where the real-valued fixed effect model with
AR(1) term is significative, for each one of the 16 slices con-
sidered.

As described in Section 3, for each slice, i.e., for i =
1,...,16, the value of the conditional chi-squared test statis-
tics Tj, in equation (35), is computed, from four realizations
of a Gaussian random function h, generated from a Gaussian
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Figure 23. Averaged in time (frames 5—68) estimated
response values for slices 1,5,10 and 15, obtained by applying
the fixed effect approach with ARH(1) error term, for case B.

Figure 24. Averaged in time (frames 5—68) empirical errors
for slices 1,5,10 and 15, obtained by applying fmrilm.m
MatLab function.

re

Figure 25. Averaged in time (frames 568 ) empirical errors
for slices 1,5,10 and 15, obtained by applying the fixed effect
approach with ARH(1) error term, for case A.

random field &, satisfying equation (51) on the rectangle con-
taining each brain slice. As before, the functional response
sample size at each slice is 64, since the first four frames
are discarded. It can be observed, in the numerical results
displayed in Table 19, for TR = 16, and in Table 20, for
TR = 4, that the null hypothesis is rejected, in most of the
random directions in all the brain slices, i.e., the functional
fixed effect model with ARH(1) error term is significative for
a = 0.05. Note that a very few p-values are slightly larger



Figure 26. Averaged in time (frames 5—68) empirical errors
for slices 1,5,10 and 15, obtained by applying the fixed effect
approach with ARH(1) error term, for case B.

Table 18. Percentage of brain voxels per slice, where the
real-valued fixed effect model with AR(1) error term, fitted by
fmrilm.m MatLab function, is significative

S | % voxels with rejection of Hp
1 99.9268 %
2 99.9268 %
3 99.7070 %
4 99.9023 %
5 99.8047 %
6 99.9512 %
7 99.9268 %
8 99.9756 %
9 99.8047 %
10 99.9512 %
11 99.9512 %
12 99.9023 %
13 99.8779 %
14 99.9512 %
15 99.9512 %
16 100 %

than a = 0.05, with very small difference, that could be
produced by the numerical errors accumulated, due to the
presence of small values to be inverted. Thus, we can con-
clude the suitability of our approach, to combine the effects
of the scans hot stimulus, and the scans warm stimulus, in
a functional spatially continuous framework.

Comparing results in Tables 18, and 19 and 20, we can
conclude that both methodologies, the one presented in [61],
and the functional approach introduced here, lead to similar
results regarding the significance of the models they propose,
respectively based on spatial varying real-valued multiplica-
tive coefficients with AR(1) error term, and Hilbert-valued
coefficients with ARH(1) error term.

6. CONCLUSIONS

As shown in the simulation study, the boundary condi-
tions affect the decay velocity at the boundary of the co-
variance kernels, defining the functional entries of the ma-

Table 19. p-values for Ty, computed at the 16 slices,
considering four random directions, for TR = 16

S D, Dy Ds Dy
1 0 0 0.082 0.023

2 | 0.59(10)~ 0 0 0

3 0.018 0.066 0.049 0.030

4 0 0 0 0.17(10)~ ™
5 0 0.026 0 0

6 0 0 0 0

7 1 0.71(10)7" 0 0 0

8 0 0.006 0 0

9 0.049 0 0 0.023

10 | 0.39(10) 7 0.031 0 0

11 0.004 0.006 0.66(10)° 0.052

12 0.046 0 0 0.034

13 | 0.34(10)~ 7 0.028 0 0.44(10)~°
14 0 0.18(10)~° 0.021 0.050

15 0 0.14(10)~" 0.044 0.052
16 | 0.11(10)~* | 0.23(10)~7 0 0

Table 20. p-values for T}, computed at the 16 slices,
considering four random directions, for TR = 4

S Dy D, Ds Dy
1 0 0.051 0.071 0.011

2 | 0.88(10)7* 0 0 0

3 0.067 0.034 0 0.037

4 0 0.25(10)~" | 0.11(10)~" 0.016

5 | 0.37(10)°° 0 0.28(10)~° 0

6 0.001 0 0 0.22(10)"*
7 0.064 0.034 0.007 0.044

8 0.072 0.079 0.035 0

9 | 0.22(10)7° | 0.47(10)"* 0.004 0.22(10)~?
10 0 0.12(10)~% | 0.37(10)"* | 0.97(10)"
11 0.081 0.058 0 0

12 | 0.87(10)~* 0 0 0.036
13 | 0.76(10) 3 0 0 0.37(10)~7
14 | 0.21(10)°° 0 0 0.037
15 0 0.65(10) " 0.032 0

16 | 0.54(10)7° 0 0 0.52(10)~7

trix covariance operator of the error term. Thus, the de-
pendence range of the error components is directly affected
by the boundary conditions. A better performance of the
generalized least-squares estimator of the parameter vector
B is observed, when a fast continuous decay is displayed
by the error covariance kernels close to the boundary, as
it is observed in the circular domains. Furthermore, in the
simulation study undertaken, and in the real-data problem
addressed, a good performance of the computed generalized
least-squares estimator, and of the test statistics is observed
for low truncation orders. Thus, an important dimension
reduction is achieved with the presented approach. Summa-
rizing, the proposed approach allows the incorporation of
temporal and spatial correlations in the analysis, with an
important dimension reduction.
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The derivation of similar results under alternative bound-
ary conditions like Neumann and Robin boundary condi-
tions constitutes an open research problem (see, for exam-
ple, [33]). Another important research problem is to address
the same analysis under a slow decay of the error covariance
kernels at the boundary (see, for example, [29], [37], [57],
beyond the Gaussian context).

APPENDIX

The eigenvectors and eigenvalues of the Dirichlet negative
Laplacian operator on the regular domains defined by the
rectangle, disk and circular sector are described here (see, for
example, [33]). It is well-known that the negative Laplacian
operator —Ap on a regular bounded open domain D C R?,
with Dirichlet boundary conditions, is given by

0? 0?
—Ap(f)(z1,22) = _8—x%f(xl’x2) - 8—x%f(3317$2)

(57)  f(x1,22) =0, Y(21,22) € 0D, D C R?,

where 0D is the boundary of D. In the subsequent devel-
opment, we will denote by {¢x},~, and {\,(=Ap)},~, the
respective eigenvectors and eigenvalues of —A p, that satisfy

—Apdi (x) = \(—Ap)dr (x) (x€ D CR?),
¢ (x)=0 (x€dD), Vk>1,

(58)
(59)
for D being one of the following three domains: D; =
[T, [ai,bi], D2 = {x€R?: Ry < ||x|| < R}, and D; =
{xeR?: Ry<|[x| <R, and 0 < ¢ <7}

A.1 Eigenvectors and eigenvalues of
Dirichlet negative Laplacian operator on
rectangles

Let us first consider domain D; = Hle [ai,b;]. The

eigenvectors {¢x Jrxen2 and eigenvalues {A\(—Ap, ) fxenz of
—Ap, are given by (see [33]):

o (x) = o) (@) o) (), M= AL + AL,
W (z) = sin (W]?xl)’
Va; € [;i,bi}, i=1,2,
(60) AP = ”2]“2'2, ki>1,i=1,2,

?
where I; = b; — a;, for i = 1,2.

A.2 Eigenvectors and eigenvalues of
Dirichlet negative Laplacian operator on
disks

In general, for the circular annulus
D, ={xeR?*: Ry <|x|| <R},

its rotation symmetry allows us to define —A p, in polar
coordinates as
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1 92
2 0p?

9 190
or2  ror

T1 =TCOSp, Ta =Tsine.

—Ap =-—
(61)

The application of variable separation method then leads to
the following explicit formula of its eigenfunctions (see, for
example, [33])

(62)

Grnt (r,0) = [Tk (arnr/R) + cknYi (unr/R)] % Cy (1)
with
| cos(ky) 1=1,
Ci(l) = { sin (k) 1=2 (k #0),

where {Jj ()} and {Y% (2)} are the Bessel functions of or-
der k of first and second kind, respectively, {Axx (—A 52) =

a?, /R?} are the corresponding eigenvalues, and the sets
{@kntpz1, n=1, arery a0 {Ckntps p=1, k) are defined
from the boundary conditions at r = R and r = Ry.

If we focus on domain D5, the disk, i.e., Ry = 0, the coef-
ficients {cxn}ty>, h=1,....0(k) ateset to 0. The eigenfunctions
then adopt the following expression:

(63)  Srni(r,p) = Jik(agnr/R)Cr(l), 1=1,2,
with eigenvalues

agy,
(64) )\kh(fADz):ﬁ7 kZI, h:]-avM(k)a

where {akn},_; ) are the M(k) positive roots of the

Bessel function Jj, (z) of order k. Note that we can also con-
sider truncation at parameter M (k) for k > 1, since this
parameter increases with the increasing of the radius R.

A.3 Eigenvectors and eigenvalues of
Dirichlet negative Laplacian operator on
circular sectors

Lastly, we consider domain Ds, the circular sector of ra-

dius R and angle 0 < ¢ < wf. The eigenvectors and eigenval-

ues are given by the following expression (see, for example,
[33]):

(65)  Gkn (1,9) = Jiyo (agnr/R)sin (kp/0), r € [0, R],
(66) Mgn (—Ap,) = O‘R_éh’ k>1, h=1,...,M(k),

with M (k) and {okn}ty>q p1,. ark) Peing given as in the
previous section.

A.4 Asymptotic behavior of eigenvalues
A.4.1 The rectangle

The functional data sets generated in Section 4 must have
a covariance matrix operator with functional entries (oper-
ators) in the trace class. We then apply the results in [60]
to study the asymptotic order of eigenvalues of the integral
equation
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R2
In our case, V is the indicator function on the rectangle, i.e.,
on domain Dy, and ., is the covariance kernel defining the
square root

(68) RY2 = fi(~Ap,) = (~Ap,)~ ), 5, € (0,d/2),

of the auto-covariance operator of the Hilbert-valued error
component ¢;, for i = 1,...,n, with R.,., = R;{iR;{i
Note that with the choice made of functions V and I[,,
i = 1,...,n, the conditions assumed in [60] are satisfied.
In particular, the following asymptotic holds:

(69) Ap(RY2) = O(k26@=9)/?) |00, i=1,...,n
(see equation (2) in p.279 in [60]). Also, in general, the eigen-
values of the Dirichlet negative Laplacian operator on a reg-
ular bounded open domain D satisfy

(T (1+ &)™

2/d
D K24,

(70)  y(—Ap) ~ 4r k — 0.

A.4.2 Asymptotic behavior of zeros of Bessel functions

As before, we denote by Jj, (z) the Bessel function of the
first kind of order k. Let {jkn},_;  arx) be its M(k) roots.
In [24], [46] and [47], it is shown that, for a fixed h and large
k, the Olver’s expansion holds

(71) Jkn =k + k2 + O3,k — oo

On the other hand, for fixed k¥ and large h, the McMa-
hon’s expansion also is satisfied (see, for example, [59])

(72) gen =7 (h+k/2—=1/4) +O(h™) h— cc.

These results will be applied in Section 4, in the definition
of the eigenvalues of the covariance operators R...,, i =
1,...,n,on the disk and circular sector, to ensure their rapid
decay to zero, characterizing the trace operator class.
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