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Fitting real data by means of non-homogeneous
lognormal diffusion processes
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In order to achieve a good fit to real data that evolve
over time and whose observed trend shows deviations with
respect to an exponential shape, a non-homogeneous log-
normal diffusion process with time dependent infinitesimal
mean and variance is considered. Such model provides a
more flexible structure of the variance than that of the non-
homogeneous diffusion process only in its infinitesimal mean,
allowing to reproduce the behaviour of the observed data
more accurately and enable us to tackle problems in which
data variability plays a fundamental role with a higher de-
gree of reliability. A procedure for the estimation of the time
functions included in the infinitesimal mean and variance is
proposed and hypothesis testing to confirm or refute the
need for considering non-homogeneous processes to fitting
real data are designed. A simulation study corroborates the
validity of the proposed estimation procedure. Finally, a real
data application of a patient-derived xenograft (PDX) tu-
mor model is performed.
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1. INTRODUCTION

In a wide range of applied scientific fields, the available
data originate from the observation of continuous random
variables vary exponentially, at least for a limited time in-
terval. In this context, lognormal diffusion processes have
been widely used as a stochastic model for the fitting of
data. The homogeneous version of this process, with an ex-
ponential trend which justifies using its mean function both
for fitting and for forecasting purposes, has been employed
in modeling neuron activity (Ricciardi and Lánsky, [12]),
Consumer Price Index (Al-Eideh et al. [1]) and river flows
(Lefebvre, [10]), among other phenomena. A non homoge-
neous version including a time dependent function in its
infinitesimal mean allows for a more appropriate fit to data
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whose observed trend shows deviations with respect to the
exponential shape. These deviations can be due to factors
that are intrinsic to the evolution of the phenomenon under
study as well as to external influences. So far, some works
have employed this version to consider the influence of cer-
tain economic variables on the evolution of the Gross Na-
tional Product (Gutiérrez et al. [6]) or of housing prices in
Spain (Gutiérrez Jáimez et al. [7]), as well as the influence of
a therapy in the growth of specific tumors (Román-Román
and Torres-Ruiz [14]).

This model is defined, in general, by means of a stochastic
differential equation of the type

dX(t) = h(t)X(t)dt+ σX(t)dW (t), t ≥ t0,

where h(t) is a continuous function ∀t ≥ t0 and σ > 0. This
equation is obtained from the ordinary differential equation
of Malthusian growth with a dependent time fertility rate by
including a random component such as a white noise with
constant variance. The use of the appropriate functions h(t)
leads to models that fit acceptably the mean of the growth
variable under study. However, it may be that these models
do no reflect properly the variance of the sample paths of the
process due to a poor flexibility of the variance structure.
Concretely,

V ar[X(t)] = (E[X(t)])2
(
eσ

2(t−t0) − 1
)
,

from where

(1) log

(
1 +

V ar[X(t)]

(E[X(t)])2

)
must be a linear function with positive slope. So when fitted
to real data, the model may be good enough to reproduce
mean behavior, but not variability.

The introduction of a time-dependent noise leads to a
stochastic process with infinitesimal variance which is also
dependent on time, thus resulting in a more flexible struc-
ture for the variance. Thereby, the obtained process also
allows to reproduce the variability of observed data more
reliably. Several models of this type have already been con-
sidered in various fields of application dealing with stochas-
tic processes. Such has been the case, for instance, of the
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study of queueing systems by means of diffusion approxi-
mations (Giorno et al. [5]), of the study of neuron mod-
els using an Ornstein-Uhlenbeck process (Buonocore et al.,
[4]), of the study of population growth using a lognormal
process (Khodabin et al. [8]), or the use of a Gompertz pro-
cess for modeling tumor growth in the presence of therapies
(Román-Román et al. [15]).

In this paper, we will consider non homogeneous versions
of the lognormal diffusion process both for the mean and
for the infinitesimal variance. The resulting models allow
for a more faithful reproduction of the behavior of observed
data, and enable us to tackle problems in which data vari-
ability plays a fundamental role (like the first-passage-time
problem) with a higher degree of reliability.

To begin with, we will introduce the general model, de-
scribing its main features and how they relate to our proce-
dure for the estimation of the time functions included. By
analyzing the afore mentioned procedure we will be able to
set the conditions that the available data must meet for a
good fitting to be possible.

Given that the model we introduce is a generalization
of simpler models in which functions included in the mean
and infinitesimal variance could be independent on time, we
address the problem of the maximum likelihood (ML) esti-
mation of the constant parameter included in each of the
infinitesimal moments when the time function included in
the other one is known or can be approximated beforehand.
Keeping in mind our goal of fitting the model to real data,
we test some hypotheses to find out whether or not the use
of non homogeneous models is justified. Furthermore, study-
ing the errors incurred in fitting the model to the observed
means and variances may provide additional criteria for the
selection of the more appropriate model.

A simulation study is used to corroborate the validity of
the proposed estimation procedures. Finally, a real data ap-
plication of a patient-derived xenograft (PDX) tumor model
is performed.

2. THE GENERAL NON-HOMOGENEOUS
MODEL

From the ordinary differential equation of Malthusian
growth, limited to a bounded time interval1,

dx(t)

dt
= rx(t), t0 ≤ t ≤ T,

replacing the fertility rate r (deterministic and constant)
by a deterministic fertility depending on time, h(t), and
then replacing this fertility with h(t)+Λ(t), where Λ(t) is a
white noise with time-dependent variance v(t), the following
Langevin equation is obtained:

dX(t)

dt
= h(t)X(t) +X(t)Λ(t), t0 ≤ t ≤ T

1Since it is our goal to fit real data observed in a given time interval,
the model will have to be defined in said interval.

which, rewritten in the usual form for stochastic differential
equations, leads to

(2) dX(t) = h(t)X(t)dt+
√

v(t)X(t)dW (t), t0 ≤ t ≤ T,

where W (t) denotes the standard Wiener process.
The solution of (2) is a non-homogeneous diffusion pro-

cess {X(t); t ∈ [t0, T ]} taking values in R+ and with in-
finitesimal moments

(3)
A1(x, t) = h(t)x

A2(x, t) = v(t)x2,

with h(t) and v(t) continuous functions in [t0, T ], and v(t) >
0, ∀t ≥ t0.

By considering an appropriate transformation (following
Ricciardi, [11]) that changes the Kolmogorov equation of
this process into that of the Wiener process, the transition
probability density function (p.d.f.) of the process can be
obtained. Concretely,

X(t)/X(s) = y ∼ Λ

(
log(y) +

∫ t

s

h(τ)dτ

−1
2

∫ t

s

v(τ)dτ,

∫ t

s

v(τ)dτ

)
.

To ensure that all finite dimensional distributions of the
process are lognormal, the initial distribution should be con-
sidered either degenerate or lognormal. Moreover, we should
note that the process defined as Y (t) = X(t)/X(t0) has
the same infinitesimal moments2 as X(t), and therefore the
same transition p.d.f. The only difference between the pro-
cesses is that Y (t) has a degenerate initial distribution3 at
1. Therefore, for the purposes of this paper (to estimate
functions h(t) and v(t)) we need only focus on the degener-
ate case, that is P [X(t0) = x0] = 1 (in particular, the case
x0 = 1). In such a case, the mean and variance functions are

E[X(t)] = E[X(t)|X(t0) = x0] = x0 exp

(∫ t

t0

h(τ)dτ

)
,

(4)

V ar[X(t)] = V ar[X(t)|X(t0) = x0]

= (E[X(t)])2
[
exp

(∫ t

t0

v(τ)dτ

)
− 1

]
.

Note that, in this case, function given by (1), or equiv-
alently V ar[X(t)]/(E[X(t)])2, must be a increasing func-
tion (condition much less restrictive than those for the
non-homogeneous diffusion process only in the infinitesimal
mean).

2The proof can be performed by applying the generalized Itô’s formula
(see Theorem 3.4.2 in [9]) to f(X(t), t) = X(t)/X(t0), which yields the
same stochastic differential equation that X(t) verifies.
3Note that with real growth data, consideration of the process Y (t)
involves the use of relative growth data, which it is usual in the study
of tumor growth.
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Moreover,
(5)

V ar[log(X(t))] = V ar[log(X(t))|X(t0) = x0] =

∫ t

t0

v(τ)dτ.

3. FITTING THE MODEL

The procedure described below considers a process with
a degenerate initial distribution. For this reason, if the
available data do not fulfill this condition a transformation
should be made, for example, to relative data with respect
to the initial value for each sample path.

Estimation of h(t) and v(t)
From (4), we can obtain the following expressions for h(t)

h(t) = H ′(t),

with H(t) = log(E[X(t)]). Similarly, from (5)

v(t) = V ′(t),

with V (t) = V ar[log(X(t))].
From values xij (i = 1, . . . , d, j = 1, . . . , n, with xi1 =

x1, ∀ i = 1, . . . , d) corresponding to a discrete sampling of
d sample paths of the process at time instants t1, t2, . . . , tn,
following to Albano et al. [2], [3], and Román-Román and
Torres-Ruiz [14], the derivatives of functions H and V can
be approximated from values log(xj) (being xj the mean
growth data at time tj) and bj (the variance of the loga-
rithms of the values of growth data at time tj), j = 1, . . . , n.
However, some remarks should be made:

• On the one hand, since function v(t) must be positive,
function V ar[log(X(t))] must be increasing. However,
the sequence of values bj , j = 1, 2, . . . , n, obtained from
real or simulated data, can not meet such condition.
This can be due to the existence of random sampling
fluctuations in the case of simulated or observed data
of the model, or because the observed data can not be
fitted by the model considered.

• On the other hand, the numerical approximation of the
derivative of a function from observed values amplifies
small deviations in the observations (see [13]).

In order to avoid errors in the approximation of the
derivative and to preserve data for which the sequence
of values bj shows a growing trend, albeit with fluctu-
ations that could lead to negative estimates of function
v(t) at some time instants, we propose smoothing out the
data in order to produce an increasing function where
possible. Whenever that can not be done, the present
model should not be used for fitting such data. Similarly
with data leading to a sequence of values of the function
V ar[X(t)]/(E[X(t)])2 without an increasing trend, a good
fit could not be achieved although the estimation procedure
can be used.

Before approximating function h(t), and, in this case,
only in order to avoid errors of the derivative approxima-
tion, we also suggest smoothing out (in this case without
restrictions) the sequence of values log(xj), j = 1, . . . , n.

On the basis of the above considerations, the proposed
procedure to approximate functions h(t) and v(t) is the fol-
lowing:

• Approximate the values of functions H(t) and V (t)
at each time instant by the corresponding values of
a smoothing function fitting values Hj = log(xj) and
an increasing smoothing function4 fitting values Vj =
bj , j = 1, . . . , n, respectively.

• Determine values hj and vj as approximations of H ′(tj)
and V ′(tj) from values Hj and Vj , j = 1, . . . , n, respec-
tively, by using symmetric derivative at intermediate
time instants, right derivative at the initial observation
instant and left derivative at the final one.

• Finally, obtain approximations of functions h(t) and
v(t) from values hj and vj , j = 1, . . . n, respectively.

4. TESTING HYPOTHESES ABOUT TIME
DEPENDENT FUNCTIONS

The model considered in this paper generalizes those
characterized by infinitesimal moments

(6)
A1(x, t) = h(t)x

A2(x, t) = σ2 x2,

and

(7)
A1(x, t) = mx

A2(x, t) = v(t)x2.

In this section we consider the problem of testing whether
it is really necessary, in order to fit the available data,
to employ a model of the type (3) or if it would suffice
to go with one of the (6) or (7) type models. To address
this we must first study, for model (6), the ML estima-
tion of parameter σ2 when function h(t) is known or can
be approximated beforehand. Similarly, for model (7), we
must look into the estimation of parameter m when func-
tion v(t) is known or can be approximated beforehand. In
both cases, such estimations are based, in general, on obser-
vations x = {xij , i = 1, . . . , d, j = 1, . . . , ni} corresponding
to a discrete sampling of d sample paths of the process at
times tij , with ti1 = t1, i = 1, . . . , d, and by considering a
degenerate initial distribution P [X(t1) = x1] = 1.

Estimating σ2

For model (6) the transition p.d.f. is

4In both cases we have considered a smoothing spline employing the
same number of equivalent parameters (degrees of freedom) as a pre-
vious local quadratic fit.
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f(x, t|y, s) = 1

x
√

2πσ2(t−s)

× exp

(
−

[
log( x

y )−
∫ t
s
h(τ)dτ+σ2

2 (t−s)
]2

2σ2(t−s)

)

and the log-likelihood, logLx(σ
2), apart from constants, is

d∑
i=1

ni∑
j=2

[
log

(
xij

xi,j−1

)
−

∫ tij
ti,j−1

h(τ)dτ + σ2

2 (tij − ti,j−1)
]2

σ2(tij − ti,j−1)

+(k − d) log(σ2),(8)

where k =
∑d

i=1 ni. So the ML estimation of σ2, σ̂2
h, is the

solution to the equation

σ4

2

⎛⎝ d∑
i=1

(tini − ti1)−
1

2

d∑
i=1

ni∑
j=2

(tij − ti,j−1)
2

⎞⎠
+σ2(k − d)−

d∑
i=1

ni∑
j=2

[
log

(
xij

xi,j−1

)
−
∫ tij
ti,j−1

h(τ)dτ
]2

tij − ti,j−1
= 0,

that maximizes (8).

Estimating m
For model (7) the transition p.d.f. is

f(x, t|y, s) = 1

x
√

2π
∫ t
s
v(τ)dτ

× exp

⎛⎜⎜⎜⎝−

⎡⎣ log( x
y )−m(t−s)+ 1

2

∫ t

s

v(τ)dτ

⎤⎦2

2

∫ t

s

v(τ)dτ

⎞⎟⎟⎟⎠
and the log-likelihood, logLx(m), apart from constants, is

x

d∑
i=1

ni∑
j=2

[
log

(
xij

xi,j−1

)
−m(tij − ti,j−1) +

1
2

∫ tij
ti,j−1

v(τ)dτ
]2

∫ tij

ti,j−1

v(τ)dτ

,

from which the ML estimation of m is

m̂v =

d∑
i=1

ni∑
j=2

(tij − ti,j−1)

⎡⎣ log(xij/xi,j−1)∫ tij
ti,j−1

v(τ)dτ
+

1

2

⎤⎦
d∑

i=1

ni∑
j=2

(tij − ti,j−1)
2∫ tij

ti,j−1
v(τ)dτ

.

4.1 Testing hypotheses about function v(t)

We must find out whether model (6) suffices to fit the
available data. More specifically, we will test hypothesis H0 :
v(t) = σ2 for model (3).

The usual method of testing a hypothesis of equality be-
tween two functions is to consider a statistic measuring of

the distance between them, such as:∫ T

t0

(v̂(t)− σ2)2dt or

∫ T

t0

|v̂(t)− σ2|dt,

where v̂(t) is the estimation of function v(t). Since in the
context of experimental studies of tumor growth the avail-
able data are observations of the tumor volume at discrete
time instants t1, t2, . . . , tn, we consider the discrete versions
of such statistics

n∑
j=1

(v̂(tj)− σ2)2 or

n∑
j=1

|v̂(tj)− σ2|,

and we propose a Monte Carlo procedure for computing a
parametric bootstrap p value. After doing the estimations
for model (3) (obtaining ĥ(t) and v̂(t)) and calculating the
σ2 value to be tested (ML estimation of σ2 for model (6))
from the observed growth data (d sample paths at time in-
stants t1, . . . , tn), the procedure, described for the second of
the proposed distances, is as follows:

• Generate r bootstrap samples of d sample paths at time
instants t1, t2, . . . , tn of a process {X∗(t); t1 ≤ t ≤ T}
of type (6) with h(t) = ĥ(t) and σ2 = σ̂2

ĥ
, that is, with

infinitesimal moments

A∗
1(x, t) = ĥ(t)x

A∗
2(x, t) = σ̂2

ĥ
x2,

and initial distribution P [X∗(t1) = 1] = 1.
• Calculate values

Dl =

n∑
j=1

|ṽl(tj)− σ̂2
ĥ
|, l = 1, . . . , r,

where ṽl(tj), j = 1, . . . , n is the estimation of v(t) at
each tj for a model of type (3) and for the l− th boot-
strap sample.

• Since the test statistic takes positive values, calculate
the p-value of the test statistic as the proportion of
valuesDl that are greater than or equal to

∑n
j=1 |v̂(tj)−

σ̂2
ĥ
|.

4.2 Testing hypotheses about function h(t)

We must find out whether model (7) is enough to fit the
available data. To this end, we will test hypothesis H0 :
h(t) = m for model (3).

As in the previous case, we will start by considering statis-
tics

n∑
j=1

(ĥ(tj)−m)2 or

n∑
j=1

|ĥ(tj)−m|,

and we propose a Monte Carlo procedure for computing a
parametric bootstrap p value. After estimating model (3)
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Table 1. Functions h(t) and v(t) for cases considered in the simulation study

h(t) v(t)

Case 1 0.05 0.042

Case 2 0.05 (0.07(0.5 + t/40))2

Case 3 0.05 0.001 + 0.0001t
Case 4 0.03 + 0.7 e−0.4t 0.042

Case 5 0.07− 0.0005t 0.042

Case 6 0.05(1 + 0.125sin(0.125πt)) + 0.05(0.1252)πtcos(0.125πt) 0.0025 + 0.00005t

Case 7 2(10− t)/625
0.1−0.1(t−1)

[
(t−20)(40+(t−20)2)−1−4(t−10)/625

]
0.1(t−1)+

√
10(40+(t−20)2)exp(2(81−(t−10)2)/625)

Table 2. MRAEs for estimations of functions h(t) and v(t) for the models considered for fitting data in all cases

Non-homogeneous only in Non-homogeneous only in
Non-homogeneous the infinitesimal mean the infinitesimal variance Homogeneous

model (3) model (6) model (7) model
h(t) v(t) h(t) v(t) h(t) v(t) h(t) v(t)

Case 1 0.0014 0.0359 0.0014 0.0261 0.0023 0.0359 0.0023 0.0261
Case 2 0.0113 0.0385 0.0035 0.0385
Case 3 0.0051 0.0436 0.0051 0.0436
Case 4 0.0224 0.0137 0.0224 0.0147
Case 5 0.0057 0.0113 0.0057 0.0151
Case 6 0.0634 0.0188
Case 7 0.0445 0.0449

(obtaining ĥ(t) and v̂(t)) and calculating the m value to
be tested (ML estimation of m for model (7) with v(t) =
v̂(t)) from the observed growth data (d sample paths at time
instants t1, . . . , tn), the procedure, described for the second
of the proposed distances, is as follows:

• Generate r bootstrap samples of d sample paths at time
instants t1, t2, . . . , tn of a process {X∗∗(t); t1 ≤ t ≤ T}
of type (7) with v(t) = v̂(t) and m = m̂v̂, that is, with
infinitesimal moments

A∗∗
1 (x, t) = m̂v̂ x

A∗∗
2 (x, t) = v̂(t)x2,

and initial distribution P [X∗∗(t1) = 1] = 1.
• Calculate values

Dl =

n∑
j=1

|h̃l(tj)− m̂v̂|, l = 1, . . . , r,

where h̃l(tj), j = 1, . . . , n is the estimation of h(t) at
each tj for a model of type (3) and for the l− th boot-
strap sample.

• Since the test statistic takes positive values, calcu-
late the p-value of the test statistic as the propor-
tion of values Dl that are greater than or equal to∑n

j=1 |ĥ(tj)− m̂v̂|.

5. SIMULATION STUDY

In order to validate the estimation procedures proposed
above, a simulation study has been carried out for several

combination of functional forms of functions h(t) and v(t),
including the constant case for each one (see Table 1). The
functions h(t) and v(t) have been chosen so that the mean
and variance functions of the resulting processes show inter-
esting behaviors of several types.

In the cases in which one of the functions is constant,
we can use the procedures described in Section 3 (without
using the hypotheses mentioned therein and assuming the
function is time dependent) and the corresponding one of
Section 4. Moreover, in Case 1, the estimation of m and σ2

for a homogeneous lognormal diffusion process has also been
performed.

In all cases the estimation of the functions was replicated
150 times (by using 25 simulated sample paths with simula-
tion step 0.1) and the MRAEs (the mean of relative absolute
errors in the observation times) were calculated. The results
are displayed in Table 2. Graphs (a) and (b) of Figures 1 to
7 show the different estimations of functions h(t) and v(t)
respectively, along with the real functions in all cases.

In applications to real data, we would not be able to com-
pare the estimation of functions h(t) and v(t) with the real
functions, since the latter are unknown. For this reason, this
simulation study includes the calculation of the MRAEs in-
curred in the estimation of the mean and variance functions
of the fitted processes (see Table 3). In applications with real
data the errors will be calculated with respect to the sam-
ple mean and variance. Graphs (c) and (d) of Figures 1 to
7 show the estimations of the mean and variance functions
respectively, along with their real values.
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Figure 1. h(t), v(t), mean and variance functions and their approximations for the models considered for fitting data of Case 1.
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Figure 2. h(t), v(t), mean and variance functions and their approximations for the models considered for fitting data of Case 2.
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Figure 3. h(t), v(t), mean and variance functions and their approximations for the models considered for fitting data of Case 3.
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Figure 4. h(t), v(t), mean and variance functions and their approximations for the models considered for fitting data of Case 4.
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Figure 5. h(t), v(t), mean and variance functions and their approximations for the models considered for fitting data of Case 5.
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Figure 6. h(t), v(t), mean and variance functions and their approximations for the models considered for fitting data of Case 6.
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Figure 7. h(t), v(t), mean and variance functions and their approximations for the models considered for fitting data of Case 7.
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Table 3. MRAEs for estimations of the mean and variance functions for the models considered for fitting data in all cases

Non-homogeneous only in Non-homogeneous only in
Non-homogeneous the infinitesimal mean the infinitesimal variance Homogeneous

model (3) model (6) model (7) model
Mean Variance Mean Variance Mean Variance Mean Variance

Case 1 0.0016 0.0122 0.0016 0.0234 0.0028 0.0121 0.0028 0.0210
Case 2 0.0063 0.0459 0.0042 0.0431
Case 3 0.0066 0.0361 0.0061 0.0349
Case 4 0.0468 0.1065 0.0468 0.1052
Case 5 0.0045 0.0079 0.0045 0.0067
Case 6 0.0079 0.0223
Case 7 0.0176 0.0246

Figure 8. Tumor growth for experimental group.

The results show that the estimation procedures proposed
are valid both for the case of general non-homogeneous pro-
cess and for models in which one or both infinitesimal mo-
ments are homogeneous (when it makes sense your consid-
eration), resulting in errors very small and very similar for
different models.

6. APPLICATION TO REAL DATA

We have considered data about the growth of
BC297MONp5 from an experimental group of 7 mice. The
tumor volume was measured at days 1, 7, 14, 21, 28, 35,
42 and 49. Subsequently, the relative volume of tumor with
respect to the initial volume was calculated.

Figure 8 shows the evolution and the mean relative tumor
volume as a function of the days after starting treatment.

For a non-homogeneous model of type (3), the estimates
of functions h(t) and v(t) are shown in Figure 9a) and 9b),

Table 4. MRAEs in the estimations of the mean and variance
for real data

Mean Variance

Non-homogeneous
model (3) 0.0000149 0.2218521
Non-homogeneous only in
the infinitesimal mean
model (6) 0.0000148 0.3720499
Non-homogeneous only in
the infinitesimal variance
model (7) 0.4572298 0.7474404

respectively. In order to confirm that a model of this type
(including a time-dependent function both in its infinitesi-
mal mean and in its infinitesimal variance) is really neces-
sary, we must solve the following hypothesis testing prob-
lems: H0 : h(t) = m and H0 : v(t) = σ2.

In the first case, by applying the method described in
Subsection 4.2, the value of m to be tested is m̂v̂(t) =

0.05746798, and the value of statistic
∑n

j=1 |ĥ(tj) − m̂v̂(t)|
is 0.2241380, which yields a p-value of 0 and leads to the
rejection of the null hypothesis.

In the second case, by applying the method described
in Subsection 4.1, the value of σ2 to be tested is σ̂2

ĥ(t)
=

0.08680918 and the value of statistic
∑n

j=1 |v̂(tj)− σ̂2
ĥ(t)

| is
0.04573504, which yields a p-value of 0.08. This does not
provide clear evidence for the rejection of the null hypothe-
sis.

Figures 10 to 12 show the approximations of the mean
and variance provided by the three models under considera-
tion: general non-homogeneous (3), non-homogeneous only
in its infinitesimal mean (6), and non-homogeneous only in
its infinitesimal variance (7) respectively, along with their
observed values. In addition, Table 4 displays the MRAEs
incurred in the estimation of mean and variance for the three
models. The graphs of Figure 12 and the MRAEs in the third
row of Table 4 show how inadequate a type (7) model is for
fitting the data, as already proven by testing the hypothe-
sis H0 : h(t) = 0.05746798. The comparison of the graphs
in Figures 10 and 11 and the MRAEs for models (3) and
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Figure 9. Approximated h(t) and v(t) for the non-homogenous model fitted to real data.

Figure 10. Approximated E(X(t)) and V ar(X(t)) for the non-homogenous model fitted to real data.

(6) shows that, despite a significance level less than 0.08
would result in accepting a type (6) model for the purpose
of fitting the data, the non-homogeneous model proposed
in this paper significantly improves the fitting to the vari-
ance.
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Figure 11. Approximated E(X(t)) and V ar(X(t)) for the model non-homogenous only in its infinitesimal mean fitted to real
data.

Figure 12. Approximated E(X(t)) and V ar(X(t)) for the model non-homogenous only in its infinitesimal variance fitted to
real data.
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