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EWMA control charts for multivariate
autocorrelated processes∗

Yuhui Chen
†,‡

In this paper, a semiparametric control scheme for multi-
variate Markov processes of order one is introduced. We uti-
lize copula-based semiparametric stationary Markov models
to transform original multivariate autocorrelated processes
to the ones in which the marginal information of the moni-
tored characteristics are separate out from their dependence
structures. Meanwhile, the autocorrelations within them
are also characterized by copulas. As such, one could fo-
cus on monitoring changes in the location of characteristics
marginally under a more generalized assumption that ob-
servations could be stochastically dependent. The proposed
chart can reduce to the traditional multivariate EWMA
charts if the underlying process is multivariate Gaussian
with stochastically independent observations. In addition,
the margin of each time series is fitted by a newly developed
semiparametric approach using the transformed Bernstein
polynomial prior. Specifically, it allows an initial parametric
guess (such as normal) on a monitored characteristic; then
by adding more details via data, any departure from this
initial guess will be captured and used for adjusting the ini-
tial to obtain robust estimation. Gaussian copulas are then
used for modeling both autocorrelations within each time
series and correlations among them.

Keywords and phrases: Autocorrelated processes, Gaus-
sian copulas, Multivariate EWMA charts, Semiparametric
models, Transformed Bernstein polynomial priors.

1. INTRODUCTION

Recently, the statistical process control (SPC) tool has
become more and more important not only in the area of
quality monitoring but also in many other fields of science,
economics, and medicine. Traditional charts used to moni-
tor a single quality characteristic are typically constructed
by three major control schemes, i.e., the Shewhart charts
(Shewhart, 1931; Duncan, 1965), the CUSUM charts (Page,
1954; Hawkins and Olwell, 1998), and the EWMA charts
(Roberts, 1959; Crowder, 1987; Crowder, 1989; Lucas and
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Saccucci, 1990). To further relax the normality assump-
tion on the traditional charts, many nonparametric charts
thus were proposed for better monitoring non-Gaussian pro-
cesses, see Willemain and Runger (1996), Albers and Kallen-
berg (2004), Chakraborti and Eryilmaz (2007), Ross and
Adams (2012), and Chen (2015). However, the rapids growth
of data acquisition technology and the use of powerful com-
puters for quality control have led to an interest in simul-
taneously monitoring several quality characteristics. To this
point, multivariate control schemes, such as the Hotelling T 2

charts (Hotelling, 1947), the multivariate CUSUM charts
(Woodall and Ncube, 1985; Crosier, 1988; Pignatiello and
Runger, 1990; Tartakovsky, 2014), and the multivariate
EWMA charts (Lowry et al., 1992), have been proposed
to take advantage of the relationships among the monitored
characteristics. Particularly, the multivariate EWMA chart
is received more attention due to its sensitivity to small
and moderate shifts in the location. Chen et al. (2016+)
borrowed the idea of the multivariate EWMA charts and
thus constructed the multivariate nonparametric charts us-
ing weighted Polya trees (Hanson, 2006; Chen and Hanson,
2014) for quickly detecting the change points for either mul-
tivariate Gaussian or non-Gaussian processes.

However, all of those attempts were derived under the as-
sumption that observations are stochastically independent.
In some areas, characteristics are measured in the time or-
der of the production, such as the areas in medicine and in
economics. It is well known that even with a mild violation
on the independence assumption, the traditional charts may
signal incorrectly and weaken the effectiveness of detecting
shifts. To this point, Chan and Li (1994) and Charnes (1995)
presented extensions of multivariate Shewhart charts to ac-
count for both autocorrelations within characteristics and
correlations across them. Chen and Hanson (2016+) used
a newly developed transformed Bernstein polynomial prior
(Chen et al., 2014) to construct nonparametric regression
charts by integrating the extra monitored characteristics as
the covariates into regression models, and thus the charts
can better monitor the single key characteristic adjusted
by those external covariates. Alwan and Roberts (1988),
Montgomery and Mastrangelo (1991), and Lu and Reynolds
(1995) instead introduced the charts constructed by inde-
pendent residuals. However, if the model is not adequate for
the monitored process, the residuals may not be indepen-
dent, and consequently, nuisance alarms will be triggered.
To solve this issue, Kalgonda and Kulkarni (2004) proposed
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a multivariate quality control chart for directly monitoring
the mean of an autocorrelated process in which observa-
tions can be modeled as a VAR(1) process under the nor-
mality assumption. For other literatures of multivariate se-
quential charts, see Theodossiou (1993), Kramer and Schmid
(1997), Moskvina and Zhigljavsky (2003), and Martin and
Petr (2012).

The aim of this paper is to propose a multivariate semi-
parametric control scheme to monitor autocorrelated multi-
variate processes via transformation from a class of copula-
based semiparametric stationary Markov models. The key
advantage of the proposed method is to separate out the
marginal information of the monitored characteristics from
their dependence structures, and the dependencies charac-
terized by copulas are invariant to any increasing transfor-
mation of the times series. As such, one could focus on
monitoring marginal changes in the location of character-
istics (usually the common interest of quality control) un-
der a more generalized assumption that observations could
be stochastically dependent. Moreover, by transforming an
original autocorrelated process upon Gaussian copulas, the
transformed Markov process has its white noises normally
distributed. Consequently, with the normal assumption on
all margins, this proposed chart performs in a similar way
to the multivariate EWMA chart which assumes AR(1) pro-
cess with randomly normally distributed errors. With an
additional assumption that the autocorrelations do not ex-
ist for all characteristics, this chart further reduces to the
traditional multivariate EWMA chart with the estimated
chart parameters. To monitor Gaussian or non-Gaussian dis-
tributed characteristics marginally, we utilize a newly devel-
oped semiparametric prior called the transformed Bernstein
polynomial prior (Chen et al., 2014). This new method al-
lows an initial parametric guess (or centering parametric
distribution) on a monitored characteristic, such as normal;
then by adding more details via data, any departure from
this initial guess will be captured and used for adjusting the
initial to obtain robust estimations. Gaussian copulas are
then used for evaluating the dependence structure among
the characteristics and their autocorrelations as well. Other
copulas also could be used such as Student-t copulas for
the both lower and upper tail dependence, Clayton copulas
for the lower tail dependence, and Gumbel copulas for the
upper tail dependence. However, in this paper, we only con-
sider the Gaussian copulas since this dependence structure
is the common assumption on multivariate processes.

The rest of the paper is organized as follows. In Section
2, we introduce multivariate Gaussian copula Markov pro-
cesses of order one, and in Section 3 we construct semi-
parametric multivariate EWMA control charts based on the
transformed Gaussian copula Markov processes. We further
present the estimation procedure for the proposed charts in
Section 4. Simulation studies are then conducted in Section
5 for both multivariate Gaussian or non-Gaussian under-
lying Markov processes. An example is illustrated in Sec-

tion 6 with comparison to other existing multivariate control
schemes. Conclusions are given in Section 7.

2. MULTIVARIATE GAUSSIAN COPULA
MARKOV PROCESSES OF ORDER ONE

Let consider d stationary univariate Markov processes of
order one, {Xt,s, t ∈ Z+} for s = 1, 2, . . . , d and Z+ =
{1, 2, 3, . . . }, with continuous state space. By Sklar’s theo-
rem (1959), for each time series {Xt,s}, the joint distribu-
tion of Xt−1,s and Xt,s can be expressed in terms of the
marginal distribution of Xt,s, denoted as Gs(·), and the
copula function Cs(·, ·) of Xt−1,s and Xt,s uniquely. With
the assumption (Chen and Fan, 2006): {Xt,s : t ∈ Z+},
for s = 1, 2, . . . , d, is a sample of a stationary first-order
Markov process generated from (Gs(·), Cs(·, ·)), where Gs(·)
is the true invariant distribution which is absolutely contin-
uous with respect to Lebesgue measure on the real line, and
Cs(·, ·) is the true parametric copula of Xt,s and Xt−1,s,
which is absolutely continuous with respect to Lebesgue
measure on [0, 1]2 and is neither the Fréchet-Hoeffding up-
per nor lower bound, then the transformed process, {Ut,s :
Ut,s = Gs(Xt,s)}, is also a stationary Markov process of or-
der one with the joint distribution of Ut,s and Ut−1,s given
by Cs(ut,s, ut−1,s) and the conditional density of Ut,s given
Ut−1,s is fUt,s|Ut−1,s=u∗

t−1,s
= cs(ut,s, u

∗
t−1,s), where cs(·, ·) is

the copula density associated with Cs(·, ·). It implies that
the assumption is consistent with the generalized regression
transformation model (Chen and Fan, 2006):

H(Gs(Xt,s)) = H(Gs(Xt−1,s)) + εt,s, for s = 1, 2, . . . , d,
(1)

where E(εt,s|Xt−1,s) = 0, Gs(·) is the true unknown distri-
bution function of Xt,s, and H(·) is a parametric increasing
function. Further, by assuming a Gaussian copula of Xt−1,s

and Xt,s, the process {Xt,s} from Eq. (1) then satisfies

Φ−1(Gs(Xt,s))

= ρsΦ
−1(Gs(Xt−1,s)) + εt,s, for s = 1, 2, . . . , d,(2)

where Φ−1 is the quantile function of the standard normal,
ρs is the Gaussian copula parameter, and εt,s ∼ N(0, 1−ρ2s)
independent of Xt−1,s.

Let Yt,s = Φ−1(Gs(Xt,s)) and Yt−1,s = Φ−1(Gs(Xt−1,s)),
Eq. (2) is then rewritten as

(3) Yt,s = ρsYt−1,s + εt,s, for s = 1, 2, . . . , d.

Following the discussion in Chen and Fan (2006), {Yt,s, t ∈
Z+}, for s = 1, 2, . . . , d, is a stationary Gaussian Markov
process of order one with E(Yt,s) = 0 and V ar(Yt,s) =
1−ρ2

s

1−ρ2
s

= 1. By allowing Gs(·) to be a non-Gaussian dis-

tribution, Eq. (3) can be used to fit a stationary Markov
process of order one with the Gaussian copula and any non-
Gaussian marginal distribution. By noting that Yt,s|Yt−1,s ∼
N(ρsYt−1,s, 1− ρ2s), we could obtain
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(
Yt−1,s

Yt,s

)
∼ N

((
0
0

)(
1 ρs
ρs 1

))
.(4)

Further, in order to consider the correlations among those
time series, let us define

Yt = ΔYt−1 + εt,(5)

where Yt = (Yt,1, . . . , Yt,d)
′, Yt−1 = (Yt−1,1, . . . , Yt−1,d)

′,
and εt = (εt,1, . . . , εt,d)

′ are d×1 vectors. Δ is a d×d diago-
nal matrix with Δ = diag(ρ1, ρ2, . . . , ρd), which implies that
each time series depends only upon its own lags and not on
lags of another time series. We further assume that the cor-
relation matrix and covariance matrix for εt are consistent
with the time t, thus denoted as Ωε and Σε respectively,

we then have εt
i.i.d.∼ Nd (0,Σε). Accordingly, the multivari-

ate process {Yt, t ∈ Z+} defined in Eq. (5) is a (weakly)
stationary multivariate Gaussian Markov process of order
one with the mean, μY = 0, and the auto-covariance ma-

trix at lag h, ΣY(h) = Cov(Yt,Yt−h)
def.
= [ωi,j(h)]

d
i,j=1. For

i �= j, ωi,j(h) measures the cross-covariance of the two series
{Yt,i} and {Yt−h,j}. In addition, by the stationary property,
we have Σε = ΣY(0)−ΔΣY(0)Δ′. For a bivariate process,
for example, by assuming

Ωε =

(
1 ρr
ρr 1

)

implies

Σε =

(
1− ρ21 ρr

√
(1− ρ21)(1− ρ22)

ρr
√

(1− ρ21)(1− ρ22) 1− ρ22

)
,(6)

we obtain

ΣY(0) = Cov(Yt,Yt)

=

⎛
⎝ 1

ρr

√
(1−ρ2

1)(1−ρ2
2)

(1−ρ1ρ2)

ρr

√
(1−ρ2

1)(1−ρ2
2)

(1−ρ1ρ2)
1

⎞
⎠ .

In addition, the auto-covariance matrix for the model in Eq.
(5) at lag h ≥ 0 satisfies

(7) ΣY(h) = Cov(Yt,Yt−h) = ΔhΣY(0),

and

(8) ΣY(−h) = Cov(Yt−h,Yt) = ΣY(0)Δh.

3. SEMIPARAMETRIC MULTIVARIATE
EWMA CONTROL CHARTS FOR
MONITORING GAUSSIAN OR

NON-GAUSSIAN MARKOV PROCESSES

Let {Xt : Xt = (Xt,1, . . . , Xt,d)
′, t ∈ Z+} and {X∗

t :
X∗

t = (X∗
t,1, . . . , X

∗
t,d)

′, t ∈ Z+} be in-control target and
actually observed Markov processes, respectively. Further,
let {Yt : Yt = (Yt,1, . . . , Yt,d)

′, t ∈ Z+} and {Y∗
t :

Y∗
t = (Y ∗

t,1, . . . , Y
∗
t,d)

′, t ∈ Z+} be the transformed Gaus-

sian Markov processes from {Xt} and {X∗
t } (see Eq. (2),

Eq. (3), Eq. (4), and Eq. (5)), respectively, with Yt,s =
Φ−1(Gs(Xt,s)) and Y ∗

t,s = Φ−1(Gs(X
∗
t,s)) for s = 1, . . . , d,

where Gs(·) is the true margin for the in-control process
{Xt,s}. In practice, it will be estimated in Phase I using the
method in Section 4.

As usual, we use a multivariate EWMA control scheme to
detect the changes in the location for multivariate Markov
processes, and thus the chart statistic is given by

(9) Zt = (I − Λ)Zt−1 + ΛYt, t ≥ 1,

where Λ = diag(λ1, . . . , λd) is a d× d diagonal matrix with
0 < λs ≤ 1 for s = 1, . . . , d. We should note, for the target
process, we use the in-control transformed Gaussian Markov
process, {Yt}, to obtain the in-control mean vector and the
covariance matrix of Zt; but for the testing purpose in Phase
II, {Y∗

t } instead will be used.
With the recursive property of Zt and the fact that (I −

Λ)t +Λ
∑t−1

i=0(I −Λ)i = I, Eq. (9) thus can be rewritten as

Zt = (I − Λ)tZ0 + Λ

t−1∑
i=0

(I − Λ)iYt−i

= (1− Λ)t(Z0 − μY) + Λ

t−1∑
i=0

(I − Λ)i(Yt−i − μY)

+μY,(10)

where the starting value Z0 is assumed to be a known deter-
ministic quantity usually obtained from historic data. The
in-control mean and the covariance matrix of Zt are thus
obtained by

E(Zt) = μY + (I − Λ)t(Z0 − μY),

ΣZt

def.
= Cov(Zt)

= Λ
t−1∑
i=0

t−1∑
j=0

(I − Λ)iΣY(j − i)(I − Λ)jΛ,(11)

respectively. Here, we assume that process always starts
with Z0 = μY, which implies E(Zt) = μY = 0. Also, the in-
control covariance matrix of Zt is evaluated upon the terms
of ΣY(j− i) at the lag j− i, for i, j = 0, 1, . . . , t−1. Specifi-
cally, for j ≥ i, ΣY(j−i) is obtained from Eq. (7); otherwise
from Eq. (8) for j < i. The parameters in Δ and in ΣY(0)
(equivalently, in Δ and in Ωε, see the example given in Eq.
(6) for a bivariate case) are estimated upon the transformed
in-control Gaussian process {Yt} using the method in Sec-
tion 4.

In most situations, without a priori knowledge on the
chart smoothing parameters Λ, one usually sets λ1 = · · · =
λd = λ, and thus the chart given in Eq. (9) is simplified as

(12) Zt = (1− λ)Zt−1 + λYt, t ≥ 1.

with the in-control covariance matrix simplified by
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(13) ΣZt = λ2
t−1∑
i=0

t−1∑
j=0

(1− λ)i+jΣY(j − i).

Thus, the recursive format of ΣZt in Eq. (13) is obtained as

ΣZt = (1− λ)2ΣZt−1 + λ2
t−1∑
i=1

(1− λ)iΣY(−i)

+λ2
t−1∑
j=0

(1− λ)jΣY(j).(14)

However, as t → ∞, obtainingΣZt could be time-consuming
even using the formula in Eq. (14). For supporting an effi-
cient computation, a proposition is presented as follows:

Proposition 3.1. Let {Yt} be a d-variate (weakly) station-
ary Gaussian Markov process of order one defined in Eq. (5)
with the mean μY = 0 and the auto-covariance matrix at
the lag h ΣY(h) = [ωi,j(h)]

d
i,j=1. If a multivariate EWMA

chart is constructed upon Yt by Zt = (1 − λ)Zt−1 + λYt

with 0 < λ ≤ 1, then as t → ∞: i) ΣZt =
λ

2−λ

∑t−1
s=−t+1(1−

λ)|s|ΣY(s); ii) ΣZt = ΣZt−1 for a large t.

The proof is given in Appendix. This proposition simpli-
fies the computation procedure for ΣZt for a large t. Sim-
ply, one can fix ΣZt by ΣZt∗ when t reaches an arbitrarily
pre-selected large value, say t∗. We also applied this strat-
egy in our simluation section and it works perfectly when
t ≥ t∗ = 100.

Following the ideas of Lowry et al. (1992), the chart con-
structed above for detecting the changes in the location for a
multivariate Markov process of order one will send a signal
when

(15) Z′
tΣ

−1
Zt

Zt > c,

where c is a critical value and can be obtained by a scheme
that: A pre-defined value ξ for the in-control average run
length (ARL) E(N) is given, and the control limit c is de-
termined such that the in-control ARL of the chart is equal
to ξ, i.e., E(N(c)) = ξ. Usually, this is achieved by simula-
tions. However, we should mention that the chart does not
provide any information for which components a change has
occurred. Some literatures have proposed the methods for
multivariate EWMA chart diagnosis, see Niaki and Abbasi
(2005), Reynolds and Cho (2006), Zou et al. (2011), and
Jiang et al. (2012), but we will not discuss this here.

4. ESTIMATION FOR IN-CONTROL CHART
PARAMETERS

Typically, in quality control, a target process is collected
in Phase I for estimating the chart parameters; and in Phase
II, the chart constructed upon the estimated parameters is
then used to monitor a new observed process. Let the tar-
get multivariate (Gaussian or non-Gaussian) Markov pro-
cess of order one be {Xt} with Xt = (Xt,1, . . . , Xt,d)

′,

for t = 1, 2, . . . , n; and let xt be realizations of Xt. The
key advantage of the proposed semiparametric approach is:
The chart can be used for monitoring any non-Gaussian
multivariate Markov process in the way analogous to a
Gaussian Markov process by transforming a possibly non-
Gaussian Markov process {Xt} to a Gaussian Markov pro-
cess {Yt} using Yt,s = Φ−1(Gs(Xt,s;βs)), for t = 1, . . . , n
and s = 1, . . . , d. The in-control chart parameters are then
estimated upon this transformed process {Yt}. For this pur-
pose, we evaluate the model using a multi-stage maximum
likelihood estimation (MSMLE) with two extra conditions:
the parameters βs in margin Gs do not also appear in mar-
gin Gs′ for s �= s′, and no cross-equation restrictions on
those parameters. Simulation studies (Patton, 2006) indi-
cate that MSMLE is asymptotically less efficient than one-
stage MLE, but not great in many cases.

The first-stage of MSMLE involves estimating the mar-
gin for each time series {Xt,s}, for s = 1, . . . , d, paramet-
rically or nonparametrically. A newly developed semipara-
metric density estimation approach using the transformed
Bernstein polynomial (TBP) prior (Chen et al., 2014) in-
herits the merits from both parametric and nonparametric
models by centering the unknown but need-to-be estimated
distribution function at a parametric one as an initial guess;
as such, this initial can be adjusted later to approach to the
true one if this guess is not correct. The log-likelihood for
the margin Gs(·;βs) of {Xt,s} is given as

ll(βs) =

n∑
t=1

log gs(xt,s;βs), s = 1, 2, . . . , d,

gs(xt,s;βs) =

J∑
j=1

ws
J,jbJ,j(Φ(xt,s;μs, σ

2
s))φ(xt,s;μs, σ

2
s),

(16)

here gs(·;βs) is the marginal density associated with
Gs(·;βs) and centered at a normal distribution Φ(·;μs, σ

2
s)

with its density φ(·;μs, σ
2
s); bJ,j(·) is a beta density given

as bJ,j(t) = Γ(J+1)
Γ(j)Γ(J+1−j) t

j−1(1 − t)J−j with Γ(·) defined

as a usual gamma function. By assigning J ∼ p(J) inde-
pendent to the Bernstein coefficients ws

J = (ws
J,1, . . . , w

s
J,J)

′

with ws
J ∼ Dirichlet(M1J), where 1J is a vector of size

J with all elements equal to one and the precision pa-
rameter M > 0 controls how likely xt,s follows the cen-
tering distribution Φ(·;μs, σ

2
s), we thus center Gs(·;βs) at

Φ(·;μs, σ
2
s). Given J , the parameters, βs, of Gs is then writ-

ten as βs = ([ws
J,j ]

J
j=1, μs, σ

2
s). With the smoothness prop-

erty, βs then can be estimated by maximizing the posterior
of βs given J at

QJ = argmaxβs

n∑
t=1

log gs(xt,s;βs)

+ log π(ws
J ) + log π(μs, σ

2
s),(17)
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for s = 1, 2, . . . , d, here π(ws
J) and π(μs, σ

2
s) are the inde-

pendent priors forws
J and (μs, σ

2
s), respectively. Specifically,

Eq. (17) is evaluated repeatedly for J = 1, 2, . . . ,K, where
K is an arbitrarily pre-selected number based on the sample
size (Chen et al., 2014) and typically set as K = 15. The
final J is chosen such that it is the posterior mode of J , and
β̂s are then the one corresponding to this J . Although this is
not a fully Bayesian approach, it avoids the time-consuming
posterior samplings. For more details on the TBP prior and
its estimation, see Chen et al. (2014). Note, when J = 1
or wJ,1 = wJ,2 = · · · = wJ,J = 1

J for J > 1, we have
Gs(·;βs) ≡ Φ(·;μs, σ

2
s). Also, if Gs(·;βs) ≡ Φ(·;μs, σ

2
s) for

all s = 1, . . . , d, then the process {Xt} itself is actually a
Gaussian Markov process.

With the estimated margins [Ĝs(·; β̂s)]
d
s=1 from the first-

stage, then the log-likelihood function used for estimating
the copula parameters at the second-stage of MSMLE is
given as

ll(Θ) =

n∑
t=1

log f(xt|xt−1;Θ),(18)

where

f(xt|xt−1;Θ)

= f1(xt,1|xt−1,1; ρ1)× f2(xt,2|xt−1,2; ρ2)

× · · · × fd(xt,d|xt−1,d; ρd)

× cΩ(F1(xt,1|xt−1,1; ρ1), . . . , Fd(xt,d|xt−1,d; ρd))(19)

with

fs(xt,s|xt−1,s; ρs) = ĝs(xt,s; β̂s)

× cs(Ĝs(xt,s; β̂s), Ĝs(xt−1,s; β̂s); ρs),(20)

for s = 1, 2, . . . , d, here cΩ is a d-dimensional Gaussian cop-
ula density used to evaluate the correlations among the time
series, and Ω = Ωε implied by Eq. (5); cs, for s = 1, 2, . . . , d,
is a 2-dimensional Gaussian copula density function with the
parameter ρs for the autocorrelation of order one. The pa-
rameters for the whole model in Eq. (18) thus are written as
Θ = ([ρs]

d
s=1,Ωε). Note, the parameters which need to be

estimated in this stage are actually the copula parameters
in Δ and Ωε. Thus, Θ can be estimated equivalently by
maximizing the copula log-likelihood function given by

ll.c(Θ) =
d∑

s=1

n∑
t=2

log cs(Ĝs(xt,s; β̂s), Ĝs(xt−1,s; β̂s); ρs)

+

n∑
i=1

log cΩε(F1(xt,1|xt−1,1; β̂1, ρ1), . . . ,

Fd(xt,d|xt−1,d; β̂d, ρd)),(21)

here

Fs(xt,s|xt−1,s; β̂s, ρs)

=
∂Cs(Ĝs(xt,s; β̂s), Ĝs(xt−1,s; β̂s); ρs)

∂Ĝs(xt−1,s; β̂s)

=
∂Cs(ût,s, ût−1,s; ρs)

∂ût−1,s

def.
= Fs(ût,s|ût−1,s; ρs)(22)

with ût,s = Ĝs(xt,s; β̂s) and ût−1,s = Ĝs(xt−1,s; β̂s).
Particularly, for a bivariate Gaussian copula,

Fs(ût,s|ût−1,s; ρs) = Φ(
Φ−1(ût,s)−ρsΦ

−1(ût−1,s)√
1−ρ2

s

); and for

t = 1, Fs(xt,s|xt−1,s; β̂s, ρs) = Ĝs(xt,s; β̂s).

5. SIMULATION STUDIES

In this section, we will examine the ARL of the proposed
chart for multivariate Markov processes of order one. We
will consider two different underlying Markov processes: i)
bivariate Gaussian process, and ii) bivariate Student-t (non-
Gaussian) process. The multivariate time series can be ob-
tained by

(23) yt = Δyt−1 + εt,

where yt is the realization of Yt in Eq. (5), and εt is gen-
erated from a bivariate Gaussian with mean 0 and covari-
ance matrix Σε. To start this recursively data-generating
process, we have y0 from a bivariate Gaussian with mean
0 and covariance matrix ΣY(0). We should note: Given
the Δ and the correlation matrix Ωε of ε, from Eq. (6)
and Σε = ΣY(0) − ΔΣY(0)Δ′, the both ΣY(0) and Σε

can be obtained easily. Thus, in this section, we only con-
sider several combinations of Δ and Ωε. Also, the realiza-
tions in the time series {Xt,s}, for s = 1, 2, can be ob-
tained by xt,s = G−1

s (Φ(yt,s);βs), where under the sce-
nario i): G−1

s (·;βs) is the quantile function of a Gaussian
with βs = (μs = 0, σ2

s = 1) for in-control status and
βs = (μs = 0+δσs, σ

2
s = 1) for out of control; and under the

scenario ii): G−1
s (·;βs) is the quantile function of a Student-

t with βs as the degree of freedom 10 for in-control status

and xt,s = G−1
s (Φ(yt,s);βs)+δ

√
βs

βs−2 for out of control. δ is

taken from the set of {0, 0.5, 1, 1.5, 2, 2.5, 3} and we include
δ = 0 for in control purpose. For both scenarios, we arbitrar-
ily shift the mean of X1 and leave X2 always in-control. The
chart smoothing parameters are set as λ1 = λ2 = λ = 0.1
and the control limit c is obtained by simulation with the
in-control ARL equal to 200, i.e., E(N(c)) = 200. The simu-
lation results are reported in Table 1, Table 2, and Table 3.

In Table 1, the Δ is a zero matrix, which means that Yt

is independent of Yt−1. The chart thus performs in a sim-
ilar way to the traditional charts in which observations are
stochastically independent. We can observe that the simu-
lated control limit c (9.21) from the proposed chart for bi-
variate Gaussian is larger than the one reported from Lowry
et al. (1992) since we estimate the parameters for chart and
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Table 1. bivariate process with λ = 0.1 and the in-control ARL E(N) = 200

Scenario i): Bivariate Gaussian Process with λ = 0.1 and In-Control ARL = 200
Δ Ωε c δ

0.0 0.5 1.0 1.5 2.0 2.5 3.0(
0.0 0.0
0.0 0.0

) (
1.0 0.0
0.0 1.0

)
9.21 200.95 22.09 6.49 3.37 2.16 1.64 1.30(

0.0 0.0
0.0 0.0

) (
1.0 0.2
0.2 1.0

)
9.21 200.18 22.13 6.97 4.06 2.60 1.94 1.57(

0.0 0.0
0.0 0.0

) (
1.0 0.5
0.5 1.0

)
9.21 199.32 21.74 6.39 3.32 2.15 1.61 1.28(

0.0 0.0
0.0 0.0

) (
1.0 0.8
0.8 1.0

)
9.21 199.90 20.96 6.53 4.01 2.33 1.10 1.02

Scenario ii): Bivariate Student-t Process with λ = 0.1 and In-Control ARL = 200
Δ Ωε c δ

0.0 0.5 1.0 1.5 2.0 2.5 3.0(
0.0 0.0
0.0 0.0

) (
1.0 0.0
0.0 1.0

)
9.51 200.84 23.40 7.57 4.46 2.82 2.07 1.61(

0.0 0.0
0.0 0.0

) (
1.0 0.2
0.2 1.0

)
9.51 200.60 23.97 7.30 4.25 2.78 2.00 1.55(

0.0 0.0
0.0 0.0

) (
1.0 0.5
0.5 1.0

)
9.51 199.59 22.49 6.70 3.49 2.25 1.70 1.33(

0.0 0.0
0.0 0.0

) (
1.0 0.8
0.8 1.0

)
9.51 199.54 20.57 6.69 4.01 2.39 1.13 1.02

Table 2. bivariate process with λ = 0.1 and the in-control ARL E(N) = 200

Scenario i): Bivariate Gaussian Process with λ = 0.1 and In-Control ARL = 200
Δ Ωε c δ

0.0 0.5 1.0 1.5 2.0 2.5 3.0(
0.8 0.0
0.0 0.2

) (
1.0 0.0
0.0 1.0

)
8.60 200.03 126.75 51.83 22.87 10.93 5.47 3.12(

0.8 0.0
0.0 0.2

) (
1.0 0.2
0.2 1.0

)
8.50 200.02 125.28 49.95 22.49 10.40 5.44 2.96(

0.8 0.0
0.0 0.2

) (
1.0 0.5
0.5 1.0

)
8.50 199.99 108.27 38.38 17.65 7.91 4.05 2.36(

0.8 0.0
0.0 0.2

) (
1.0 0.8
0.8 1.0

)
8.15 200.16 92.21 26.51 10.92 5.25 2.68 1.71

Scenario ii): Bivariate Student-t Process with λ = 0.1 and In-Control ARL = 200
Δ Ωε c δ

0.0 0.5 1.0 1.5 2.0 2.5 3.0(
0.8 0.0
0.0 0.2

) (
1.0 0.0
0.0 1.0

)
9.00 200.95 136.25 60.13 25.39 11.64 6.37 3.41(

0.8 0.0
0.0 0.2

) (
1.0 0.2
0.2 1.0

)
9.00 200.57 135.08 60.15 24.81 11.52 6.02 3.48(

0.8 0.0
0.0 0.2

) (
1.0 0.5
0.5 1.0

)
9.00 200.19 113.41 47.21 18.44 8.85 4.66 2.63(

0.8 0.0
0.0 0.2

) (
1.0 0.8
0.8 1.0

)
8.25 200.82 96.74 31.96 11.70 5.75 2.87 1.83

thus more variabilities are added, which also gives the reason
that the value of c (9.51) is even larger for non-Gaussian pro-
cesses since more estimated parameters are included. How-
ever, the proposed chart is invariant for different Ωε when
data is collected independently, see Table 1, but this is just
a particular scenario. In other situations where data are col-
lected in the time order, the control limits cmay vary for dif-

ferent combinations of Δ and Ωε. But, in Table 2 and Table
3, we can see when the correlations inΩε are small or moder-
ate, the limits c may stay the same or not change too much.
But as the correlations go up, the limits c decrease quickly
for both Gaussian and non-Gaussian underlying processes.
We also observed that the greater the values of the diago-
nal elements in Δ, the greater is the extension of the regions
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Table 3. bivariate process with λ = 0.1 and the in-control ARL E(N) = 200

Scenario i): Bivariate Gaussian Process with λ = 0.1 and In-Control ARL = 200
Δ Ωε c δ

0.0 0.5 1.0 1.5 2.0 2.5 3.0(
−0.4 0.0
0.0 0.6

) (
1.0 0.0
0.0 1.0

)
9.30 200.43 13.66 4.75 2.83 2.07 1.70 1.46(

−0.4 0.0
0.0 0.6

) (
1.0 0.2
0.2 1.0

)
9.25 199.30 12.86 4.67 2.78 2.03 1.68 1.44(

−0.4 0.0
0.0 0.6

) (
1.0 0.5
0.5 1.0

)
9.25 199.66 11.01 4.22 2.58 1.91 1.60 1.40(

−0.4 0.0
0.0 0.6

) (
1.0 0.8
0.8 1.0

)
8.30 199.03 9.38 3.74 2.35 1.81 1.53 1.33

Scenario ii): Bivariate Student-t Process with λ = 0.1 and In-Control ARL = 200
Δ Ωε c δ

0.0 0.5 1.0 1.5 2.0 2.5 3.0(
−0.4 0.0
0.0 0.6

) (
1.0 0.0
0.0 1.0

)
9.65 200.16 14.48 4.92 2.87 2.143 1.75 1.54(

−0.4 0.0
0.0 0.6

) (
1.0 0.2
0.2 1.0

)
9.60 199.91 13.42 4.69 2.86 2.12 1.74 1.51(

−0.4 0.0
0.0 0.6

) (
1.0 0.5
0.5 1.0

)
9.60 199.87 11.42 4.23 2.69 1.99 1.69 1.47(

−0.4 0.0
0.0 0.6

) (
1.0 0.8
0.8 1.0

)
8.60 199.16 9.94 3.80 2.43 1.88 1.60 1.37

towards the direction of the variables affected by those diag-
onal elements. Consequently, the ARLs in Table 3 are much
smaller than the ones reported in Table 2 for out-of-control.
A similar phenomenon was also observed in the Monte Carlo
studies by Kramer and Schmid (1997). In summary, the pro-
posed chart works well under the simulated situations for
both Gaussian and non-Gaussian Markov processes of order
one. In addition, with AMD Athlon 4 CPU@498.26 MHz
(a very old laptop), the recorded CPU time for obtaining
the control limit c by simulation with 5000 replicates is 452
seconds.

6. A REAL EXAMPLE

In the following, an example is presented making use
of data from Quarterly Gross Domestic Product (QGDP).
Briefly, QGDP is the monetary value of all the finished goods
and services produced within a country’s borders calculated
on a quarterly basis, and it is a broad measurement of a
nation’s overall economic activity. The data called “qgdp”
could be found in the R package MTS (Tsay, 2015) and we
consider the quarterly gross domestic products of United
Kingdom (UK), Canada (CA), and the United States (US)
in the time period from the first quarter of 1980 to the sec-
ond quarter of 2011, i.e. the total of 126 quarters during this
time period. We let Sit represent the gross domestic product
of the ith country with i = 1 for UK, i = 2 for CA, and i = 3
for US at the tth quarter, for t = 1, . . . , 126. Practically, one
is usually interested in the transformed data which is the log
ratio of two adjacent quarter gross domestic products, de-
noted as Xit = log(Sit/Si,t−1) for t = 2, . . . , 126. The total

Figure 1. Partial Autocorrelations.

sample size thereafter is n = 125. To examine whether this
data set is suitable to the proposed chart, we further inves-
tigated the partial autocorrelations of those 3 time series,
see Figure 1. Apparently, it is reasonable to use our method
to fit a copula transformed multivariate Markov process of
order one given as the follows,

(24) Yt = ΔYt−1 + ε∗t ,
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Figure 2. QGDP: Fitted Chart From MEWMA.

where Yt = (Y1t, Y2t, Y3t)
′ and Yit = Φ−1(Ĝi(Xit; β̂i)), for

i = 1, 2, 3, and Gi(·;βi) is estimated marginally via the
method MSMLE given in Section 4 from Phase I.

For the target process, we took the first 99 transformed
observations, i.e. the time period from the first quarter of
1980 to the fourth quarter of 2004. The model given in Eq.
(24) was evaluated using the copula log-likelihood in Eq.
(21), and we obtained the estimated parameters as

Δ̂ =

⎛
⎝0.433 0 0

0 0.448 0
0 0 0.154

⎞
⎠ ,

Σ̂Y(0) =

⎛
⎝ 1 −0.070 0.069
−0.070 1 0.472
0.069 0.472 1

⎞
⎠ .

Thus by Σ̂ε∗ = Σ̂Y(0)− Δ̂Σ̂Y(0)Δ̂
′
,

Σ̂ε∗ =

⎛
⎝ 0.812 −0.056 0.064
−0.056 0.799 0.439
0.064 0.439 0.976

⎞
⎠ .

The corresponding simulated control limit c is 11.72 for the
common smoothing parameter λ = 0.1 and the in-control
ARL E(N(c)) = 200.

Assuming this model we run a control chart over the next
26 transformed observations, i.e. the time period from the
first quarter of 2005 to the send quarter of 2011. Our aim
is to detect changes in the log ratio of two adjacent quar-
ter gross domestic products, which further can be used to
assess a nation’s overall economic activity for measuring a
nation’s economic growth or decline, as well as for determin-
ing if an economy is in recession. The proposed control chart
(MTSTBPP) is plotted along with the charts constructed
from the multivariate EWMA (MEWMA) from Lowry
et al. (1992), the multivariate sign EWMA (MSEWMA)
from Zou and Tsung (2011), and the multivariate CUSUM
(MCUSUM) from Tartakovsky et al. (2014), see Figure 2,
Figure 3, Figure 4, and Figure 5. MEWMA and MSEWMA
assume the independence of observations with the former
having an additional normality assumption on the moni-
tored process and the latter relaxing this normality assump-
tion by its nonparametric setup. In contrast, our proposed

Figure 3. QGDP: Fitted Chart From MSEWMA.

Figure 4. QGDP: Fitted Chart From MCUSUM.

Figure 5. QGDP: Fitted Chart From MTSTBPP.

MTSTBPP chart relaxes the both assumptions by: 1) us-
ing the transformed Bernstein polynomial prior (TBPP) for
modeling Gaussian or non-Gaussian margins, and 2) fitting
copulas to account for the dependence structure of the mon-
itored process. Seemly, the fitted charts from MEWMA,
MCUSUM, and MTSTBPP control schemes are quite simi-
lar to each other. For example, starting from the 16th obser-
vations, the out-of-control was observed, which means there
is a big change in the log ratio of GDPs between the third
quarter and the fourth quarter of 2008. It is well known that
the global financial crisis or called the 2008–2009 financial
crisis occurred in this time period, and this crisis is consid-
ered by many economists to have been the worst financial
crisis since the Great Depression of the 1930s. This crisis
obviously has an impact on GDPs in many countries includ-
ing UK, CA, and US. However, compared to MEWMA and
MCUSUM charts, the last four observations in MTSTBPP
chart, i.e. the time period from the second quarter of 2010
to the second quarter of 2011, are in-control even if they are
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quite close to the control border, which corresponds to the
observed fact that this great global recession was ended in
early 2010s. MSEWMA chart performs a little bit difference
since it starts to report the out-of-control status at the first
quarter of 2008, which is earlier compared to other three
charts; it also shows that the global economy was getting
better at the last quarter of 2009, but then worse again at
the first quarter of 2011.

7. CONCLUSIONS

In this paper, we presented a semiparametric control
scheme for multivariate Markov processes of order one.
The original multivariate autocorrelated processes are trans-
formed to the ones in which the marginal information of
the monitored characteristics are separate out from their
dependence structures with the latter then characterized
by copulas. Meanwhile, copulas are also used for estimat-
ing the correlations across them. To monitor Gaussian or
non-Gaussian distributed characteristics marginally, we uti-
lize the transformed Bernstein polynomial priors (Chen
et al., 2014) to allow initial parametric guesses on the
monitored characteristics; then by adding more details via
data, departures from initial guesses will be captured and
used for adjusting the initials to obtain robust estimations.
Gaussian copulas are used for evaluating the dependence
structure among the characteristics and their autocorrela-
tions. It is shown that the proposed chart performs much
better than the traditional charts for stochastically de-
pendent processes as the traditional ones frequently trig-
ger signals even if there are actually no operation prob-
lems.

Despite the successful analysis presented in this paper,
the author must point out that the proposed model is cur-
rently designed to model Markov processes of order one. In
principle, the model can be extended to modeling Markov
processes of any finite order. We should note that the pro-
posed model has an additional appealing feature when it
is used for modeling higher order Markov process for each
time series, i.e., each of those time series depends on only
one dimension margin estimation and its autocorrelations
will be separately evaluated by copulas. Furthermore, al-
though the proposed model can theoretically cooperate with
different types of copulas for various dependence structures,
we only investigate the Gaussian copulas in this paper for
the both autocorrelations within the time series and corre-
lations across them since the Gaussian dependence struc-
ture is the most commonly used one in multivariate Markov
processes. But for different types of data, such as the data
collected from the stock market, the Student-t copulas or
the skewed Student-t copulas will be more appropriate in
the sense that the tail dependence information can be eval-
uated.

APPENDIX

Proof. By Eq. (11) and Eq. (13), we obtain

ΣZt = λ2
t−2∑
i=0

t−1∑
j=i+1

(1− λ)i+jΔj−iΣY(0)

+ λ2
t−1∑
i=1

i−1∑
j=0

(1− λ)i+jΣY(0)Δi−j

+ λ2
t−1∑
i=0

(1− λ)2iΣY(0)

= λ2
t−2∑
i=0

t−1∑
j=i+1

(1− λ)i+jΣY(j − i)

+ λ2
t−1∑
i=1

i−1∑
j=0

(1− λ)i+jΣY(−(i− j))

+ λ2
t−1∑
i=0

(1− λ)2iΣY(0)

= λ2
t−1∑

s=−t+1

ΣY(s)

min(t−1,t−1−s)∑
ν=max(0,−s)

(1− λ)s+2ν

=
λ

2− λ

t−1∑
s=−t+1

(1− λ)|s|ΣY(s)

− λ(1− λ)2t

2− λ

t−1∑
s=−t+1

(1− λ)−|s|ΣY(s),(25)

and as t → ∞, the second term in the right hand side of Eq.
(25) approaches to zero, and thus we have

(26) ΣZt =
λ

2− λ

t−1∑
s=−t+1

(1− λ)|s|ΣY(s), as t → ∞.

Also, we noticed that as t → ∞, when s = t−1 or s = −t+1,∑min(t−1,t−1−s)
ν=max(0,−s) (1− λ)s+2ν = 0 since 0 < λ ≤ 1. It implies

for a large t, the term (1−λ)s+2ν almost has no contribution
to ΣZt . Thus, we obtain ΣZt = ΣZt−1 as t → ∞.
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