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It often happens in longitudinal studies that some col-
lected data are observed with the following issues. (i) Sub-
jects may not sampled from homogeneous population with
a common trajectory; (ii) longitudinal continuous measure-
ments may suffer from a serious departure of normality in
which normality assumption may cause lack of robustness
and subsequently lead to invalid inference; (iii) some co-
variates of interest may be difficult to measure accurately
due to their nature; and (iv) the response observations
may be subject to left-censoring due to a limit of detec-
tion (LOD). Inferential procedures will become very compli-
cated when one analyzes data with these features together.
In the literature, there has been considerable interest in
accommodating heterogeneity, non-normality, LOD or co-
variate measurement errors in longitudinal data modeling,
but, no studies have done concerning all of the four fea-
tures simultaneously. In this article, simultaneous Bayesian
modeling approach based on a finite mixture of nonlinear
mixed-effects Tobit joint (NLMETJ) models with skew dis-
tributions is developed to study impact of multiple data
features together, and to estimate not only model param-
eters but also class membership probabilities at both pop-
ulation and individual levels. Simulation studies are con-
ducted to assess the performance of the proposed method,
and real data example is analyzed to demonstrate the pro-
posed methodologies through comparing potential models
with different specifications of error distributions and vari-
ous scenarios.
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1. INTRODUCTION

Modeling of longitudinal data is an active area of bio-
statistics and statistics research that has received a lot of
attention in recent years. A large number of statistical mod-
eling and analysis methods have been suggested for analyz-
ing such data with various features. Researchers may often
confront the task of developing inference from samples where
longitudinal outcomes for the dependent variable of interest
may follow heterogeneous (not homogeneous) characteris-
tics, suffer from a serious departure of normality and be sub-
ject to left-censoring due to a limit of detection (LOD), and
covariates may often be measured with substantial errors.
For example. Modeling AIDS data which will be described
in Section 3.1 has many challenges due to the following is-
sues of inherent data features.

First, in the literature, most studies of longitudinal mod-
eling assume that all subjects come from a homogeneous
population where large variations between- and within-
subjects were accommodated by random-effects and/or
time-varying covariates in the models. These typical varia-
tions are shown in Figure 1(a), viral load trajectory profiles
of six representative patients in AIDS ACTG398 study [10];
these viral load trajectories can be roughly classified into
three classes. The detailed data description and class justi-
fication are provided in Section 3. We, therefore, can rea-
sonably assume that patients are from a population which
consists of three relatively homogeneous classes and, thus,
it is motivated to consider a finite mixture of nonlinear
mixed-effects (NLME) models for such data set. Second,
Figure 1(b) displays the distributions of repeated viral load
measurements (in log10 scale) for 379 subjects enrolled in
ACTG398 study [10]. It can be seen that, for this data set
to be analyzed in this article, the viral load (even after log10
transformation) appears a skewed feature and, thus, a nor-
mality assumption may not be quite realistic. Alternatively,
an asymmetric distribution such as skew-t (ST) and skew-
normal (SN) distributions [1, 25] should be more appropriate
than a symmetric (normal) distribution to model the data
in longitudinal studies. Third, the response measurements
may be subject to left-censoring due to an LOD because of
the low sensitivity of current standard assays [24]. It can
be seen from Figure 1(a) that for some patients their viral
loads are below LOD of 50 copies/mL (log10(50) = 1.699)
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Figure 1. (a) Profile of viral load (response) in log10 scale for six representative patients. Trajectory class 1: decrease rapidly
and constantly in a short-term period (solid curves); class 2: decrease at the beginning and then maintain stable at a low level

(dashed curves) and class 3: decrease at the beginning, but rebound later (dotted curves). (b) Histogram of viral load
measured from RNA levels in log10 scale in an AIDS clinical trial study. The horizontal and vertical dashed-lines at

1.699 = log10(50) are LOD.

which is displayed by the horizontal dashed-line. Last, an-
other feature of a longitudinal data set is the existence of
time-varying covariates which suffer from measurement er-
rors. This is usually the case in a longitudinal AIDS study
where CD4 cell counts are often measured with substantial
measurement errors [15, 18, 31]. Thus, measurement error in
covariate should take into account for statistical inference.

Much of the statistical literature on modeling of longitu-
dinal data has focused on the development of models that
aim at capturing only specific aspects of motivating case
studies [2, 3, 5, 12, 15, 16, 18, 19, 31, 21, 23]. However,
to our best knowledge, no studies have been conducted on
simultaneously accounting for the biases induced by het-
erogeneity, non-normality, left-censoring and mismeasured
covariate. It is not clear how these features of data may
interact and simultaneously influence inferential procedure.
Statistical inference and analysis could be complicated dra-
matically when all of these features arise.

Finite mixture models are used in longitudinal studies
[21, 23], where the latent classes corresponding to the mix-
ture components and cluster individuals may provide a bet-
ter inference. However, most finite mixture models for longi-
tudinal data are currently based on linear (polynomial) [21]
or piecewise linear [23] mean functions. The partial reason is
that the computation for inference can be conveniently car-
ried out because the likelihood function of a model based
on these linear mean functions has a closed form [21]. How-
ever, in practice, most longitudinal trajectories appear to be
nonlinear patterns.

The goal of this article is to investigate the effects on in-
ference when all of these typical features exist in the longi-

tudinal data. To achieve our objective, this article proposes
a finite mixture of NLME Tobit joint (NLMETJ) models
with skew distributions, which include ST and SN distri-
butions, to simultaneously account for response with het-
erogeneity, non-normality, left-censoring and mismeasured
covariate. We demonstrate a Bayesian inferential approach
to a real data application and conduct simulation studies
to estimate both model parameters and class membership
probabilities. It is noted that the ST distribution is approx-
imate to the SN distribution when its degrees of freedom
approach infinity, and the SN distribution reduces to a nor-
mal distribution if skewness parameter is zero. Thus, we use
an ST distribution to develop the mixture modeling method-
ologies, as it can be easily reverted to the normal and SN
distributions. In what follows, we consider multivariate ST
and SN distributions introduced by [25], which are suitable
for a Bayesian inference; see, for example, [15] and [16] for
details.

The rest of this paper is organized as follows. Section 2
constructs the finite mixture of NLMETJ models and as-
sociated Bayesian inferential method in a general form. In
Section 3, we describe an AIDS data set that motivated
this research and discuss the specific mixture of joint mod-
els, formulated by three mean functions of different mix-
ture components for viral load response. In Section 4, we
demonstrate to apply the proposed methodologies to the
AIDS data set and report the analysis results. Section 5 is
devoted to simulation studies evaluating the performance
of the proposed mixture of joint models-based methods.
Finally, we conclude the paper with a discussion in Sec-
tion 6.
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2. MIXTURE OF JOINT MODELS AND
BAYESIAN INFERENTIAL PROCEDURE

In this section, we present the models and methods in a
general form, illustrating that our methods may be applica-
ble in other applications.

2.1 Notation and model framework

Denote the number of subjects by n and the number
of measurements on the ith subject by ni. Let yij be the
value of response for the individual i at time tij (i =
1, 2, . . . , n; j = 1, 2, . . . , ni). In order to introduce Tobit
model to deal with observations below LOD in our mix-
ture modeling framework, denote the observed value yij
by (qij , dij), where dij is the censoring indicator and qij
is the latent response variable. The latent qij is observed,
as yij , if and only if yij > ρ (a known constant LOD).
When qij is observed we have dij = 0; otherwise we have
dij = 1. For simplicity, we consider a single time-varying
covariate zij for the individual i at time tij . Let the ob-
served data � = {(qi,di, zi), i = 1, . . . , n}, where yi =
(yi1, . . . , yini)

T , qi = (qi1, . . . , qini)
T , di = (di1, . . . , dini)

T

and zi = (zi1, . . . , zini)
T .

The various covariate models were investigated in the lit-
erature [4, 11, 18, 31]. In the presence of measurement errors
in covariate zij , we adopt a flexible empirical nonparametric
mixed-effects model to quantify the mismeasured covariate
process as follows.

(1)
zij = w(tij) + hi(tij) + εij (≡ z∗ij + εij),

εi
iid∼ Nni(0, σ

2
1Ini),

where w(tij) and hi(tij) are unknown nonparametric smooth
fixed-effects and random-effects functions, respectively, and
εi = (εi1, . . . , εini)

T follows a multivariate normal distribu-
tion. z∗ij = w(tij) + hi(tij) are the true (but unobservable)
covariate values at time tij . The fixed smooth function w(t)
represents population average of the covariate process, while
the random smooth function hi(t) is introduced to incorpo-
rate the large inter-individual variation in the covariate pro-
cess. We assume that hi(t) is the realization of a zero-mean
stochastic process.

A two-stage modeling for a mixture of NLME model is
employed to modulate the response process in connection
with covariate. We assume that there are K plausible non-
linear trajectory classes with mean functions gk(·) (k =
1, ...,K), which are known to be specified. The true trajec-
tory mean function of the ith subject might be gk(·) with un-
known probability (population proportion) πk = P (ci = k)

which satisfy
∑K

k=1 πk = 1, where ci is a latent indicator.
For the response process with heterogeneity, skewness and
left-censoring due to LOD, a statistical nonlinear trajectory
model of individual i, given ci = k, can be formulated by

(2)
(qi|ci = k) = gk(ti,Akβi) + ei,

ei
iid∼ STni,ν(−J(ν)δ1ni , σ

2
2Ini , δIni),

where ti = (ti1, . . . , tini)
T , βi = (βi1, . . . ,βini

), βij =

(β1ij , . . . , βsij)
T is an s× 1 vector of individual parameters

for the ith subject, J(ν) = (ν/π)
1/2 {Γ[(ν − 1)/2]/Γ(ν/2)}

with Γ(·) being a Gamma function; the vector of random

errors ei = (ei1, ..., eini)
T

follows a multivariate ST dis-
tribution with degrees of freedom ν, unknown variance
parameter σ2

2 and skewness parameter δ; gk(ti,Akβi) =
(gk(ti1,Akβi1), . . . , gk(tini ,Akβini

))T , and Ak (s× s) (k =
1, . . . ,K) is known square indicator matrix, of which diago-
nal elements are either 0 or 1 and off-diagonal elements are
all 0. Ak is introduced because the mean functions, spec-
ified by the nonlinear functions g1(·), . . . , gK(·), may only
involve different subsets of βi. By introducing Ak, Akβi

will set unrelated elements of βi to 0 in the kth trajectory
class. We will illustrate the use of Ak and specify nonlinear
mean functions gk(·) in the real data example below.

Similar to discussion in [19], we can specify model (2)
conditionally and marginally as follows.

(qi|ci = k) ∼ STni,ν(gk(ti,Akβi)− J(ν)δ1ni , σ
2
2Ini , δIni),

(3)

qi ∼
K∑

k=1

πkSTni,ν(gk(ti,Akβi)− J(ν)δ1ni , σ
2
2Ini , δIni).

(4)

In (4) the vector of mixture probabilities π = (π1, . . . , πK)
T

can be also viewed as the mixture weights of all plausible
components under framework of the finite mixture models.
Model (4) is identifiable, as long as each of the component
models is identifiable and distinguishable from each other;
when the component models are identifiable but not distin-
guishable from each other, some constraints may be required
to make model (4) identifiable [28].

For individual-specific parameter vector βij , we assume,

(5) βij = Zijβ + bi, bi
iid∼ Ns(0,Σb)

in which β = (β1, ..., βr)
T

is a vector of universal popula-

tion parameters; bi = (b1i, ..., bsi)
T

is a vector of random-
effects; Σb (s×s) is an unknown variance-covariance matrix;
Zij (s × r) is a design matrix including time-independent
and/or time-varying covariates such as CD4 cell count. We
assume one of the elements in Zij , z

∗
i = (z∗i1, ..., z

∗
ini

)T , is a
summary of true (but unobservable) time-varying covariate
value at time tij . It is noted that r ≥ s. Thus, equations
(1), (4) and (5) form the finite mixture of NLMETJ models
conducted in this paper.

2.2 Simultaneous Bayesian inferential
approach

Although a simultaneous inference method based on a
joint likelihood for the covariate and response data may
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be favorable, the computation associated with the simul-
taneous likelihood inference in (mixture) joint models for
longitudinal data can be intensive and, in particular, may
lead to convergence problems; in some cases it can even be
computationally infeasible [18, 31]. Here we propose a si-
multaneous Bayesian inference method via Markov chain
Monte Carlo (MCMC) procedure to estimate class member-
ship probabilities and all parameters under framework of a
finite mixture of NLMETJ models. Bayesian analysis rests
upon computing the conditional posterior distributions of
the unknown parameters for inference, given the observed
data and weighted by the prior information.

Let θ = {α,β, σ2
1 , σ

2
2 ,Σa,Σb, δ, ν} be the collection of

unknown parameters in all models except for the mixture
weight π in (4). Under Bayesian framework, we next need
to specify prior distributions for all the unknown parameters
as follows.

(6)

α ∼ Np(τ 1,Γ1), σ
2
1 ∼ IG(ω1, ω2),

β ∼ Nr(τ 2,Γ2), σ
2
2 ∼ IG(ω3, ω4),

Σa ∼ IW (Ω1, ρ1), Σb ∼ IW (Ω2, ρ2),

δ ∼ N(0, γ), ν ∼ Exp(ν0)I(ν > 2),

where the mutually independent Inverse Gamma (IG), Nor-
mal (N), Exponential (Exp) and Inverse Wishart (IW )
prior distributions are chosen to facilitate computation. The
truncation point in exponential prior distribution for ν was
chosen to assure a finite variance for ST distribution. The
super-parameter matrices Γ1, Γ2, Ω1 and Ω2 can be as-
sumed to be diagonal for convenient implementation. By
its definition, the latent indicating variable ci (i = 1, ..., n)
follows a Categorical distribution(Cat)

(7) ci
iid∼ Cat((1, 2, . . . ,K), (π1, π2, . . . , πK)),

in which π follows a Dirichlet distribution(Dir) [7, 17],

(8) π ∼ Dir(η1, η2, . . . , ηK).

An MCMC scheme for our mixture model is composed of
following two iterative steps:

(i). Sampling class membership indicator ci, conditional on
population parameter θ, and individual random-effects ai

and bi. Generate ci from

(9) P (ci = k|ai, bi,θ, qi) =
πkf(qi|ai,bi,ci=k,θ)∑K

m=1 πmf(qi|ai,bi,ci=m,θ)
,

where f(qi|ai, bi, ci = k,θ) (k = 1, ...,K) is a conditional
density function of qi based on (3). Then, update the prob-
ability π for next iteration from distribution
(10)
(π|num1, ..., numK) ∼ Dir(η1 + num1, ..., ηK + numK),

where numk =
∑n

i=1 I(ci = k), (k = 1, . . . ,K), in which
I(·) is an indicator function.

(ii). Sampling parameters θ, and individual random-effects
ai and bi, conditional on class membership indicator c =
(c1, . . . , cn)

T
.

Following the study by [25], it can be shown, conditional
on ci determined in step (i), that by introducing the ran-
dom vector wi = (wi1, . . . , wini)

T and random variable ui

based on the stochastic representation for the ST distribu-
tion [12, 15, 16], zi with random-effects ai, and qi with
random-effects bi in the presence of left-censoring can be
hierarchically formulated as

(11)

zi|ai ∼ Nni(z
∗
i , σ

2
1Ini), ai ∼ Nq(0,Σa),

qi|wi, ui, bi, ci ∼ Nni(gci(ti,Aciβi)

+δ[wi − J(ν)1ni ], u
−1
i σ2

2Ini),

wi|ui ∼ Nni(0, u
−1
i Ini)I(wi > 0),

ui ∼ Γ(ν/2, ν/2), bi ∼ Ns(0,Σb),

Let f(·|·), F (·|·) and h(·) denote a probability density
function (pdf), cumulative density function (cdf) and prior
density function, respectively. As we know, ad hoc proce-
dures are sometimes used to adjust observations fall below
LOD. For instance, a common practice is to impute the
censored values by either the LOD or some arbitrary value
[30, 31, 15]. Here, instead of arbitrarily imputing the obser-
vations below LOD, we use fully Bayesian predictive distri-
butions by incorporating a Tobit model [29] to treat the ob-
servations below LOD as left-censoring. That is, Tobit model
is introduced to treat the inaccurate measures below LOD as
missing values of a latent variable. Conditional on the ran-
dom variables and some unknown parameters, a detectable
measurement qij = yij contributes f(qij |bi, wij , ui), whereas
a non-detectable measurement contributes F (ρ|bi, wij , ui) ≡
P (qij < ρ|bi, wij , ui) in the likelihood. We assume that
α,β, σ2

1 , σ
2
2 ,Σa,Σb, δ, ν are independent of each other, i.e.,

h(θ) = h(α)h(β)h(σ2
1)h(σ

2
2)h(Σa)h(Σb)h(δ)h(ν). After we

specify the models for the observed data and the prior dis-
tributions for the unknown model parameters, we can make
statistical inference for the parameters based on their pos-
terior distributions under the Bayesian framework. Thus,
the joint posterior density of θ based on the observed data
� = {(qi,di, zi) and classification indicator c can be given
by
(12)

f(θ|�, c) ∝ {
n∏

i=1

∫ ∫
Lqi

f(zi|ai)f(ai)f(bi)daidbi}h(θ),

where Lqi
=

ni∏
j=1

f(qij |bi, wij , ui)
1−dijF (ρ|bi, wij , ui)

dij ×

f(wij |wij > 0)f(ui) is the likelihood for the observed re-
sponse data, dij is the censoring indicator defined in Sec-
tion 2.1.

In general, the integrals in (12) are of high dimension and
do not have a closed form. Analytic approximations to the
integrals may not be sufficiently accurate. Therefore, it is
prohibitive to directly calculate the posterior distribution of
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θ based on the observed data and class membership. As an
alternative, the MCMC procedure can be used to sample
population parameters in θ, and random-effects ai and bi
from conditional posterior distributions based on (12), us-
ing the Gibbs sampler along with the Metropolis-Hastings
algorithm. Steps (i) and (ii) are repeated alternatively in it-
erations of MCMC procedure until convergence is reached.
An important advantage of the hierarchical representations
in (11) is that they are easily implemented using the freely
availableWinBUGS software [20]. Note that whenWinBUGS
software is used to implement our modeling approach, it is
not necessary to explicitly specify the full conditional pos-
terior distributions or proportional functions of the density
functions of full conditional posterior distributions for pa-
rameters to be estimated. Although their derivations are
straightforward by working the complete joint posterior den-
sity, some cumbersome algebra will be involved. We, thus,
omit those here to save space.

3. MOTIVATING DATA SET AND
SPECIFICATION OF JOINT MODELS

3.1 Data description and features

The data set that motivated this research is from
an ACTG398, which is a randomized, double-blind and
placebo-controlled, with an extension to more than 48 week
study of the 4-drug class regimen in patients with viro-
logic failure defined by receiving saquinavir, nelfinavir, in-
dinavir, or ritonavir [10]. This study consists of 481 HIV-1
infected patients. The plasma HIV-1 RNA (viral load) is
repeatedly quantified at weeks 0, 2, 4, 8, 16, and every 8
weeks until the last patient on study. The number of viral
load measurements for each individual varies from 2 to 13.
Out of total 481 patients, 379 patients who had more than
2 measurements were included in data analysis. A log10-
transformation of viral load was used in the analysis in or-
der to stabilize the measurement variation and to speed up
estimation algorithm. The CD4 cell counts were also mea-
sured throughout study on a similar scheme. 19.5% of viral
load observations were measured below LOD which is 50
copies/mL.

As mentioned in Section 1, the viral load trajectories in
ACTG398 study can be roughly classified into three classes
with the following consideration. The original motivation
based on mixture joint modeling to be conducted in this ar-
ticle was to cluster all patients into two classes with virologic
suppression and failure (i.e., viral load rebound), respec-
tively, which is of main interest from a clinical prospective;
however, the other class was incorporated (class 1) to cap-
ture some patients who withdrew too early to be clustered
into either class 2 with virologic suppression or class 3 with
viral load rebound. Thus, the number of class components
in this analysis was determined empirically based on the
viral load trajectory patterns and clinical interpretability.
Note that class 1 is referred as a confirmed ‘short-term vi-

rologic response’ due to early dropout and may not indicate
virologic suppression in long-term treatment.

As is evident from Figure 1(a), the inter-patient varia-
tions in viral load appear to be large and these variations
change over time. Previous studies suggest that the inter-
patient variations in viral load may be partially explained
by time-varying CD4 cell count [15, 18, 31]. CD4 cell counts
often have nonnegligible measurement errors, and ignoring
these errors may lead to severely misleading results in sta-
tistical inference [4].

3.2 Specification of mixture of joint models

With CD4 measures collected over time, we may model
the CD4 process to partially address the measurement er-
rors [31]. However, the CD4 trajectories are often compli-
cated, and there is no well established model for the CD4
process. We, thus, model the CD4 process empirically using
nonparametric mixed-effects model (1), which works well for
such longitudinal data.

The nonparametric mixed-effects model (1) is more flexi-
ble than parametric mixed-effects models. To fit model (1),
we apply a regression spline method to w(t) and hi(t). The
working principle is briefly described as follows and more de-
tails can be found in the literature [5, 6, 33]. The main idea
of regression spline is to approximate w(t) and hi(t) by using
a linear combination of spline basis functions. For instance,
w(t) and hi(t) can be approximated by a linear combina-
tion of basis functions Ψp(t) = {ψ0(t), ψ1(t), ..., ψp−1(t)}T
and Φq(t) = {φ0(t), φ1(t), ..., φq−1(t)}T , respectively. That
is,

(13)
w(t) ≈ wp(t) =

∑p−1
l=0 αlψl(t) = Ψp(t)

Tα,

hi(t) ≈ hiq(t) =
∑q−1

l=0 ailφl(t) = Φq(t)
Tai,

where α = (α0, . . . , αp−1)
T is a p× 1 vector of fixed-effects

and ai = (a0i, . . . , aq−1,i)
T (q ≤ p) is a q × 1 vector of

random-effects with ai
iid∼ Nq(0,Σa). Based on the assump-

tion of hi(t), we can regard ai as iid realizations of a zero-
mean random vector. For our model, we consider natural
cubic spline bases with the percentile-based knots.

Substituting w(t) and hi(t) by their approximations wp(t)
and hiq(t), we can approximate model (1) by the following
linear mixed-effects (LME) model.
(14)

zij ≈ Ψp(tij)
Tα+Φq(tij)

Tai + εij ≈ z∗ij + εij ,

εi
iid∼ Nni(0, σ

2
1Ini),

Following the studies [5, 18], we use linear combinations
of natural cubic splines with percentile-based knots to ap-
proximate w(t) and hi(t) in (1), and set ψ0(t) = φ0(t) = 1
and take the same natural cubic splines in the approxi-
mations (13) with q ≤ p (in order to limit the dimen-
sion of random-effects). The values of p and q are deter-
mined based on the the Akaike information criterion (AIC)
or the Bayesian information criterion (BIC). The AIC/BIC
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values are evaluated based on various models (14) with
(p, q) = {(1, 1), (2, 1), (2, 2), (3, 1), (3, 2), (3, 3)} using CD4
data; it was found that the model with (p, q) = (3, 3)
has the smallest AIC/BIC values being 1733.5/1749.8. We,
thus, incorporate the following nonparametric mixed-effects
CD4 covariate model into the Bayesian mixture of NLMETJ
models.

zij = (α0 + a0i) + (α1 + a1i)ψ1(tij)(15)

+ (α2 + a2i)ψ2(tij) + εij ,

where zij is the observed CD4 value at time tij , ψ1(·)
and ψ2(·) are two basis functions given in Section 2.1,
α = (α0, α1, α2)

T is a vector of population (fixed-effects) pa-
rameters, ai = (a0i, a1i, a2i)

T is a vector of random-effects,
and εi = (εi1, . . . , εini)

T ∼ Nni

(
0, σ2

1Ini

)
. In addition, in

order to avoid too small or large estimates which may be un-
stable, we standardize the time-varying covariate CD4 cell
counts and rescale the original time (in days) so that the
time scale is between 0 and 1.

Viral dynamic models can be formulated through a sys-
tem of ordinary differential equations (ODE) [24, 30, 22, 13].
Under some reasonable assumptions and simplifications, two
useful approximations of ODE solution, which can be used
to capture viral load responses, have been proposed as fol-
lows.

y(t) = log10(e
p1−λ1t),(16)

y(t) = log10(e
p1−λ1t + ep2−λ2t),(17)

where y(t) is the log10 scaled plasma HIV-1 RNA levels at
time t. λ1 and λ2 are called the first- and second-phase vi-
ral decay rates, which may represent the minimum turnover
rate of productively infected cells and that of latently or
long-lived infected cells, respectively [24]. It is generally as-
sumed that λ1 > λ2, which assures that the model is identi-
fiable [30]. The parameters p1 and p2 are macro-parameters;
ep1 and ep1 + ep2 are the baseline viral load at time t = 0
in one- and two-compartment models, respectively. It was
noted that both equations (16) and (17) can be only applied
to the early segment or longer term of the viral load response
with decreasing trajectory patterns (see [14, 19, 32] in detail)
and shown in Figure 1(a) (two solid and two dashed curves).
It was also noted that for some patients the second-phase
viral decay rate, λ2, may vary over time because they de-
pend on some phenomenological parameters that hide with
considerable microscopic complexity and change over time
[22]. Negative values of the decay rates may correspond to
viral increase and lead to viral rebound [30], suggesting that
variation in the dynamic parameters, particularly λ2, may
be partially associated with time-varying covariates such as
repeated CD4 cell counts. Thus, it may not be reasonable to
assume that second-phase viral decay rate λ2 is a constant
when viral load is rebounded at the later stage during long-
term treatment. To model the long-term HIV dynamics, a

natural extension of equation (17) is to assume that the
second-phase viral decay rate λ2 changes over time, which
may be a function of time-varying covariate such as CD4
cell count to capture the viral load change including viral
rebound. Thus, we introduce an extended function as fol-
lows.

(18) y(t) = log10(e
p1−λ1t + ep2−λ2(t)t),

Based on discussion above, we consider one- and two-
compartment models with constant decay rate(s) for trajec-
tory classes 1 and 2 defined in Section 1, respectively, and
a two-compartment model with a time-varying decay rate
in the second compartment for trajectory class 3. Thus, the
mean functions of K = 3 components in the mixture model
are specified by

• One-compartment model with a constant decay rate for
class 1 trajectory

(19) g1(tij ,A1βij) = log10(e
p1i−λ1itij ),

• Two-compartment model with constant decay rates for
class 2 trajectory
(20)

g2(tij ,A2βij) = log10(e
p1i−λ1itij + ep2i−λ2itij ),

• Two-compartment model with constant and time-
varying decay rates for class 3 trajectory
(21)

g3(tij ,A3βij) = log10(e
p1i−λ1itij + ep2i−λ∗

2ijtij ).

In (19)–(21),

β1i = p1i = β1 + b1i, β2i = λ1i = β2 + β3zi0 + b2i,

β3i = p2i = β4 + b3i, β4i = λ2i = β5 + b4i,

β5ij = λ∗
2ij = β5 + β6z

∗
ij + b4i,

βij = (β1i, β2i, β3i, β4i, β5ij)
T
,

β = (β1, β2, β3, β4, β5, β6)
T
,

A1 = diag(1, 1, 0, 0, 0),

A2 = diag(1, 1, 1, 1, 0),

A3 = diag(1, 1, 1, 0, 1),

where zi0 is the baseline CD4 and z∗ij is true (but unobserv-
able) value of CD4 at time tij defined in (15). The decay rate
of the second compartment in (21), β5ij , is time-varying due
to z∗ij , but other parameters in βij are time independent. As
mentioned previously, the mean functions in different com-
ponents may involve different subsets of βij ; for example,
g1(·) only involves parameters β1i and β2i, and g2(·) and
g3(·) share the same parameters β1i, β2i, and β3i but have
different second-phase decay rate, β4i and β5ij , respectively.
The diagonal indicator matrices,A1,A2, andA3, determine
which elements of βij are involved and set other unrelated
parameters to be 0 in the mean functions g1(·), g2(·), and
g3(·), respectively. It is noted that (21) is a natural extension
of (20) to consider a time-varying decay rate for capturing
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viral rebound in class 3 trajectories. With this mixture clus-
tering, our mixture modeling can be used to estimate prob-
abilities of class membership which is either viral rebound
eventually, suggesting virologic failure (class 3) or viral de-
crease continuously, indicating a confirmed short-term viro-
logic response (class 1) and a confirmed long-term virologic
response (class 2).

4. ANALYSIS OF AIDS CLINICAL DATA

4.1 Model implementation

As shown in Figure 1(b), the histogram of viral load in
log10 scale clearly indicates the asymmetric feature. Thus, it
seems plausible to fit models with a skew distribution to the
data. With this information, based on the finite mixture of
NLMETJ models the following four statistical models with
specifying different distributions for viral load response in
the presence of left-censoring and the CD4 covariate model
(15) were employed to compare their performance:

• Model N: A mixture of NLMETJ model where the
three mean functions specified by (19)–(21) with the
normal distribution for response model error.

• Model SN: A mixture of NLMETJ model where the
three mean functions specified by (19)–(21) with the
SN distribution for response model error.

• Model ST: A mixture of NLMETJ model where the
three mean functions specified by (19)–(21) with the
ST distribution for response model error.

• Model NL: A commonly used NLMETJ model where
the mean function specified by (21) alone with the SN
distribution for response model error.

We conducted the following three scenarios. First, be-
cause a normal distribution is a special case of an SN distri-
bution when the skewness parameter is zero, while the ST
distribution reduces to the SN distribution when degrees of
freedom are large, we investigated how asymmetric distri-
butions for model error (Models ST and SN) contribute to
modeling results in comparison with a symmetric (normal)
distribution for model error (Model N). Second, we esti-
mated the model parameters by using the ‘naive’ method,
which ignores measurement error in CD4 covariate. That is,
the ‘naive’ method uses only the observed CD4 values zij
rather than unobservable CD4 values z∗ij in equation (21).
We used it as a comparison to the joint modeling approach
proposed in this article to investigate how the measurement
errors in CD4 contribute to modeling results. Finally, we
further compared Model NL (ignoring data feature of het-
erogeneous population) with Model SN to explore how het-
erogeneous feature influences modeling results.

To carry out the Bayesian inference, we took weakly-
informative prior distributions for the parameters in Models
N, SN and ST. In particular, (i) fixed-effects were taken to
be independent normal distribution N(0, 100) for each ele-
ment of the population parameter vectors β and α; (ii) we
assume a noninformative inverse Gamma prior distribution

IG(0.01, 0.01), which has mean 1 and variance 100, for vari-
ance parameters σ2

1 and σ2
2 ; (iii) the priors for the variance-

covariance matrices of the random-effects Σa and Σb were
taken to be inverse Wishart distributions IW (Ω1, υ1) and
IW (Ω2, υ2), where the diagonal elements for diagonal vari-
ance matrix Ω1 and Ω2 were 0.01, and υ1 = υ2 = 4; (iv)
the degrees of freedom parameter ν followed truncated ex-
ponential distribution ν ∼ Exp(0.1)I(ν > 2); (v) for the
skewness parameter δ, we chose independent normal dis-
tributions N(0, 100); and (vi) we set hyper-parameters of
Dirichlet distribution in (8), η1 = η2 = η3 = 1, assuming
individuals have equal probabilities of coming from any one
of three classes initially.

The MCMC sampler was implemented using WinBUGS
software [20] interacted with a function called bugs in a pack-
age R2WinBUGS of R, and the program code is available
from authors upon request. When the MCMC procedure
was applied to the actual clinical data, convergence of the
generated samples was assessed using standard tools within
WinBUGS software such as Gelman-Rubin diagnostics [9].
Figure 2 shows the dynamic version of Gelman-Rubin diag-
nostics based on Model SN as obtained from the WinBUGS
software for the representative parameters where the three
curves are given: the middle and bottom curves below the
horizontal dashed-line (indicated by the value one) repre-
sent the pooled posterior variance (V̂ ) and average within-
sample variance (W ), respectively, and the top curve repre-
sents their ratio (R̂). It is seen that R̂ tends to 1, and V̂ and
W will stabilize as the number of iterations increase, indi-
cating that the algorithm has approached convergence. With
the convergence diagnostics observed, we proposed that, af-
ter an initial number of 50,000 burn-in iterations of three
chains of length 100,000, every 50th MCMC sample was
retained from the next 50,000 for each chain. Thus, we ob-
tained a total of 3,000 samples of targeted posterior distri-
butions of the unknown parameters for statistical inference.

4.2 Comparison of modeling results

Bayesian modeling approach in conjunction with the mix-
ture of NLMETJ models with different specification of er-
ror distributions was used to fit the viral load and CD4
data with multiple features simultaneously. Tables 1 and
2 present the population posterior mean (PM), the corre-
sponding standard deviation (SD) and 95% credible inter-
val (CI) for fixed-effects parameters based on the proposed
models with two methods. The following findings are ob-
tained for the results of estimated parameters.

In the mixture of response models, the findings, partic-
ularly for the fixed-effects (β5, β6), which are parameters
related to second-phase viral decay rate, show that these
estimates are different from zero for Models N, SN and ST
since the 95% credible intervals do not contain zero. Never-
theless, for the estimate of the coefficient of CD4 covariate
β6, its estimate is significantly positive. This means that
CD4 has a significantly positive effect on the second-phase
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Figure 2. Gelman-Rubin (GR) diagnostic plot based on the NLME mixture model with three Markov chains as obtained from
the WinBUGS software for representative parameters. The middle and bottom curves below the horizontal dashed-line
(indicated by the value one) represent the pooled posterior variance (V̂ ) and average within-sample variance (Ŵ ),

respectively, and the top curve above the horizontal dashed-line represents their ratio (R̂).

viral decay rate, suggesting that the CD4 covariate may be
an important predictor of the second-phase viral decay rate
during the treatment. The fixed-effects (β2, β3), which are
parameters of the first-phase viral decay rate, show that
β2 is significantly estimated, while the estimate of β3, the
coefficient of baseline CD4 count, is significantly positive,
indicating that the baseline CD4 has positive effect on the
first-phase viral decay rate. In addition, there are marked
difference in posterior mean of the variance (scale parame-
ter) σ2

2 (0.37 vs. 0.01) in comparison of (symmetric) Model
N with (asymmetric) Models SN and ST. The estimated val-
ues of the variance for both Models SN and ST are much
smaller than that of Model N because the former models
take into account skewness of the data while the latter does
not. The estimates of the skewness parameter (δ) of Models
SN and ST are, respectively, 0.64 with 95% CI (0.27, 0.86)
and 0.44 with 95% CI (0.11, 0.68). This finding suggests
that there is a significantly positive skewness in the data
and confirms the fact that the distribution of the original
data is skewed even after taking log10-transformation (see
Figure 1(b)). Thus, incorporating a skewness parameter in

modeling skewed data is recommended. Furthermore, the
estimate (0.44) of the skewness parameter based on Model
ST is less than that (0.64) based on Model SN. This may
be due to the fact that an additional parameter ν (degrees
of freedom) for heaviness in the tails was estimated to be
3.80 trading-off the effect of skewness. For parameter esti-
mates of the CD4 covariate model (15), the estimates (-0.03,
-0.19 and -0.21) of the intercept α1 are negatively different
from zero for all of the three models. The estimates (0.89
and 0.91) of the linear coefficient α2 based on Models SN
and ST are around six times larger than that (0.15) based on
Model N, indicating that the estimated CD4 trajectories ap-
pear positive linear patterns for all of the three models. The
estimates (26.7, 6.60 and -1.69) of the quadratic coefficient
α3 are quite different and, in particular, their estimates may
not be statistically significant for Models SN and ST since
the 95% credible intervals contain zero. The estimates (0.78,
0.76 and 0.78) of the variance σ2

1 are almost equivalent for
the three models.

Figure 3 displays the six representative individual fitting
curves of viral load observations using the joint modeling ap-
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Table 1. Summary of estimated posterior mean (PM) of population (fixed-effects) parameters, the corresponding standard
deviation (SD), and lower limit (LCI) and upper limit (UCI) of 95% equal-tail credible interval (CI) based on ‘naive’ method
(NM) and joint modeling approach (JM) for a finite mixture of NLMETJ models (Models N, SN and ST) and a commonly

used NLMETJ model (Model NL)

Method Model β1 β2 β3 β4 β5 β6 α1 α2 α3

JM N PM 10.6 19.0 24.6 6.67 -2.85 40.6 -0.03 0.15 26.7
LCI 10.3 0.65 16.1 6.23 -4.87 31.2 -0.08 0.07 15.5
UCI 10.8 39.3 31.9 7.07 -0.85 53.4 -0.01 0.38 38.5
SD 0.12 10.4 4.12 0.22 1.02 5.70 0.04 0.13 5.84

JM SN PM 10.3 26.0 18.8 6.30 -3.79 12.5 -0.19 0.89 6.60
LCI 10.1 11.5 11.7 5.60 -4.83 8.22 -0.24 0.66 -8.23
UCI 10.6 44.9 24.0 6.76 -2.96 15.4 -0.13 1.13 21.7
SD 0.15 9.80 2.59 0.44 0.54 2.13 0.04 0.17 8.19

JM ST PM 10.2 25.7 25.3 6.80 -2.64 10.9 -0.21 0.91 -1.69
LCI 9.98 2.30 17.9 6.53 -3.66 5.41 -0.27 0.75 -13.7
UCI 10.4 44.2 36.2 7.21 -1.84 15.1 -0.16 1.03 7.46
SD 0.13 12.1 5.69 0.20 0.55 2.80 0.03 0.06 5.82

JM NL PM 10.5 31.3 19.7 6.11 -3.85 10.3 -0.18 0.74 6.57
LCI 10.3 8.89 14.3 5.73 -5.32 7.23 -0.22 0.65 -1.81
UCI 10.7 50.7 24.6 6.78 -2.53 13.3 -0.15 0.88 14.6
SD 0.12 12.4 3.00 0.42 0.88 1.61 0.02 0.06 4.27

NM SN PM 10.3 44.0 16.0 6.45 -1.92 2.27 – – –
LCI 9.82 22.5 6.38 6.00 -2.40 1.07 – – –
UCI 10.7 65.9 24.3 6.75 -1.25 3.07 – – –
SD 0.28 15.8 5.82 0.21 0.37 0.69 – – –

proach based on Models N, SN and ST. The following find-
ings are observed from joint modeling results. (i) In general,
Models N, SN and ST provided a reasonably good fit to the
observed data above LOD for most patients in this study,
although the fitting for a few patients was not completely
satisfactory due to unusual viral load fluctuation patterns
for these patients. (ii) In particular, the estimated individ-
ual trajectories for Models SN and ST fit the originally ob-
served values above LOD more closely than those for Model
N. Note that the lack of smoothness in Models SN and ST
estimates of individual trajectories is understandable since
a random component wi was incorporated in the expected
function (see (11) for details) according to the stochastic
representation feature of the skew distributions for “chas-
ing the data” to this extent. The predicted values where
the viral load observations are below LOD appear quite
different for the three models (see detailed discussion be-
low).

We now focus on the lower end of the distribution of the
viral load where there is left-censoring due to LOD, which
is log10(50) = 1.699 here. In our analysis, we treated those
inaccurate viral loads below LOD as missing values and pre-
dict them by introducing the Tobit model into the proposed
mixture models. Note that the main advantage of the To-
bit model is that it deals correctly with observations below

LOD whether we want predict them or not based on a la-
tent variable approach. The fitted results of these models
for values below LOD are depicted in Figure 4, where the
histograms show the observed distributions but inaccurate
values (Figure 4(a)) below LOD and the predicted values
below LOD under Models N, SN and ST (Figure 4(b-d)),
where the vertical dashed-lines represent the LOD value at
1.699. It can be seen from the histograms that most ob-
served but inaccurate values are piled up at the range (0.7,
1.7) in the upper-left histogram, whereas the predicted val-
ues of the unobserved viral load below LOD for Models N,
SN and ST are spread out as expected. However, for Model
N some predicted values exceeded the LOD, suggesting bad
fits, while both Models SN and ST show an improvement
over Model N by giving no predicted values greater than
LOD. When we compare Models SN and ST in terms of
their performance in predicting viral loads below LOD, we
see that Model SN gives a little more plausible values in
the sense that the distribution of the predicted viral loads
is portrayed as proportionally increasing towards the LOD.
This distribution is relatively smooth and closely fits the
lower part of the whole distribution of the predicted viral
load values based on Model SN, implying that Model SN is
the best model. This finding also confirms the conclusions
made using other criteria (see below).
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Table 2. Summary of estimated posterior mean (PM) for parameters of scale, skewness, and degree of freedom, and
corresponding standard deviation (SD) and lower limit (LCI) and upper limit (UCI) of 95% equal-tail credible interval (CI) as
well as DIC, EPD, SSR values and data features based on ‘naive’ method (NM) and joint modeling approach (JM) for a finite

mixture of NLMETJ models (Models N, SN and ST) and a commonly used NLMETJ model (Model NL)

Method Model σ2
1 σ2

2 δ ν DIC EPD SSR Data features

JM N PM 0.78 0.37 – – 14368.9 0.702 1028 heterogeneity
LCI 0.74 0.34 – – left-censoring
UCI 0.84 0.40 – – mismeasured covariate
SD 0.03 0.02 – –

JM SN PM 0.76 0.01 0.64 – 11572.8 0.006 7.783 heterogeneity
LCI 0.72 0.01 0.27 – left-censoring
UCI 0.81 0.02 0.86 – mismeasured covariate
SD 0.02 0.01 0.09 – skewness

JM ST PM 0.78 0.01 0.44 3.80 12099.1 0.017 23.27 heterogeneity
LCI 0.73 0.01 0.11 3.12 left-censoring
UCI 0.83 0.02 0.68 4.77 mismeasured covariate
SD 0.03 0.01 0.03 0.43 skewness

JM NL PM 0.79 0.01 0.52 – 13031.1 0.005 7.450 left-censoring
LCI 0.74 0.01 0.21 – mismeasured covariate
UCI 0.85 0.02 0.73 – skewness
SD 0.03 0.01 0.06 –

NM SN PM – 0.01 0.43 – 12056.3 0.353 499.1 heterogeneity
LCI – 0.01 0.27 – left-censoring
UCI – 0.02 0.72 – skewness
SD – 0.01 0.07 –

To assess the goodness-of-fit for the proposed statistical
models, Figure 5 presents the N, SN, and ST Q-Q plots
based on Models N, SN and ST. It can be seen that Models
SN and ST provided better fit to observed data compared
with Model N. Further, Model SN did an even better job
than Model ST in accounting for skewness. This finding is
confirmed by their sums of squared residuals (SSR), formu-

lated by SSR =
∑

i,j (yfitted,ij − yobs,ij)
2
, which are 1028

(Model N), 7.783 (Model SN), and 23.37 (Model ST), re-
spectively.

To select the best model that fits the data adequately, a
Bayesian selection criterion, known as deviance information
criterion (DIC) suggested by [26], is used. As with other
model selection criteria, we caution that DIC is not in-
tended for identification of the “correct” model, but rather
merely as a method of comparing a collection of alterna-
tive formulations. As an alternative, we also evaluate ex-
pected predictive deviance (EPD) formulated by EPD =

E
{∑

i,j(yrep,ij − yobs,ij)
2
}

for model comparison, where

the predictive value yrep,ij is a replicate of the observed
yobs,ij and the expectation is taken over the posterior dis-
tribution of the model parameters θ (see [8] in detail). This
criterion chooses the model where the discrepancy between
predictive values and observed values is the lowest. For mix-
ture models, the structure of DIC does not allow for au-

tomatic computation in WinBUGS software. We wrote R
code to calculate estimated DIC values, which are 14368.9
(Model N), 11572.8 (Model SN) and 12099.1 (Model ST),
respectively. Thus, based on the DIC, the results indicate
that Model SN is the best fitting model and Model ST is
next, supporting the contention of a departure from nor-
mality. This finding is confirmed by the results of the EPD
values (see Table 2). These results are also consistent with
those in diagnosis of the goodness-of-fit displayed in Fig-
ure 5, indicating that Model SN performs best. In summary,
our results may suggest that it is important to assume a
skew distribution in the mixture models for the viral load
response in order to achieve reliable results, in particular, if
the data exhibit skewness. Based on these findings, we fur-
ther report our results in detail only for the best Model SN
below.

4.3 Analysis results based on Model SN

As mentioned in Section 1, one of the primary objectives
in this data analysis was to cluster all individuals into 3
classes of viral load trajectories: (i) decrease rapidly and
constantly in a short-term period, (ii) decrease at the be-
ginning and then maintain stable at a low level, and (iii)
decrease at the beginning, but rebound later. Based on the
mixture modeling, we are able to obtain a summary of class
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Figure 3. Individual fitted curves of viral load for six representative patients based on Models N (solid curve), SN (dotted
curve) and ST (dashed curve). Patients 31 and 105 are from class 1 with probabilities 97% and 88%; patients 29 and 132
belong to class 2 with probabilities 95% and 100%; and patients 33 and 99 are from class 3 with both probabilities being
100%. The observed values are indicated by circle “◦”. The horizontal dashed-lines represent LOD at 1.699 = log10(50).

membership at both the population and individual levels.
At population level, the MCMC procedure yields samples
from the posterior distribution of π = (π1, π2, π3)

T
in (10),

the population proportion of individuals in each class. The
estimates of population proportion and associated 95% CI
of (π1, π2, π3) for three classes are 25.35% (23.26%, 27.53%),
36.60% (33.87%, 39.41%) and 38.05% (35.19%, 40.88%), re-
spectively. Thus, out of 379 patients, the patterns of chang-
ing viral load of 96, 139 and 144 patients followed classes

1, 2 and 3, respectively. It can be seen that classes 1 and
2 (decrease, and decrease and maintain stable) have a cu-
mulated proportion with 61.95%, and class 3 has proportion
of 38.05% (decrease and rebound later). This indicates that
a confirmed virologic responses were observed in 61.95% of
the patients (in classes (i) and (ii)). At individual level, the
posterior probability of individual i belonging to the kth
(k = 1, 2, 3) class, pik = E[I(ci = k)], can be approximated

by M−1
∑M

l=1 I(c
(l)
i = k), in which c

(l)
i is class member-
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Figure 4. Histograms of (a) inaccurate raw data below LOD, and predicted values of viral load below LOD based on (b)
Model N, (c) Model SN and (d) Model ST. The vertical dashed-lines represent LOD at 1.699 = log10(50).

Figure 5. Normal, SN and ST Q–Q plots with line based on Models N, SN and ST.
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Figure 6. Posterior probabilities of belonging to 3 trajectory classes for the subjects 21 to 40 based on Model SN.

ship of individual i drawn from the posterior distribution
(9) in the lth MCMC iteration (l = 1, . . . ,M), where M is
total iteration number of posterior samples (=3,000 here).
Barplot in Figure 6 displays the probabilities for the 20 in-
dividuals. The probability corresponding to individual pa-
tient who is classified as either viral load rebound or not may
help physicians refine treatment strategy and to identify the
potential reasons of viral load rebound for such individual
patient. The individual posterior probabilities correspond-
ing to the classes of trajectories shown in Figure 1(a) are
matched quite well. That is, the patients 31 and 105 belong
to class 1 because their viral load decrease constantly in a
early short-term period, with probabilities 82% and 87%,
respectively; the viral loads of the patients 29 and 132 de-
crease and then maintain stable, and thus, they belong to
class 2, with probabilities 82% and 85%, respectively; and
finally, the patients 33 and 99 are in class 3 (viral load re-
bound), with probabilities 87% and 100%.

The estimated population parameters presented in Ta-
ble 1 based on Model SN indicate that the first-phase
decay rate, and the second-phase decay rate with base-
line CD4(0) and time-varying covariate CD4(t) may be

approximated by λ̂1 = 26.0 + 18.8CD4(0), λ̂2 = −3.79

and λ̂∗
2(t) = −3.79 + 12.5ĈD4(t), respectively, where

ĈD4(t) is the predicted time-varying CD4 covariate.
Thus, the population viral load processes of 3 classes

may be approximated by V̂1(t) = exp
{
10.3− λ̂1t

}
,

V̂2(t) = exp
{
10.3− λ̂1t

}
+ exp

{
6.30− λ̂2t

}
and V̂3(t) =

exp
{
10.3− λ̂1t

}
+exp

{
6.30− λ̂∗

2(t)t
}
. Since the first-phase

viral decay rate λ1 is positively associated with the baseline
CD4 (due to significant estimate of β3) and the second-phase
viral decay rate λ∗

2(t) in component 3 is positively associated
with the true (but unobserved) CD4 values, suggesting that

the viral load V (t) may be negatively significantly associated
with both the baseline CD4 and the true CD4 values. This
simple approximation considered here may provide a rough
guidance and point to further research even though the true
association described above may be more complicated.

In order to investigate how the measurement errors in
CD4 contribute to modeling results, we further compare two
methods for estimation based on Model SN: the proposed
joint modeling approach and ‘naive’ method where the raw
(observed) CD4 values, zij , rather than the true (unobserv-
able) CD4 values, z∗ij , are substituted in the mixture model.
It can be seen from Tables 1 and 2 that there are impor-
tant differences in the estimates for the parameters β5 and
β6, which are directly associated with whether or not ig-
noring potential CD4 measurement errors for inference. The
‘naive’ method may produce unresonable estimates and sub-
stantially underestimate the covariate CD4 effect (‘naive’

method: β̂6 = 2.27 vs. joint modeling approach: β̂6 = 12.5).
The estimated SD for the CD4 effect (β6) using joint mod-
eling approach is about three times larger than that using
‘naive’ method, probably because joint modeling approach
incorporates the variation from fitting the CD4 process. The
difference of estimates between joint modeling approach and
‘naive’ method, due to whether or not potential CD4 mea-
surement errors are ignored for inference, indicates that CD4
measurement errors should not be ignored in the analysis.
Thus, it is important to take the CD4 measurement errors
into account when collected data are “imperfectly” mea-
sured.

We further investigated a commonly used NLMETJ
model with SN distribution (Model NL, ignoring data fea-
ture of heterogeneous population), and compared it with
the mixture of NLMETJ model (Model SN) to explore how
heterogeneous feature influences modeling results. We found
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Table 3. Summary of true parameter (TP) values, estimated β, α and skewness parameter δ as well as SD and MSE for
Models N, SN and NL based on 150 generated data sets, under response model error with Γ(2, 1) distribution based on the
joint modeling (JM) approach and the ‘naive’ method. Mean and SD denote averages of the MC posterior mean and MC

standard deviation, respectively; MSE is quantified by percent
√
MSE = 100×

√
MSEl/|TPl|

JM NM
Model N Model NL Model SN Model SN

TP Mean SD MSE Mean SD MSE Mean SD MSE Mean SD MSE

β1 = 10.0 10.82 0.27 6.54 10.48 0.27 4.24 10.12 0.21 2.65 10.33 0.24 3.81
β2 = 26.0 28.54 4.45 8.23 27.13 4.89 7.46 26.12 2.76 3.17 26.66 4.98 5.96
β3 = 18.5 20.14 5.49 10.23 19.34 6.11 9.12 18.87 2.77 5.81 19.03 3.98 8.06
β4 = 6.3 7.31 2.53 9.34 7.01 1.42 6.39 6.41 0.89 2.23 6.85 1.20 5.80
β5 = −3.8 -4.41 1.98 10.12 -4.12 1.77 9.43 -3.86 0.86 4.02 -4.34 2.23 10.11
β6 = 12.5 9.33 6.77 10.65 10.82 6.47 9.23 12.91 3.45 5.66 9.29 7.33 11.02
α1 = −0.2 -0.17 0.43 4.33 -0.18 0.37 3.89 -0.19 0.35 3.67 -0.18 0.40 3.87
α2 = 1.0 1.10 2.21 3.89 1.09 1.63 2.98 1.03 0.77 1.02 1.08 1.32 1.87
α3 = 6.5 6.28 3.87 6.66 6.41 3.38 5.76 6.47 1.01 2.31 6.39 5.76 3.61
δ – – – 1.34 0.84 – 1.52 0.97 – 1.46 0.96 –

the important difference in the estimates for the parameters
(β2, β3), which are associated with the first-phase viral de-
cay rate, and for the parameter (β6), which is associated
with the second-phase viral decay rate. We also obtained
estimated DIC values with 11572.8 (Model SN) and 13031.1
(Model NL), respectively. Although Model SN has slightly
larger EPD and SSR values than Model NL due to discrep-
ancy of possible mis-classification, however, since Model SN
estimated not only model parameters but also class mem-
bership probabilities, suggesting that the mixture modeling
may be more efficient.

5. SIMULATION STUDIES

To assess the performance of the proposed mixture of
NLMETJ models and methods, as an illustration, we con-
ducted the following simulation studies where Models N,
SN and NL are included and the joint modeling approach
and ‘naive’ method are compared. To simulate a hetero-
geneous population, 40, 180 and 180 response trajectory
mean values, out of 400 subjects, are generated based on
the three functions in (19)–(21), respectively. We generated
150 datasets from specified models according to the addi-
tional specifications described below. The measurement time
points used in the simulation are similar to those in the
real data analysis and the true parameter values are mimic
to those obtained in the example. β = (β1, . . . , β6)

T =
(10.0, 26.0, 18.5, 6.3,−3.8, 12.5)T , α = (α1, α2, α3)

T =
(−0.2, 0.9, 6.5)T , Σb = diag(1.5, 6.6, 3.2, 9.9). The time-
varying CD4 covariate zij are simulated from equation
z∗ij = (−0.2 + ai1) + (0.9 + ai2)tij + (6.5 + ai3)t

2
ij , with

(ai1, ai2, ai3)
T ∼ N(0, diag(1.0, 0.5, 0.1)) and εij following

N distribution N(0, 0.02) for convenient implementation.
An advantage of the SN distribution for the model er-

rors is its propensity for accommodating skewness. In the
simulation, we generated eij according to Γ(2, 1) distribu-
tion, yielding a skewed distribution with E(eij) = 2 and

V ar(eij) = 2. Under this specification, data generated from
mixture model with Γ(2, 1) distribution may exhibit highly
skewed feature. We determined a threshold from generated
data set as LOD value so that there are roughly 15% re-
sponse observations below LOD. Note that the prior distri-
butions considered are all close to non-informative as simi-
larly treated in real data analysis. Thus, we expect the re-
sults to be somewhat robust with respect to prior distribu-
tions.

In the simulation studies, we investigated the following
three scenarios. First, Model SN is compared with Model N
to evaluate how skewness feature of data influences modeling
results; second, Models SN and N are compared with Model
NL to assess how data features with heterogeneous popula-
tion and/or skewness simultaneously contribute to modeling
results; and finally, for Model SN, we compared joint mod-
eling approach with ‘naive’ method to investigate how the
measurement errors in CD4 covariate affect to modeling re-
sults.

For evaluating the objective use of the criteria, the models
preferred by DIC were recorded. For example, in the MCMC
sampling result, none of DIC selected the N distribution
specification for any of the 150 data sets, demonstrating the
ability of selection method to detect an obvious departure
from symmetry and suggesting strong evidence of skewness.
Table 3 shows the numerical results for the estimates of
parameters δ, β and α. The following findings were observed
from the simulation study.

For the parameters in the covariate measurement error
model, all parameters are similarly estimated in terms of
models and methods, but α1 and α2 which are intercept
and linear coefficient are overestimated, while α3 which is
quadratic coefficient is underestimated.

For the estimates of parameter vector β, β1 and β4 were
similar among the three fitted models and the two methods,
while the estimates of the other parameters (β2, β3, β5 and
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β6) tend to be significantly biased for Model N. We found
that Models SN and NL work reasonably well in the current
setting in terms of MSE (quantified by 100×

√
MSEl/|TPl|,

l = 1, . . . , 6), while Model N may lead to large SDs and
MSEs for most of parameters. Interestingly, for joint mod-
eling approach we found that the SDs in Model N (symmet-
ric) are larger than their counterparts in Models SN and
NL (asymmetric), and the SDs in Model SN is smaller than
corresponding those in Model NL, indicating that the model
with longer tails and heterogeneous data feature may pro-
duce more precise estimates, and the efficiency of estimation
on β2, β3, β5 and β6 associated with two phase decay rates
is degraded (higher SD) when symmetric distribution for
model error is assumed (Model N) or heterogeneous data
feature is ignored (Model NL) relative to allowing a more
flexible representation via both SN distributions and hetero-
geneous data feature (Model SN). This suggests that adopt-
ing the (symmetric) normal distribution assumption or ig-
noring heterogeneous data feature may lead to inaccurate
and inefficient inference on fixed-effects of primary interest,
in particular, when data exhibit asymmetric and/or hetero-
geneous features. Thus, for Models N, NL and SN, Model
SN performs the best, followed by Model NL and Model N
is worst. In addition, MC means of the skewness parame-
ters of Models NL and SN are 1.34 and 1.52, respectively,
indicating the data departs from N distribution.

We can also see from the simulation results in Table 3,
that ‘naive’ method method may lead to biased estimates
and large MC SD and MSEs for all parameters in compari-
son with joint modeling approach, in particular, for β5 and
β6 which are closely related to whether measurement errors
in CD4 cell count are ignored or not. Therefore, it is impor-
tant to model the data incorporating measurement errors in
CD4 covariate into account.

6. DISCUSSION

For longitudinal biomarkers, viral load and CD4 count
used as outcome measures to evaluate treatment effects of
ART in AIDS clinical trials, to understand pathogenesis of
HIV infection and to assess risk of disease progression to
AIDS, we have developed a simultaneous Bayesian model-
ing approach to the finite mixture of NLMETJ models for
longitudinal viral load data with features of heterogeneous
population, non-normality and left-censoring due to LOD in
the presence of mismeasured CD4 covariate for estimating
both model parameters and class membership probabilities.
Along with this line, one advantage of mixture modeling
is its flexibility to handle longitudinal data with different
characteristics and provides not only estimates of all model
parameters, but also model-based probabilistic clustering to
obtain class membership probabilities at both population
and individual levels. This information may help clinicians
refine general treatment strategy and develop individualized
ART regimens. This kind of mixture modeling approach is
important in many biostatistical application areas, allowing
accurate inference of parameters while adjusting for hetero-

geneity, non-normality and incompleteness in the longitudi-
nal data. Although this paper is motivated by AIDS clinical
study, the basic concepts of the developed mixture of NL-
METJ models have generally broader applications whenever
the relevant technical specifications are met and longitudi-
nal measurements are assumed to arise from two or more
identifiable subclasses within a population.

This article have considered two mixture modeling meth-
ods to compare potential models with different specification
of error distributions. In particular, (i) we investigated how
asymmetric error distributions (Models SN and ST) con-
tribute to inferential results in comparison with a symmetric
(normal) error distribution (Model N). Our results support
that it is important to assume a skew distribution in the mix-
ture joint models in order to achieve reliable results, in par-
ticular if the data exhibit the feature of non-normality. (ii)
We compared joint modeling approach with ‘naive method’
to investigate how the measurement errors in CD4 affect
modeling results and inference. The findings indicate that it
is critical to take the CD4 measurement errors into account
when collected data are “imperfectly” measured. (iii) Un-
der the assumption of SN distribution, we further explored
how heterogeneous data feature influences modeling results
by comparing Model SN with a commonly used NLMETJ
model (Model NL), in which the data feature of heteroge-
neous population is ignored. The results suggest that there
are important differences due to whether the data feature
of heterogeneous population is ignored or not for inference.
The proposed mixture joint models and methods may have a
significant impact on HIV/AIDS research and ART to AIDS
patients, and help improve understanding of the pathogen-
esis of HIV infection and evaluation of individualized ART
regimens.

For inference of mixture models, parameter (or model)
identifiability can be an important but difficult problem
when a large number of model parameters are estimated
simultaneously. We must ensure each component model to
be identifiable to make whole mixture model to be identifi-
able. To make (20) and (21) to be identifiable, we assume
λ1i > λ2i in (20) and λ1i > λ∗

2ij in (21). In practice, if the
models are not identifiable, the MCMC algorithm would di-
verge quickly. In the application considered in this article,
the MCMC algorithm was converged without problems and
we did not observe potential identifiability problems.

It is noted that a fundamental problem for “traditional”
Bayesian mixture model analysis, in which each component
has the same family of densities but with different sets of
parameters, is label switching due to the non-identifiability
of mixture components [27]. However, fortunately, this prob-
lem did not happen in this case because components corre-
spond to different densities with distinguished mean func-
tions, gk (j = 1, 2, 3) in our case, which are known and pre-
specified. As noted by [23], to formularize the finite mixture
models, the mean functions of component submodels can
be similar in form, but varying only mean and/or variance
specifications or have entirely different functional forms with
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parameters of different dimensions and meanings across the
component submodels, which is the case conducted in this
article; see equations (19)–(21). Instead of specifying differ-
ent mean functions for classes, alternatively, one can also
specify an universal mean function for all classes, for exam-
ple, mean function (21), and let data themselves determine
the number of clusters and/or shapes of trajectories. In that
way the label switching issue may arise and some labelling
methods [27, 34] must be applied to solve this problem, but
significantly additional efforts are needed based on the fi-
nite mixture of joint models proposed in our study. We are
actively investigating these important issues, and hope that
these interesting results could be reported in the near future.
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