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Empirical likelihood bivariate nonparametric
maximum likelihood estimator with right censored
data and continuous covariate

Jian-Jian Ren
∗

Recently, Ren and Riddlesworth (2014) derived the em-
pirical likelihood-based bivariate nonparametric maximum
likelihood estimator (BNPMLE) F̂n(t, z) for the bivariate
distribution function F0(t, z) of survival time T and covari-
ate variable Z based on bivariate data where T is subject to
right censoring. They showed that such BNPMLE F̂n(t, z) is
a consistent estimator of F0(t, z) when variable Z is discrete.
Despite all nice properties of the BNPMLE F̂n(t, z) shown
in Ren and Riddlesworth (2014), in this article we show
that surprisingly such F̂n(t, z) is not a consistent estimator
when the covariate variable Z is continuous. On the other
hand, interestingly our simulation studies suggest that some
remedy adjustments on F̂n(t, z) based on the usual empiri-
cal likelihood treatments and the censoring mechanism may
provide consistent estimators for F0(t, z) with continuous
covariate Z.
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Keywords and phrases: Bivariate data, Bivariate right
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1. INTRODUCTION

In the analysis of survival data, we often encounter situa-
tions where the response variable is the survival time T and
is subject to right censoring, but the p -dimensional vector
Z of covariates with components such as treatments, gen-
der, age, etc., are completely observable. For simplicity of
presentation, here we consider the case that covariate Z is
a scalar rather than a vector, i.e., Z with dimension p = 1,
while it should be noted that with minor modifications, the
generalization of the main results in this article to multivari-
ate case with p > 1 is straightforward. Specifically, suppose
that

(1.1) (T1, Z1), (T2, Z2), · · · , (Tn, Zn)

is a random sample of (T, Z), but the actually observed sur-
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vival data are the bivariate data with one coordinate subject
to random right censoring as follows:

(1.2) (V1, δ1, Z1), (V2, δ2, Z2), · · · , (Vn, δn, Zn),

where Vi = min{Ti, Ci}, δi = I{Ti ≤ Ci}, and Ci is the right
censoring variable with distribution function (d.f.) FC and is
independent of (Ti, Zi). In practice, if one wishes to use the
nonparametric approach (i.e., without imposing any model
assumptions) in the study of the relation between the right
censored response variable T and the completely observable
covariate variable Z, a natural thing to do is to estimate the
bivariate distribution function F0(t, z) of (T, Z) based on ob-
served survival data. Recently, Ren and Riddlesworth (2014)
derived the bivariate nonparametric maximum likelihood es-
timator (BNPMLE) F̂n(t, z) for F0(t, z) based on data (1.2)
using the empirical likelihood method (Owen, 1988), and
studied asymptotic properties of such F̂n(t, z) under certain
conditions.

As reviewed in Ren and Riddlesworth (2014), there have
been some limited works on the bivariate d.f. estimation
of F0(t, z) in the literature. For instance, Akritas (1994)
constructed an estimator F̂A for F0(t, z) with data (1.2)
using the conditional survival distribution and kernel es-
timator approach, thus estimator F̂A is kernel and band-
width dependent, and is not a maximum likelihood es-
timator in any sense. Other related works include: Lin
and Ying (1993) who considered the problem that both
components Ti and Zi in sample (1.1) are subject to the
same univariate right censoring simultaneously; Dabrowska
(1988, 1989) who considered the bivariate right censored
data, i.e., each component of (Ti, Zi) in sample (1.1) is
subject to its own right censoring variable; van der Laan
(1996) who considered a less related problem in which set-
ting the bivariate right censoring vector is discrete and
always observed. The work most closely related to the
BNPMLE F̂n(t, z) by Ren and Riddlesworth (2014) is that
by Ren and Gu (1997) who constructed a bivariate distri-
bution function estimator based on bivariate survival data
which is subject to double censoring in one coordinate.
Since right censoring is a special case of double censor-
ing, our above data (1.2) is a special case of that consid-
ered in Ren and Gu (1997). The estimator by Ren and Gu
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(1997) was given by the product of the empirical distribu-
tion estimator for FZ(z) and the conditional NPMLE for
P{T ≤ t |Z ≤ z}, which is the univariate version of the
NPMLE for doubly censored data given by Mykland and
Ren (1996).

In terms of applications, the problem with data (1.2) is
encountered far more frequently in practical situations than
other types of bivariate survival data mentioned above. In
terms of methodology, except the BNPMLE F̂n(t, z) by Ren
and Riddlesworth (2014), most estimators proposed for bi-
variate data subject to censoring are ad hoc, and either are
kernel and bandwidth dependent (e.g., Akritas, 1994) or
contain negative probability masses; see discussions in van
der Laan (1996). For instance, both bivariate distribution
estimators by Dabrowska (1988) and Ren and Gu (1997)
contain negative probability masses, thus not monotone in
bivariate sense.

The BNPMLE F̂n(t, z) for F0(t, z) based on data (1.2) by
Ren and Riddlesworth (2014) has many nice properties and
reveals many interesting discoveries. Ren and Riddlesworth
(2014) showed the following: (i) F̂n(t, z) has an explicit ex-
pression and is unique in the sense of empirical likelihood;
(ii) the conditional distribution function of T given Z under
F̂n(t, z) is of the same form as the Kaplan-Meier estimator
for the univariate case; (iii) F̂n(t, z) is the sum of the prod-
ucts of the marginal NPMLE for FZ(z) and the conditional
NPMLE (i.e., the Kaplan-Meier estimator) for F (t|Z = z);
(iv) F̂n(t, z) has only nonnegative probability masses, thus is
monotone in bivariate sense; (v) the marginal d.f. F̂n(∞, z)
coincides with the empirical d.f. of the covariate sample Zi’s;
(vi) F̂n(t, z) coincides with the bivariate empirical distribu-
tion function when there is no censoring; (vii) the strong
consistency and weak convergence of F̂n(t, z) hold for dis-
crete covariate Z.

However, despite all above nice properties of the
BNPMLE F̂n(t, z) (Ren and Riddlesworth, 2014), in this
article we show that surprisingly such F̂n(t, z) is not a con-
sistent estimator when the covariate variable Z is continu-
ous. On the other hand, interestingly our simulation studies
suggest that some remedy adjustments on F̂n(t, z) based on
the usual empirical likelihood treatment and the censoring
mechanism may provide consistent estimators for continu-
ous covariate Z.

The main results of this article are organized as follows.
In Section 2, we present the BNPMLE F̂n(t, z) for F0(t, z)
with data (1.2) which is derived and studied by Ren and Rid-
dlesworth (2014), and with proofs deferred to Section 4 we
show that F̂n(t, z) is an inconsistent estimator for F0(t, z)
with continuous covariate Z. At the end of Section 2, we
provide discussions on the extension of our main results to
the case of p -variate covariate Z with p > 1. Section 3 dis-
cusses intuitive interpretation of the inconsistency results
and some remedies for such an issue, then presents some sim-
ulation results along with some comparison and concluding
remarks.

2. NONPARAMETRIC MAXIMUM
LIKELIHOOD ESTIMATOR

To state empirical likelihood-based bivariate maximum
likelihood estimator (BNPMLE) F̂n(t, z) for F0(t, z) of
(T, Z) with data (1.2) given by Ren and Riddlesworth
(2014), we let

(2.1)
U1 < · · ·<Um be all distinct values amongV1, · · · , Vn

Y1 < · · ·<Yq be all distinct values amongZ1, · · · , Zn

and we denote for 1 ≤ i ≤ m, 1 ≤ j ≤ q:

(2.2)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

nij =

n∑
k=1

I{Vk = Ui, Zk = Yj}

δij =

n∑
k=1

I{Vk = Ui, δk = 1, Zk = Yj}

Nij = nij + · · ·+ nmj =

n∑
k=1

I{Vk ≥ Ui, Zk = Yj}

mj = max {k |nkj > 0}.

Ren and Riddlesworth (2014) show that in the sense of
the empirical likelihood method, the BNPMLE F̂n(t, z) for
F0(t, z) is uniquely given by the following:

(2.3)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

F̂n(t, z) =

m∑
i=1

q∑
j=1

p̂
ij
I{Ui ≤ t, Yj ≤ z},

for t ≤ Um, z ∈ R

p̂
ij

=
( δij
Nij

)(N1j

n

) i−1∏
k=1

(
1− δkj

Nkj

)
,

for 1 ≤ i ≤ m, 1 ≤ j ≤ q

p̂
m + 1, j

= PF̂n
{T > Um, Z = Yj }

=
(N1j

n

)
−

m∑
i=1

p̂
ij
, for 1 ≤ j ≤ q

where notation
∏0

k=1 ck ≡ 1 is used, and 0/0 is set as 0
whenever it occurs.

Note that (2.2) implies that for any 1 ≤ j ≤ q,

(2.4)

⎧⎪⎨
⎪⎩

nmj ,j > 0 ⇒ N1j ≥ N2j ≥ · · · ≥ Nmj ,j > 0

nij = δij = Nij = 0,

for mj < i ≤ m when mj < m.

Thus, in (2.3) we have that for any 1 ≤ j ≤ q,

(2.5)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

p̂
ij

= 0, for mj < i ≤ m

p̂
mj + 1, j

= PF̂n
{T > Umj , Z = Yj }

= p̂
m + 1, j

= PF̂n
{T > Um, Z = Yj }.

For discussions and proofs on the structure and those
properties (i)-(vii) of BNPMLE F̂n(t, z) listed in Section
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1 as well as its relation to the estimator by Ren and Gu
(1997), see Ren and Riddlesworth (2014). With the proofs
deferred to Section 4, the following theorem shows that the
BNPMLE F̂n(t, z) for F0(t, z) is an inconsistent estimator
when the covariate variable Z is continuous.

Theorem 1. For right censored bivariate survival data
(1.2), assume that covariate variable Z and variable V =
min{T,C} are continuous. Then, under the usual conditions
on the empirical distribution function, we have

(2.6) sup
t, z∈R

|F̂n(t, z)− F1(t, z)| a.s.→ 0, as n → ∞

where F1(t, z) = P{V ≤ t, δ = 1, Z ≤ z} 	= F0(t, z).

Remark 1 (Meaning of Theorem 1). It is interesting to note
that Theorem 1 is saying that with censored bivariate data
(1.2), the bivariate maximum likelihood distribution estima-
tor F̂n(t, z) constructed in the sense of ordinary likelihood
is inconsistent for continuous variable Z, although F̂n(t, z)
coincides with the usual bivariate empirical d.f. when there
is no censoring (see Corollary 3 of Ren and Riddlesworth
(2014)). But from Ren and Riddlesworth (2014), this same
distribution estimator F̂n(t, z) is consistent when variable Z
is discrete.

Remark 2 (Extension to p -Variate Z with p > 1). If
Zi’s in (1.2) is p -variate with p > 1 containing at least
one component that is continuous, then we let Y j ∈ R

p in
(2.1), now without ordering, represent all distinct vectors of
Z1, . . . ,Zn. Since p -variate Zi contains at least one com-
ponent that is continuous, we know that with probability 1,
vectors Z1, . . . ,Zn are all distinct, thus q = n in (2.1). Fol-
lowing the proofs of Theorem 1 given in Section 4, with some
minor modifications we can show that above theorem holds
for p -Variate Z with p > 1, where Yj ≤ z and Z = Yj are
replaced by Y j ≤ z and Z = Y j , respectively, with the use
of the following notations: (Y j ≤ z) ≡ (Y1j ≤ z1, . . . , Ypj ≤
zp).

3. REMEDIES AND SIMULATIONS

Theorem 1 shows that the BNPMLE F̂n(t, z) for F0(t, z)
given by Ren and Riddlesworth (2014) is inconsistent esti-
mator when variable Z in right censored bivariate survival
data (1.2) is continuous. This section considers the issues of
remedies for such inconsistency and presents some simula-
tion results.

Intuitive interpretation First, there is not an obviously in-
tuitive interpretation for the inconsistency result we obtain
in Theorem 1 of Section 2, which is why the discovery of
such a fact is surprising. On the other hand, the follow-
ing facts and observations may be helpful for us to see
some light in this regard and find the remedies. It is well
known that in the univariate data case, the Kaplan-Meier
estimator F̂KM (t) based on right censored data (Vi, δi)’s

in (1.2) is an NPMLE for d.f. FT (t) of T , but it is not
always a proper d.f. because F̂KM (∞) < 1 if the largest
value among observed Vi’s is right censored (Kaplan and
Meier, 1958; Shorack and Wellner, 1986). In practice, we
usually compute the adjusted version of F̂KM (t) by set-
ting 1 as the value of the NPMLE at the largest obser-
vation of the Vi’s; this kind of adjustment of the NPMLE
is a generally adopted convention for right censored data
(Efron, 1967; Miller, 1976). For bivariate survival data (1.2),
BNPMLE F̂n(t, z) given in (2.3) for F0(t, z) was obtained
based on the empirical likelihood method which restricts
all possible candidates to those bivariate d.f.’s that assign
all their probability masses to points (Ui, Yj) in (2.1) and
line segments Lj = {(t, Yj) ∈ R

2 ; Um < t < τ
T
} for

1 ≤ i ≤ m, 1 ≤ j ≤ q, where τ
T

is from the support
(0, τ

T
) of survival time T and may be a finite number or

∞; see Ren and Riddlesworth (2014) for details. Such a
method is similar to the derivation of the Kaplan-Meier es-
timator F̂KM (t) for the univariate survival data case. In the
case of univariate data, the Kaplan-Meier estimator F̂KM (t)
places [1 − F̂KM (Um)] as the estimated probability mass
on line segment L = (Um, τ

T
), and [1 − F̂KM (Um)] con-

verges to 0 as n → ∞ because Um = V(n) converges to

τ
T

in usual situation. Thus, F̂KM (t) is a consistent estima-
tor of FT . In the case of discrete Z in (1.2) with a con-
stant q in (2.1), we have q < n, thus as n → ∞, for any
1 ≤ j ≤ q the number of Vi’s observed on each line segment
{(t, Yj) ∈ R

2 ; 0 < t < Um} goes to ∞. Hence, as shown

in Ren and Riddlesworth (2014), the BNPMLE F̂n(t, z) is
a consistent estimator of F0(t, z) for discrete variable Z. In
the case of continuous Z in (1.2), with probability 1 we
know that q = n in (2.1), and that if for certain (Ui, Yj)
there exists k such that (Vk, Zk) = (Ui, Yj) with δk = 1,
it means Ui = Vk = Tk is not a censored observation and
the BNPMLE F̂n(t, z) gives 1/n as the probability mass
at point (Vk, Zk) = (Ui, Yj); however, if δk = 0, it means
Ui = Vk = Ck is a right censored observation and the
BNPMLE F̂n(t, z) assigns 1/n as the probability on line
segment {(t, Yj) ∈ R

2 ; Umj < t < τ
T
} due to (2.2)-(2.5),

because there is no other l 	= k such that Vl 	= Ui and
Zl = Yj , noting that just like the Kaplan-Meier estima-

tor, the BNPMLE F̂n(t, z) does not actually specify how
the probability 1/n is assigned on line segment {(t, Yj) ∈
R

2 ; Umj < t < τ
T
}. In other words, with continuous vari-

able Z in (1.2), we know that with probability 1, for any
1 ≤ j ≤ q = n there is exactly one of Vi’s observed on line
segment {(t, Yj) ∈ R

2 ; 0 < t < Um}, and if such an obser-

vation is censored, the BNPMLE F̂n(t, z) assigns 1/n as the
probability on line segment {(t, Yj) ∈ R

2 ; Umj < t < τ
T
},

which contains no observed data points (Vi, Zi)’s. With the
understanding on these points, in the rest of this section
we consider the remedies for the inconsistency issue with
continuous Z and some simulation results for the bivari-
ate survival data (1.2), which serves as explorative studies
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Table 1. Comparison of F̂0n, F̂n, F̂nn, F0 with Right Censored Samples

Average Average Average

Sample Size ‖F̂0n − F0‖ (s.d.) ‖F̂n − F0‖ (s.d.) ‖F̂nn − F0‖ (s.d.)

n = 50 0.2149 (.0741) 0.1286 (.0386) 0.1339 (.0399)
n = 100 0.2320 (.0603) 0.0988 (.0284) 0.1032 (.0293)
n = 200 0.2508 (.0445) 0.0764 (.0222) 0.0801 (.0226)
n = 500 0.2711 (.0279) 0.0553 (.0142) 0.0573 (.0147)
n = 1000 0.2827 (.0218) 0.0451 (.0106) 0.0469 (.0108)

Distributions FT |Z = Exp(Z), FC = Exp(3), F ′
Z(z) = 2z−2I{1 < z < 2}

Censoring % 31.4%− 31.6%

before getting into the situation with multidimensional co-
variate Z.

No adjustment If we do not do any usual adjustment above
mentioned (like the one for the Kaplan-Meier estimator
F̂KM (t)) for the BNPMLE F̂n(t, z) in its computation, then
it is not a proper d.f. and we denote it as F̂0n(t, z).

Naive adjustment As pointed out above and in Ren and
Riddlesworth (2014), one practical issue in the actual com-
putation of BNPMLE F̂n(t, z) that needs to be noted is that
in (2.3) we have p̂

m + 1, j
> 0 for some j’s, which is the same

issue as that with the Kaplan-Meier estimator in the uni-
variate case. Due to equation (2.5), a natural thing to do
is to evenly distribute the probability mass p̂

m + 1, j
, when-

ever positive, to points (Umj+1, Yj), · · · , (Um, Yj), because
in the line segment {(t, Yj) ∈ R

2 ; Umj < t < τ
T
} we at

the best only observe Umj+1, · · · , Um on T from the avail-
able data (1.2). We call this the naive adjusted BNPMLE,
still denoted by F̂n(t, z). All simulation results presented in
Ren and Riddlesworth (2014) are conducted for such naive
adjusted BNPMLE F̂n(t, z) with discrete or continuous Z,
and they compare well with the bivariate distribution esti-
mator F̂RG(t, z) by Ren and Gu (1997) for right censored
data (1.2).

Neighborhood adjustment However, it should be noted that
the above method of naive adjustment of the BNPMLE
F̂n(t, z) implies the assumption that the support of F0(t, z)
is rectangular, which may not always be the case in practical
situations. A natural way to avoid such issue for continuous
Z is to evenly distribute the probability mass p̂

m + 1, j
for

each given j, whenever positive, to points Vi’s which are
greater than Umj and have corresponding Zi’s fall in the
neighborhood of Yj : (Yj −d, Yj +d), where d is the radius of
the neighborhood. We call this the neighborhood adjusted
BNPMLE, denoted by F̂nn(t, z).

To compare the performance of F̂0n(t, z), F̂n(t, z) and
F̂nn(t, z) with continuous covariate variable Z, we conduct
simulation studies on the example presented in Table 3 of
Ren and Riddlesworth (2014). Let Exp(μ) represent the ex-
ponential distribution with mean μ. Our simulation studies
consider right censored data (1.2) with FC = Exp(3) as

the d.f. of right censoring variable C, FT |Z = Exp(Z) as
the conditional d.f. of T given Z, where Z is a continuous
r.v. with p.d.f. F ′

Z(z) = f
Z
(z) = 2/z2 if 1 < z < 2; 0,

elsewhere. To compare the performance of F̂0n(t, z), F̂n(t, z)
and F̂nn(t, z) with the d.f. F0(t, z) of (T, Z), we generate
1000 such samples (1.2) with n = 50, 100, 200, 500, 1000, re-
spectively. For each n, Table 1 includes the right censoring
percentage of the generated samples, and includes the simu-
lation average of ‖F̂0n−F0‖, ‖F̂n−F0‖ and ‖F̂nn−F0‖ with
the simulation standard deviation (s.d.) given in the paren-
thesis, where the uniform norm ‖ · ‖ is taken over all sample
points (Vi, Zi), i = 1, . . . , n. For the neighborhood adjusted
BNPMLE F̂nn(t, z), the radius of the neighborhood we used
in our simulation studies is d = [Z(n) − Z(1)]/

√
n.

Remark 3. Note that in the example we consider for Table
1, T and Z are dependent. The simulation results in Table
1 show that the naive adjusted BNPMLE F̂n(t, z) and the
neighborhood adjusted BNPMLE F̂nn(t, z) have similar per-
formances, while non-adjusted BNPMLE F̂0n(t, z) performs
poorly. In our additional simulation studies, we also con-
sidered different choices of the radius d for F̂nn(t, z), but
the results do not appear to be significantly different from
what’s presented in Table 1. In practice, the neighborhood
adjusted BNPMLE F̂nn requires the choice of radius d, thus
not so desirable, but it is applicable in situations when the
support of F0(t, z) is not rectangular. The proofs on the
consistency of these adjusted BNPMLE’s need further stud-
ies, and will be considered in a separate paper. In this con-
text, we note that other types of adjustments, such as kernel
method, etc., may also be considered as possible remedies
for the inconsistency issue of BNPMLE F̂n(t, z) with con-
tinuous covariate Z.

4. PROOFS

Proof of Theorem 1. Without loss of generality, we con-
sider the case that there are no ties among Vi’s and there
are no ties among Zi’s. Then, we have m = q = n in (2.1),
and we may assume:

(4.1) V1 < V2 < · · · < Vn,
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in turn, we have in (2.1):

(4.2) Ui = Vi and Yj = Z(j), for i, j = 1, 2, · · · , n

where Z(j)’s are the order statistics among Z1, · · · , Zn.
Thus, if we denote

(4.3) kj = { k |Zk = Z(j) }, j = 1, 2, · · · , n

then from (2.2) we obtain

(4.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

δij =

n∑
k=1

I{Vk = Vi, δk = 1, Zk = Z(j)}

= δiI{Zi = Z(j)}

Nij =

n∑
k=1

I{Vk ≥ Vi, Zk = Z(j)}

=

n∑
k=i

I{Zk = Z(j)} = I{kj ≥ i}.

Notice that N1j ≡ 1 and

(4.5)
I{Zi = Z(j)}
I{kj ≥ i} =

⎧⎨
⎩

1 if Zi = Z(j)

0 otherwise .

Hence, p̂
ij
’s in (2.3) can be simplified as:

p̂
ij

=
( δij
Nij

)(N1j

n

) i−1∏
k=1

(
1− δkj

Nkj

)
(4.6)

=
δiI{Zi = Z(j)}
nI{kj ≥ i}

i−1∏
k=1

(
1−

δkI{Zk = Z(j)}
I{kj ≥ k}

)

=
δiI{Zi = Z(j)}

n

i−1∏
k=1

(
1− δkI{Zk = Z(j)}

)

=
δi
n
I{Zi = Z(j)}.

Therefore, in (2.3) the proof follows from

F̂n(t, z)

=

n∑
i=1

n∑
j=1

δi
n
I{Zi = Z(j)}I{Vi ≤ t, Z(j) ≤ z}

=
1

n

n∑
i=1

n∑
j=1

δiI{Vi ≤ t, Zi = Z(j) ≤ z}

=
1

n

n∑
i=1

δiI{Vi ≤ t}
( n∑

j=1

I{Zi = Z(j) ≤ z}
)

(4.7)

=
1

n

n∑
i=1

δiI{Vi ≤ t, Zi ≤ z}
( n∑

j=1

I{Zi = Z(j)}
)

=
1

n

n∑
i=1

δiI{Vi ≤ t, Zi ≤ z}

=
1

n

n∑
i=1

I{Vi ≤ t, δi = 1, Zi ≤ z}.
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