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A novel sandwich algorithm for empirical Bayes
analysis of rank data
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Rank data arises frequently in marketing, finance, orga-
nizational behavior, and psychology. Most analysis of rank
data reported in the literature assumes the presence of one
or more variables (sometimes latent) based on whose values
the items are ranked. In this paper we analyze rank data
using a purely probabilistic model where the observed ranks
are assumed to be perturbed versions of the true rank and
each perturbation has a specific probability of occurring.
We consider the general case when covariate information is
present and has an impact on the rankings. An empirical
Bayes approach is taken for estimating the model parame-
ters. The Gibbs sampler is shown to converge very slowly
to the target posterior distribution and we show that some
of the widely used empirical convergence diagnostic tools
may fail to detect this lack of convergence. We propose a
novel, fast mixing sandwich algorithm for exploring the pos-
terior distribution. An EM algorithm based on Markov chain
Monte Carlo (MCMC) sampling is developed for estimating
prior hyperparameters. A real life rank data set is analyzed
using the methods developed in the paper. The results ob-
tained indicate the usefulness of these methods in analyzing
rank data with covariate information.
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1. INTRODUCTION

The phenomenon of ranking a given set of items accord-
ing to some attributes is well known. Students are ranked
routinely according to their proficiency in some subject, job
applicants are ranked according to their suitability for a par-
ticular job, various brands of soap are ranked by consumers
according to their intention to purchase them at some later
time, various mutual funds are ranked by the investors ac-
cording to their intention to invest money in them, etc. In
some cases, like ranking of students for their proficiency in a
given subject, one may use some objective criterion like the
marks scored in an appropriately designed examination for
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assigning the rank - the student who gets the highest marks
gets rank 1, the student who gets the next highest marks
gets rank 2 etc. However, in other cases, like the case of
evaluating a job applicant, usually more than one attribute
is considered. Typically a panel of experts evaluate the items
(the candidates) on a variety of relevant dimensions, some of
which may be objective while others are subjective. Often
the individual experts are only able to provide a ranking
of the items as perceived by them during the evaluation
process. The whole group of experts then considers all the
rankings by the individual experts and tries to arrive at a
consensus ranking through some subjective decision mak-
ing process. We call this generally accepted rank the “true
rank”. The number of items to be ranked by an expert (a.k.a.
subject) is typically small since the “robustness of ranking
may well fall if the subject is required to rank a large num-
ber of items simultaneously” [3, p. 19]. Along the same lines
Russell and Gray [37, p. 81], states that forcing subjects to
give a different rank to each item may “overtax their true
powers of differentiation, with the result that the rank dif-
ferences they give do not reflect true value differences, but
merely add to the noise in the data.” Laha and Dongaonkar
[22] provide a statistical method to derive the “true rank”
based on the rankings provided by the individual experts.
In this paper we extend this method to the case when the
true rank depends on some covariates.

When there are no covariates on the experts, we denote
the true rank as π and the ranking given by the ith expert as
yi. The ranking yi can be considered as a ‘perturbed’ version
of π i.e. we assume that yi = σi ◦ π where σi ∈ Sp, the set
(group) of permutations of the integers 1, 2, . . . , p. The per-
mutations σi’s are assumed to be independently distributed
Sp valued random variables following some common law.
Laha and Dongaonkar [22] discuss the estimation of π using
a Bayesian approach and the Sampling Importance Resam-
pling (SIR) technique.

Suppose now that there are covariates on the experts and
the true rank depends on the value of the covariate. Let X
be the covariate and suppose it takes the value xi for the
ith expert. In this case, we have the model yi = σi ◦ π(xi)
where as before σi’s are i.i.d. Sp valued random variables.
We are interested in estimating π(x) where x ∈ Range(X).

There are several other methods in the literature for an-
alyzing rank data, most of which do not incorporate covari-
ates. Models based on order-statistics are discussed in Thur-
stone [38], Yellot [39], Critchlow [6], Daniels [7], Mosteller
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[30] and Yu [40]. Order-statistics based models consider a la-
tent utility yi, of ith item, i = 1, . . . , p given by a expert who
ranks the items in decreasing order of utility. While some of
them assume that for a given expert the variables yi’s are
independent, Yu [40] considers a multivariate normal model
for the utilities with non-identity covariance matrix. He also
considers the case when covariates are associated with items
and experts. Models based on distance are first considered
in Mallows [26]. These models are further studied in Feigin
and Cohen [10] and Diaconis [8]. Further work in distance
based models has been reported in Fligner and Verducci
[12]. Mallows model has been generalized by Lebanon and
Lafferty [23]. Fligner and Verducci [13] proposed a mul-
tistage ranking model where they introduced the concept
of central ranking π but without any covariates. Recently,
mixtures of distance-based models have been considered in
Murphy and Martin [31]. An approach based on mixture of
experts model to cluster voters in Irish election background
has been recently considered in Gormley and Murphy [16].
The mixture of experts model can include covariates [see
also 17]. Also other methods for analyzing rank data with-
out covariates using group representation have been studied
in [9]. However, our approach of estimating the true rank is
not considered elsewhere and is innovative in this regard.

We develop a flexible conjugate prior for Bayesian infer-
ence. The use of conjugate prior allows us to construct a
Gibbs sampler with standard conditional distributions. Al-
though it is shown that the Gibbs sampler is a uniformly
ergodic Markov chain, it converges very slowly to the target
posterior distribution because it moves between the modes
of the posterior too infrequently [see e.g. 29, for definition of
uniformly ergodic Markov chain]. On the other hand, this
lack of convergence is not detected by a popular Markov
chain Monte Carlo (MCMC) empirical convergence diag-
nostic tool, namely the potential scale reduction factor in-
troduced by [15]. Even though the Gibbs sampler is stuck
in a local mode, the autocorrelation (between iterations of
the Gibbs chain) is close to zero even before lag three. Only
when the Gibbs sampler is run for a very large number (more
than five million) of iterations, it visits other modes and the
autocorrelations jump to near one, showing lack of mixing.
This is an alarming issue. As in practice, MCMC users em-
ploy these empirical convergence diagnostic tools to deter-
mine MCMC simulation length and we show that inference
drawn from prematurely stopped MCMC simulation may
be far from the truth. These observations demonstrate the
danger in depending purely on empirical convergence diag-
nostic tools to verify convergence of MCMC algorithms as
these tools may give false indication of convergence.

Every two-variables Gibbs sampler has the same rate of
convergence as its two reversible subchains [see e.g. 32, 24].
These subchains can also be viewed as data augmentation
(DA) chains [see 18]. Over the last two decades a lot of
effort has gone into modifying DA chains to improve their
convergence. These improved algorithms include the param-
eter expanded DA (PX-DA) algorithm of Liu and Wu [25],

the conditional and marginal augmentation algorithms of
Meng and van Dyk [28], the sandwich algorithm of Hobert
and Marchev [18] and finally the interweaving algorithms of
Yu and Meng [41]. Here we consider Hobert and Marchev’s
[2008] sandwich techniques to improve the subchains of our
Gibbs sampler. In a sandwich algorithm, an extra step is
added (sandwiched) to the Gibbs sampler in between the
draws from the conditional distributions. We construct a
sandwich algorithm and use the Rao-Blackwellization tech-
nique to make inference about the true rank, π. Using re-
sults in [19] we show that all the (ordered) eigenvalues of
the Markov operator corresponding to the sandwich chain
are less than or equal to the corresponding eigenvalues of
the DA Markov operator. We also present an EM algorithm
based on MCMC sampling to make inference about the prior
hyperparameter.

The structure of the paper is as follows: In Section 2,
we introduce the probabilistic rank model with covariates
and discuss estimation of the model parameters using a
Bayesian approach. In Section 2.1, we build prior distribu-
tions on the parameters and provide the joint and marginal
posterior distributions (up to normalizing constants). Sec-
tion 3 contains construction of MCMC algorithms as well as
the EM algorithm for estimating the prior hyperparameter.
Section 4 demonstrates the convergence issues of the Gibbs
sampler through simulation examples. We also describe how
our sandwich algorithm results in huge improvement in mix-
ing by adding an extra step to facilitate moves between the
modes of the posterior. In Section 5, we discuss analysis of
a real life dataset using methods developed earlier in the
paper. Some concluding remarks are given in Section 6.

2. AN ALGEBRAIC–PROBABILISTIC
MODEL

Let us think of a situation in which p items are ranked
by a random sample of n experts from a population. In the
absence of any covariate information, Laha and Dongaonkar
[22] suppose that there is a “true rank” π of the p items and
the observed ranks are “perturbed” versions of the true rank
π. The perturbation is the composition of a random permu-
tation from the group of all permutations Sp with the true
rank π. When there is one or more categorical variables par-
titioning the population of the experts into few categories, a
natural way to extend the model is to assume that there is a
true rank associated with each category of experts and the
observed ranks are some random perturbed versions of these
true ranks. Thus, if there are g categories of experts and bj
denotes the number of experts in the jth category and yij ’s
are the ranks observed from the experts in jth category, then
we assume that there are true ranks π1, π2, . . . , πg such that

(1) yij = σij ◦ πj , i = 1, . . . , bj ,

for j = 1, . . . , g, where σij ’s are i.i.d random permutations
having some distribution and are synonymous to random
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error perturbations. Notice that because composition is the
natural group operation on the group Sp, (1) is the natural
ANOVA model on the permutation group.

We use the following notations to denote the p! permuta-
tions in Sp. Let ζj = jth ranking in lexicographic order in
Sp. So ζ1 is the identity permutation,

ζ2 =

(
1 2 · · · p− 1 p
1 2 · · · p p− 1

)
,

ζ3 =

(
1 2 · · · p− 2 p− 1 p
1 2 · · · p− 1 p− 2 p

)
and so on. Finally,

ζp! =

(
1 2 · · · p− 1 p
p p− 1 · · · 2 1

)
.

Next, in order to construct the distribution of the σij ’s,
suppose they take the value ζk with probability θk, i.e.
P (σ = ζk) = θk. It is expected that the experts are sen-
sible so that large random error perturbations are less likely
to occur than smaller ones, where we order the permuta-
tions by their distance from the identity permutation. Thus,
θ1 should be the highest because it is the probability that
the observed rank equals to the true rank for any category.
Moreover, whenever ζk is farther away from ζ1 than ζl, it
is expected that θk would be smaller than θl. Based on this
assumption, we build our prior distribution on the vector
θ = (θ1, . . . , θp!) in the next section.

We break our task into three parts. First we construct
prior distributions on the parameters necessary for the
Bayesian inference. Next, we derive the analytic forms of the
marginal posterior distributions of the true ranks π1, . . . , πg

and the vector θ, up to a normalizing constant and demon-
strate acute challenges present in computing the normaliz-
ing constant. In order to avoid the mammoth computational
challenge, we construct a powerful MCMC algorithm that
enables us to make fast inference.

2.1 Prior distributions

In order to construct a prior on θ, reflecting our belief
that the experts are less likely to make big errors, we begin
with fixing the notion of big or small perturbations using
the Cayley distance on Sp [5]. The Cayley distance between
two permutations τ and α is defined as

dC(τ, α) = p− |τ ◦ α−1|

where |τ ◦ α−1| is the number of cycles in the unique repre-
sentation of τ ◦α−1 as a product of disjoint cycles. Based on
this distance, we call a perturbation τ smaller than a pertur-
bation α, if dC(τ, ζ1) < dC(α, ζ1). Consequently, we take the
prior on θ as a Dirichlet(a1, . . . , ap!) distribution because it
is the conjugate prior. We set the hyperparameters of this
distribution as

(2) ak = exp(λ (p− dC(ζk, ζ1))) = exp(λ|ζk|),

where λ > 0 is a parameter that reflects the overall preci-
sion in ranking the items. If λ is large then the distribution
of the error σ is concentrated on the set of permutations
having many cycles and thus at most a few items are mis-
ranked by the experts. In contrast, when the value of λ is
small, the experts end up mis-ranking a large number of
items. This prior distribution on the θ stems from the natu-
ral exponential family on the permutation group [27] which
puts a mass proportional to exp(λ|ζk|) on the permutation
ζk. However, had we deterministically set θk ∝ exp(λ|ζk|),
computations would have been very difficult because the
nice conjugacy structure enjoyed by our model would be
broken.

In this article, we follow an empirical Bayesian route and
estimate the hyperparameter λ by maximizing the marginal
likelihood p(y|λ), the details of which are given in Sec-
tion 3.4. Estimating λ by maximizing the marginal likeli-
hood ensures that the inference remains invariant to multi-
plying the ak’s in (2) by any arbitrary constant.

As far as the prior on the true ranks is concerned, we
could incorporate any available knowledge while construct-
ing the prior distribution. For example, if an item is known
to be favorite we can construct a prior under which that
particular item is more likely to be a top choice. If there
is any reason to believe spatial correlation among the true
ranks, e.g. for voting data, we can incorporate this infor-
mation in the prior. For simplicity and ease of computa-
tion, however, we would like to assume that the πj ’s are
apriori independently distributed and if there is no obvi-
ous reason as to why one or more items should be given
preference to others, we can keep uniform priors (on Sp).
In general, we denote the prior on π ≡ (π1, π2, . . . , πg) by
p(π) = p1(π1)p2(π2) · · · pg(πg).

2.2 Exact posterior and its limitations

It is quite useful to visualize the conditional dependence
structure among the variables. This is displayed in Figure 1.
Two features are noticeable from the graph. Firstly, πj ’s are
conditionally independent among themselves given θ and
the data y. Secondly, the likelihood of λ given all other vari-
ables depends only on θ. These two observations will be key
ingredients in our computational methods later in the ar-
ticle. To this end, notice that the likelihood of the data is
given by

(3) p(y| θ, π1, . . . , πg) =

g∏
j=1

p!∏
i=1

θ
nij

ζi◦π−1
j

where nij is the number of times the ranking ζi is observed
in the jth category. Since the conjugate Dirichlet prior for
θ is assumed, the joint posterior simplifies to

(4) p(θ, π1, . . . , πg|y, λ) ∝
p!∏

k=1

θ
mk(π)+ak−1
k × p(π),
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Figure 1. Graphical representation of the algebraic–probabilistic model proposed in this paper. Here yj = {yij , i = 1, . . . , bj},
is the collection of all ranks given by experts in the jth category; j = 1 . . . , g.

where

mk(π) =

g∑
j=1

p!∑
i=1

nij I(ζi ◦ π−1
j = ζk),

where I(·) is the indicator function. Integrating out θ gives
the marginal posterior of π = (π1, . . . , πg) up to a normal-
izing constant:

(5) p(π|y, λ) ∝ p(π)

p!∏
k=1

Γ(mk(π) + ak).

Further, the marginal (joint) posterior of θ is given by a
mixture of Dirichlet densities,
(6)

p(θ|y, λ)=
∑

π∈S
g
p

D(θ;m1(π)+a1, . . . ,mp!(π)+ap!)p(π|y, λ),

where Sg
p = Sp × Sp × · · · × Sp, g times. From (6) the

marginals of θk, for k = 1, ..., p! can be obtained as mixtures
of Beta densities,

p(θk|y, λ) =
∑

π∈S
g
p

B(θk;mk(π) + ak, N + a0 −mk(π)− ak)

× p(π|y, λ),

where N is the total sample size and a0 =
∑

k≥1 ak. One
important thing stands out from these exact posterior distri-
butions. The mixture representations of the marginal poste-
rior densities of θk’s indicate that they might be multimodal.
However, unless the rankings are completely random, only
a few of the components in the mixture have substantial
contributions. That is, p(π|y, λ)’s are insignificant for all
but few π = (π1, . . . , πg) ∈ Sg

p. Thus a subjective judgment
about goodness of fit can be deduced from the number of

modes of posterior marginals of θk’s. If there are too many
modes, this would indicate that the model is not good for
that data.

However, these exact forms are not of much use in real
applications mainly because the normalizing constant in (5)
requires too much computational effort. Even when p, the
number of items is small, the storage requirement and com-
putational complexity are O(p!g) which scale exponentially
in g. For example, if there are few factorial variables present
and each of them have a moderate number of levels, the
total number of categories, i.e. g, will be large. Thus when
there are only p = 3 items to be ranked and there are only
g = 12 categories, a total of 16GB of memory is required to
store the values in (5), that are required to not only compute
the normalizing constant but also the marginal posteriors of
θi’s. With p = 4, this computational bottleneck is reached
even for g as low as 7. Note that for the sushi data exam-
ple considered in Section 5 the memory requirements would
have been 1024 GB.

Yet, despite their futility in direct computation, these
formulas pave the way for constructing a Gibbs sampler be-
cause the full conditionals consist of tractable distributions
due to conjugacy that is displayed in (4). The main reasons
behind constructing a Gibbs sampler is that the per itera-
tion computational and storage requirements scale linearly
in both p! and g. Thus even if g is large, a Gibbs sampler re-
mains a practically viable option as long as it converges fast.
However, as we shall see the traditional Gibbs sampler has
a very slow convergence rate. And thus we shall construct a
novel and efficient sandwich algorithm by using (5).

3. MCMC ALGORITHMS AND
PARAMETER ESTIMATION

In this section we construct MCMC algorithms for mak-
ing inference on the model parameters. The conditional den-
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sities and calculations in sections 3.1 and 3.2 are conditional
on λ. Then in section 3.4 we describe an EM algorithm for
estimating the hyperparameter λ.

3.1 The Gibbs sampler

We begin with deriving the conditional distributions as-
sociated with the joint posterior density (4) in order to con-
struct a Gibbs sampler. Notice that the conditional distri-
bution of θ given π and y is given by

p(θ|π,y) ∝
p!∏

k=1

θ
mk(π)+ak−1
k ,

that is, θ|π,y has a Dirichlet distribution. If independent
priors are used on π1, . . . , πg, from (4) we see that the con-
ditional distribution of π given θ and y is

p(π1, . . . , πg|θ,y) ∝
p!∏

k=1

θ
mk(π)+ak−1
k p1(π1) · · · pg(πg)

∝
g∏

j=1

p!∏
k=1

θ
∑

i nijI(ζi◦π−1
j =ζk)

k × p1(π1) · · · pg(πg),

that is, π1, . . . , πg are conditionally independent. Thus
(7)

p(πj = ζr|θ,y) ∝
p!∏

k=1

θ
∑

i nijI(ζi=ζk◦ζr)
k × pj(ζr) ≡ γjr(θ),

r = 1, . . . , p!. So conditional on θ and y, π1, . . . , πg are inde-
pendent multinomial random variables. Note that, for fixed
k and r, there is only one i satisfying ζi = ζk ◦ ζr, and it can
be found outside the Gibbs sampler simulation, as it does
not change between iterations. Let (θ(m),π(m)) be the cur-
rent value of the Gibbs sampler at stepm, then the following
two steps are used to move to (θ(m+1),π(m+1)):

Iteration m+ 1 of the Gibbs sampler:

1. Draw π(m+1) ∼ p(·|θ(m),y) which can be
done as follows. For j = 1, 2, . . . , g, normal-
ize γj1(θ

(m)), . . . , γjp!(θ
(m)) so that they add

up to 1, then draw π
(m+1)
j ∼ multinomial

(1; γ
(m)
j1 (θ(m)), . . . , γ

(m)
jp! (θ

(m))).

2. Draw θ(m+1)|π(m+1),y ∼ Dirichlet (m1(π
(m+1)) +

a1, . . . ,mp!(π
(m+1)) + ap!).

For k ≥ 1, define

Sk :=
{
θ ∈ R

k : θi ∈ [0, 1] and θ1 + · · ·+ θk = 1
}
.

The above mentioned Gibbs algorithm results in a Markov
chain {θ(m),π(m)}m≥0 with state space Sp! × Sg

p and

invariant density p(θ,π|y, λ) given in (4). It is known

that the (sub) chains {π(m)}m≥0 and {θ(m)}m≥0 are re-
versible Markov chains [32, Lemma 9.11]. Since the con-
ditional densities p(π|θ,y) and p(θ|π,y) are everywhere
positive, it implies that the Markov chain {π(m)}m≥0 is
irreducible and aperiodic. Because {π(m)}m≥0 is a finite
state space Markov chain, it follows that {π(m)}m≥0 is uni-
formly ergodic with unique invariant density p(π|y, λ) given
in (5). Moreover, it is well known that {θ(m),π(m)}m≥0

as well as its two subchains {π(m)}m≥0 and {θ(m)}m≥0

converge to their respective invariant distributions at the
same rate [see e.g. 24]. Hence we have the following
lemma.

Lemma 1. The Gibbs chain {θ(m),π(m)}m≥0 and the

marginal chains {π(m)}m≥0, {θ(m)}m≥0 are uniformly er-
godic.

In Section 4 we consider the performance of the sub chains
and hence the Gibbs sampler through some simulation ex-
amples and observe that the Gibbs sampler suffers from
slow convergence due to its inability to move between lo-
cal modes. In the next section, we construct an algorithm
improving the Markov chain {θ(m)}m≥0.

3.2 Improving the DA chain {θ(m)}m≥0

The θ subchain, {θ(m)}m≥0, of the Gibbs sampler is a
Markov chain with stationary density p(θ|y, λ) given in (6).
This chain can be viewed as a DA chain. As mentioned in the
introduction, here we consider Hobert and Marchev’s [2008]
sandwich technique to improve this DA chain. A sandwich
algorithm (SA) is a simple alternative to the DA algorithm
that often converges much faster. Each iteration of a generic
SA has three steps. Let r(π′|π) be a Markov transition den-
sity (Mtd) with invariant density p(π|y, λ) given in (5). If

θ̃
(m)

is the current value of the sandwich chain at step m,

then three steps are used to move to the new state θ̃
(m+1)

—

draw π ∼ p(π|θ̃(m)
,y), draw π′ ∼ r(·|π), and finally draw

θ̃
(m+1) ∼ p(θ|π′,y). A routine calculation shows that the

sandwich chain remains invariant with respect to p(θ|y, λ),
so it is a viable alternative to the DA chain. Note that the
first and the last steps of the SA are exactly the same two
steps used in the Gibbs sampler presented in section 3.1.
Roy [33] shows that the sandwich chains always converge
at least as fast as the corresponding DA algorithms. In par-
ticular, Roy [33] shows that SA is at least as good as the
DA in terms of having smaller operator norm [see also 18].
Clearly, on a per iteration basis, it is more expensive to sim-
ulate the sandwich chain than the DA chain. However, it
may be possible to find an r that leads to a huge improve-
ment in mixing despite the fact that the computational cost
of drawing from r is negligible relative to the cost of drawing
from p(θ|π,y) and p(π|θ,y) [see e.g. 35, 36, 19].

We propose the following SA improving the θ subchain,

{θ(m)}m≥0, of the Gibbs sampler. Let θ̃
(m)

be the current
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value of the sandwich chain at step m, then the following

three steps are used to move to θ̃
(m+1)

:

Iteration m+ 1 of the Sandwich Algorithm:

1. Draw π ∼ p(·|θ̃(m)
,y) as in step 1 of the Gibbs sampler.

2. Draw a permutation σ randomly uniformly from Sp.
Move to π′ = (σ◦π1, σ◦π2, . . . , σ◦πg) with probability

min
{
1,

p(π′|y, λ)
p(π, |y, λ)

}
,

otherwise π is retained.

3. Draw θ̃
(m+1) ∼ p(·|π′,y) as in step 2 of the Gibbs sam-

pler.

Although the proposed SA is computationally slightly more
demanding than the Gibbs sampler, it shows huge gain in
mixing in both the simulation examples presented in Sec-
tion 4 as well as the real data examples in Section 5. In
Section 4, we see that the extra sandwich step (r) helps
the chain move between local modes. The above idea of us-
ing random permutation for facilitating moves between local
modes is similar to the permutation sampler [14] developed
for Bayesian mixture models although there are differences.
Firstly in [14] the random label switching step is applied
on the latent variables, and thus as explained in [19] it fits
directly into the SA setup of [18]. Whereas here the ran-
dom permutation is applied on the parameters π and this
is why we use a Rao Blackwellized estimator of π based on

the sandwich chain {θ̃(m)}. Secondly, the permutation sam-
pler samples from the so-called unconstrained posterior in
the mixture model. Thus extra post processing (satisfying
identifiability constraint) is needed to make valid inference
on the parameters—here we do not need such extra compu-
tation.

Remark 1. Since the sandwich step, r(π′|π), is a Metropo-
lis Hastings (MH) step, it is reversible with respect to
p(π|y, λ) and hence has p(π|y, λ) as its invariant density.
On the other hand, the chain driven by r is reducible and
can move to at most p! many states. (Recall that the car-
dinality of the state space of {π(m)}m≥0 is (p!)g.) The re-
ducibility of r is common among efficient sandwich chains
[34, 19, 36].

Remark 2. The step 2 of our SA may suggest an alterna-
tive algorithm for sampling from (4) where in each iteration
an (irreducible) MH step is used for the marginal (5) fol-
lowed by a draw from the conditional density p(θ|π,y) as
in step 3 of the SA. We tried to implement this algorithm
with different MH proposals including the uniform distribu-
tion. But, the average acceptance probability was too low for
these algorithms to be practical.

As mentioned before, any Mtd r with invariant distribu-
tion p(π|y, λ) can be used to construct a valid SA. When p
is large, then a local move for π′ may be preferred for the
sandwich step. For example, in this case we can generate
τ from a distribution which gives high probability on small
permutations but zero probability on the identity permuta-
tion. (One choice may be to use the multinomial distribution
with parameter ak defined in Section 2.1 with the restric-
tion a1 = 0.) We then propose permutations π′

j = τ ◦ πj

for j = 1, 2, . . . , g, which is accepted with the corresponding
MH acceptance probability.

As mentioned before, SA is always at least as good as
the DA in terms of having smaller operator norm. Hobert
et al. [19] mention that although the norm of a Markov
operator provides a univariate summary of the convergence
behavior of the corresponding chain, a detailed picture of
the convergence can be found by studying the spectrum of
the Markov operator. (See [19] for a gentle introduction to
Markov operators and their spectrum.) Lemma 2 shows that
the spectrum of our sandwich chain dominates that of the θ
subchain of the Gibbs sampler in the sense that all the (or-
dered) eigenvalues of the SA are at most as large as the (or-
dered) eigenvalues of the later. Let L2

0(p(θ|y, λ)) denote the
vector space of all mean zero, square integrable (with respect
to p(θ|y, λ)) functions defined on Sp!. Let Kθ and K̃θ be
the Markov operators, L2

0(p(θ|y, λ)) → L2
0(p(θ|y, λ)), corre-

sponding to {θ(m)}m≥0 and the sandwich chain, {θ̃(m)}m≥0

respectively. Since the sandwich step r is performed based
on a uniform draw from Sp, it follows that two consecutive
steps from r still result in a uniform draw. Thus r is idem-
potent and the following lemma follows from Theorem 1 of
[19]. Let q ≡ (p!)g.

Lemma 2. The operators Kθ and K̃θ are both compact and
each has a spectrum that consists exactly of the point {0}
and q − 1 eigenvalues in [0, 1). Furthermore, if we denote
the eigenvalues of Kθ by

0 ≤ ρq−1 ≤ ρq−2 ≤ · · · ≤ ρ1 < 1 ,

and those of K̃θ by

0 ≤ ρ̃q−1 ≤ ρ̃q−2 ≤ · · · ≤ ρ̃1 < 1 ,

then ρ̃i ≤ ρi for each i ∈ {1, 2, . . . , q − 1}.
Since the conditional probabilities P (πi = ζj |θ,y)

are available in closed form (see (7)), we use the Rao-
Blackwellized estimator based on the sandwich chain

{θ̃(m)}Mm=0 for estimating the true rank probabilities, that
is,

P̂ (πi = ζj |y) =
1

M

M∑
m=1

P (πi = ζj |θ̃
(m)

,y).

Given a sample of θ’s (using the sandwich chain) from its
marginal posterior density we can get a sample from the
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posterior of π, by drawing from the conditional distributions
of πj ’s given θ, j = 1, . . . , g. We can use this sample to
estimate marginal as well as joint probability distributions
of πj ’s.

Remark 3. In this section, an SA is constructed improv-
ing the θ sub chain of the Gibbs sampler. Unfortunately, we
could not construct (except for small p and g) a sandwich
chain that converges faster than the π subchain {π(m)}m≥0

of the Gibbs sampler and at the same time the computational
cost for simulating it is similar to that for {π(m)}m≥0. The
difficulty of constructing such an SA is due to the intractabil-
ity of the marginal posterior density p(θ|y, λ).

We now briefly discuss some of the useful properties of
our proposed model that are utilized in the data analysis in
Section 5.

3.3 Computing joint and conditional
posterior probabilities

A novelty of the model and the sandwich algorithm is that
we can compute the Rao-Blackwellized estimator of joint
and conditional probabilities involving the central ranks
without having to sum over p!g elements. The key ingre-
dient is the conditional independence of the πi’s given θ.
Thus for any subsets A1, . . . , Ag of Sp, we can estimate the
posterior probability P (πi ∈ Ai∀i | y) by

1

M

M∑
m=1

g∏
i=1

P (πi ∈ Ai|θ̃
(m)

,y).

And although MCMC estimates of such statements could
be found by drawing samples from the conditional distribu-
tion of πi’s given theta, Rao-Blackwellization would result
in estimates with smaller MCMC variance.

Next, notice that there are two ways to compute condi-
tional probabilities such as

P (πi ∈ Ai, ∀i | πi ∈ Bi ∀i,y)

where Ai’s and Bi’s are subsets of Sp. Either we estimate it
as the average of the conditional probabilities given θ, i.e.,
by

1

M

M∑
m=1

P (πi ∈ Ai, ∀i | πi ∈ Bi ∀i, θ̃
(m)

,y)

=
1

M

M∑
m=1

P (πi ∈ Ai ∩Bi, ∀i|θ̃(m)
,y)

P (πi ∈ Bi, ∀i|θ̃(m)
,y)

,

or as the ratio of averages of joint probabilities each given
θ, i.e., by ∑M

m=1 P (πi ∈ Ai ∩Bi, ∀i|θ̃(m)
,y)∑M

m=1 P (πi ∈ Bi, ∀i|θ̃(m)
,y)

Although both are computationally feasible because given

θ the πi’s are independent, we use the second estimator
in our data analysis in Section 5. The first estimator has
higher variance as there could be samples θ(m) for which
the probabilities P (πi ∈ Bi, ∀i|θ(m)) are infinitesimally
small.

These joint and conditional posterior probabilities are im-
portant in assessing how the preference for a particular item
or a set of items vary over different categories. Because the
categories may be induced by levels of factorial covariates
these posterior probabilities provide a way to compare the
interactions between pairs of factors. The simplest example
would be to identify how the posterior probability of an item
being most preferred changes from one cross-level interac-
tion to another. Conditioning on the most preferred item,
we can then repeat the same exercise on another item and
develop more complicated probability statements that bring
out various aspects of a particular dataset.

We use a Monte Carlo EM algorithm based on the sand-
wich chain to estimate the hyperparameter λ. In the follow-
ing, we discuss this EM algorithm in detail.

3.4 Estimating λ via Monte Carlo EM

As mentioned before, we consider an empirical Bayes ap-
proach for making inference of the hyperparameter λ. In
particular, we estimate λ by

λ̂ = argmax
λ

cλ(y),

where

cλ(y) =

∫ ∑
π∈S

g
p

p(y|θ,π)p(θ|λ)p(π)dθ

is the normalizing constant of the joint posterior density
p(θ,π|y) given in (4).

Note that

cλ(y) =

∫ ∑
π∈S

g
p

p(y,θ,π|λ)dθ

where p(y,θ,π|λ) is the joint probability distribution of
y,θ, and π. This naturally leads to an EM algorithm by
treating (θ,π) as “missing” variables and considering a “Q
function” defined as

Q(λ|λ′) =

∫ ∑
π∈S

g
p

log p(y,θ,π|λ)p(θ,π|y, λ′)dθ.

Then from Figure 1, we see that

Q(λ|λ′) =

∫
log p(θ|λ) p(θ|y, λ′)dθ

plus a term that does not depend on λ, so that we can
avoid summing over π ∈ Sg

p. Consequently, starting from
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an initial estimate λ(0), the (k + 1)st EM iterate of λ is
given by maximizing Q

(
λ|λ(k)

)
, that is

λ(k+1) = argmax
λ

[
p!∑
i=1

eλ|ζi| E
(
log θi|y, λ(k)

)
(8)

−
p!∑
i=1

log Γ
(
eλ|ζi|

)
+ log Γ

(
p!∑
i=1

eλ|ζi|

)]

Since the expectation term in (8) is not available in closed
form, following [4], we replace this expectation by its esti-

mate. To this end, suppose {θ̃(m)
: m = 1, . . . ,M} is the

sandwich chain from Section 3.2, having the stationary dis-
tribution p

(
θ|y, λ(k)

)
. Then,

E
(
log θi|y, λ(k)

)
≈ (1/M)

M∑
m=1

log θ̃
(m)
i

where θ̃
(m)
i is the ith component of θ̃

(m)
. In our practical

implementation, we run this stochastic version of the EM
with sandwich samples of θ of moderate sizes until the λ(k)’s
start fluctuating around the mode and then perform a single
EM iteration with a large sandwich chain of θ and obtain
the final estimate λ̂. In order to compute the standard error
of λ̂, we use a method described in [4]. The details of the
standard error (se) calculations are given in Appendix A.

4. SIMULATION EXAMPLES

We study the performance of the Gibbs and sandwich
chains through simulation studies. Consider the situation
where p = 2 and g = 2, that is, we have two categories,
two items to rank, and we let the number of observations n
vary. The small values of p and g allow us to compute dif-
ferent Markov transition probabilities in closed form and it
also makes it possible to compare the rank probability esti-
mates with their true values. Here we consider independent,
uniform priors on (π1, π2), that is, p(π1, π2) = p1(π1)p2(π2)
with

pi(ζ1) = 0.5 = pi(ζ2) for i = 1, 2.

We assume Beta (a1, a2) prior on θ. We can write down
the Markov transition matrix (Mtm) Kπ of the DA chain
{π(m)}m≥0 in closed form (see Appendix B). In order to sim-
ulate data, we assume that the true ranks for category 1 and
2 are ζ1 and ζ2 respectively. In this section, since we study
the convergence performance of the MCMC algorithms, we
fix the value of λ. In particular, we assume λ = log 2, that
is, we have a1 = 2, a2 = 1. In our simulation study, we con-
sider the same number of observations in each category. We
calculate the entries of Kπ by numerical integration using
the formula given in the Appendix B. For each fixed sam-
ple size we repeat the simulation 1000 times, that is, we
observe 1000 sets of observations and calculate the corre-
sponding Markov transition matrices. It is known that the

Figure 2. The behavior of the second largest eigenvalue for
the DA chain {π(m)}m≥0. The graph shows how the

dominant eigenvalue of the DA chain changes with sample
size, n.

second largest eigenvalue (ρ) of Kπ shows the speed of con-
vergence of the DA chain {π(m)}m≥0 [see e.g. 1, p. 209] and

hence of {θ(m)}m≥0 as well as of the Gibbs chain. Figure 2
shows the boxplots of one thousand ρ values corresponding
to each sample size. The labels in the x-axis show the num-
ber of observations in each category. From the plot we see
that the convergence rate of the DA chain deteriorates as
the sample size increases.

We now explain that the reason for the slow convergence
of the DA chain is its inability to move away from the local
mode. We consider the case where we have 50 observations in
each category. In particular, we consider one simulated data
set where n11 = 40, n12 = 14, n21 = 10, and n22 = 36, where
nij denote the number of observations in the jth category
with rank ζi for i, j = 1, 2. The Mtm in this case is:

Kπ =

⎡⎢⎢⎣
0.0570291 0.7460761 0.1478273 0.0490667
0.0000006 0.9999993 0.0000000 0.0000001
0.0000004 0.0000001 0.9999981 0.0000014
0.0574185 0.1962019 0.6818719 0.0645066

⎤⎥⎥⎦.
We have ordered the points in the state space as follows:

(ζ1, ζ1), (ζ1, ζ2), (ζ2, ζ1), and (ζ2, ζ2). So, for example, the
element in the second row, third column is the probability
of moving from (ζ1, ζ2) to (ζ2, ζ1). Figure 3 shows the plot of
the true marginal posterior density of π. From the plot we
see that the posterior density has its mode at (ζ1, ζ2) with
probability around 0.75. The rest of its probability mostly
lies at (ζ2, ζ1) with almost no weight at the other two ranks.
Suppose we start the chain at (ζ2, ζ1). We expect the chain
to remain at (ζ2, ζ1) for about 1/(1− 0.9999981) ≈ 526, 315
iterations before it moves away to another state, that is,
the chain remains stuck in a low probability region (a local
mode) for a large number of iterations. Conditional on the
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Figure 3. Plot of posterior density of π.

chain leaving (ζ2, ζ1), the expected number of steps before it
reaches the true mode, (ζ1, ζ2), is also quite large. There is
about a 74% chance that the chain leaving (ζ2, ζ1) moves to
(ζ2, ζ2), and the probability that it will move back to (ζ2, ζ1)
is about 0.68. Once the chain is back at (ζ2, ζ1), it is expected
to stay there for 526, 315 iterations before it jumps out to
another state. All of this translates into slow convergence.

Next, we consider the same simulated data set to com-
pare performance of the DA and sandwich chains. Since we
are using small values of p and g, we can calculate the true
posterior densities of θ and π as given in Figure 4 (a). From
Figure 4, we see that although DA algorithm horribly fails
to provide reasonable estimates even after 5 million itera-
tions, the sandwich chain results in accurate estimates of
true posterior probabilities in less than 50 thousand itera-
tions. In fact, the Kolmogorov-Smirnov distance (plot is not
included here) between the the true joint posterior distri-
bution of (π1, π2) and its empirical estimate based on the
sandwich chain drops below 0.05 within 100 iterations.

We now show how the empirical convergence diagnostics
like the trace plots and the autocorrelation plots can mislead
MCMC practitioners by giving the false impression that the
chain has converged while the chain has failed to visit the
mode of the posterior density even once. Figure 5 shows the
autocorrelation plots and trace plots for the DA and sand-
wich chains based on 50 thousand and 5 million iterations.
From the trace plot in Figure 5 (a), it may seem that the
DA chain is mixing well, which is corroborated by the corre-
sponding autocorrelation plot. In fact, the autocorrelations
for the DA chain are close to zero in less than three iter-
ations, and they die down faster than the autocorrelations
for the sandwich chain. Note that the Gibbs sampler has
not been able to move between the local modes in 50,000
iterations and from Figure 4 we know that the empirical es-
timates of probability mass functions (pmfs) and densities
obtained using DA chains are far from true posterior prob-
abilities. Since in practice the true target densities are not
available, MCMC practitioners may be misled by the em-
pirical convergence diagnostics like trace plots and autocor-
relation plots. When we run the Gibbs chain much longer (5
million iterations), it eventually visits the other local mode.
The right panel of Figure 5 (b) shows the trace plots for the

Figure 4. (a) True posterior marginals of all parameters.
Empirical estimates of the marginal densities based on the DA
chain with (b) 50 thousand iterations (c) 5 million iterations.
(d) Empirical estimates of the marginal densities based on the

sandwich chain with 50 thousand iterations.

DA and sandwich chains between 2,519,900 and 2,520,899
iterations (to capture a jump of the DA chain from one
mode to other). The left panel of Figure 5 (b) now shows
the huge gains in autocorrelation by running the sandwich
chain over the DA algorithm. It shows that even 50-lag au-
tocorrelation for the DA chain is close to 1. Finally, we con-
sider the popular potential scale reduction factor (PSRF)
([15]) for monitoring convergence of the above DA chain.
In general, calculation of PSRF begins with running multi-
ple MCMC chains started at different (overdispersed) initial
points. At convergence, these chains produce samples from
the same distribution, and this is assessed by comparing the
means and variances of the individuals chains with that of
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Figure 5. Autocorrelation plots and trace plots for the DA
and sandwich θ chains (θ1 component) based on (a) 50
thousand iterations (trace plots show last one thousand

iterations) (b) 5 million iterations (trace plots show 2,519,900
to 2,520,899 iterations).

the pooled chain. If the PSRF is close to one, it is used
as an indicator of the convergence to the stationarity. Fig-
ure 6 shows PSRF based on four parallel DA (θ) chains for
50 thousand iterations with different starting values. From
Figure 6 we see that when all chains are started close to
one mode then PSRF diagnostics fails as the chains have
not traveled the whole space yet. PSRF is able to indicate
non-convergence of DA only when chains are started at dif-

ferent modes. Since, in practice, especially in multivariate
settings, one does not have knowledge about the locations
of the modes, PSRF may fail to catch convergence problems
of MCMC algorithms.

5. REAL DATA APPLICATION

In this section we illustrate the methods proposed in this
article by applying them to a sushi preference data, previ-
ously published in the literature. The sushi preference data
collected by [20] consists of the complete rankings of a few
types of sushi by 5,000 respondents together with demo-
graphic data on the respondents. This dataset has also been
used by [21] for model based clustering of orderings. In this
article, we consider four types of fish sushi: Anago (sea eel),
Maguro (tuna), Toro (fatty tuna) and Tekka Maki (tuna
roll). We study the role of gender (male or female), age and
geographic location (east or west Japan) of the respondents
on ranking of these four types of sushi. The variable age
is categorized into six categories: 15–19 years, 20–29 years,
30–39 years, 40–49 years, 50–59 years and 60 years or above.
Thus the respondents are categorized into overall 24 cate-
gories. Although Toro (fatty tuna) stands out as the most
preferred sushi in all categories, substantial variability is
observed in ranking the remaining three sushi. Thus apart
from identifying the central ranking for these categories we
are also interested in the heterogeneity in ranking of Anago,
Maguro and Tekka Maki conditional on the Toro being the
most preferred sushi. The MCMC sampling outputs allow us
to compute these conditional probabilities without having to
sum over an enormous 2424 dimensional joint distribution.

To this end, we ran our sandwich algorithm for a total
of 60,000 iterations and discarded the first 10,000 iterations
as burnins, although convergence was observed within the
first 15,000 iterations. As far as the marginal probabilities
are concerned, the central ranks are the same for all the
categories and it is

Toro 
 Maguro 
 Tekka Maki 
 Anago

where Toro 
 Maguro means Toro is preferred to Maguro.
However, there is substantial heterogeneity in ranking. The

Figure 6. The Gelman-Rubin diagnostic plots for the DA chain based on 4 parallel runs of length 50,000 each. The starting
values of multiple chains were selected near the global mode (left) and the local mode (middle) and from both modes.
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Figure 7. Interaction probabilities: the solid lines join the
points denoting the posterior probabilities of Toro being the
most favorite sushi across all age groups. The dashed lines

join the points denoting the posterior probabilities of Maguro
being the second most favorite sushi conditional on Toro

being the most favorite across all age groups.

marginal probability that Toro is the most preferred sushi
ranges from 66% to 69% except for females of age 60 years or
more and currently living in West Japan, where the prob-
ability is 44.3%. However, the sample sizes are relatively
small in these two categories – there are only 12 females in
the East Japan of age 60 or above and only 5 females in the
west of age 60 or above. Thus the marginal posterior dis-
tributions of the central ranks for these two categories have
higher variability than the other groups. The joint (poste-
rior) probability of Toro being the most favorite sushi across
all the categories is 37% (se 0.2%). We calculate the Monte
Carlo standard errors for the posterior estimates using batch
means method [11]. The joint (posterior) probability of Toro
being among the top two favorite sushi across all the cate-
gories is 78% (se 0.3%). Thus Toro can be regarded as the
most preferred sushi among the four.

Next assuming Toro is the most preferred, we compute
the conditional probabilities of other sushi being the sec-
ond most favorite in each of the groups. These conditional
probabilities are highest for Maguro (tuna) and vary from
49% to 52% among the categories, followed by Anago (sea
eel) with probabilities varying from 24% to 35%. The prob-
ability of Maguro being the second most favorite across all
categories given that the Toro is the most favorite across all
categories is 47% while the same probability for Anago is
only 26%.

In order to judge any interaction effect present we com-
pute the probability that the Toro is the most favorite
sushi across all the age groups for each combination of gen-
der (male/female) and geographic location (east/west). The

solid lines in Figure 7 display these posterior probabilities
for males (triangles) and females (circles). Notice that the
posterior probability of Toro being the most favorite sushi
among men does not change from east to west Japan but
for women it does. Similarly we compute the posterior in-
teraction probabilities for Maguro being the second most
favorite, conditional on Toro being the most favorite. The
dashed lines in Figure 7 display these probabilities. Similar
to the previous case, the conditional posterior probability
changes for women from east to west Japan. However, this
change is not as large as the previous case. Such interaction
effects were found to be absent between age and gender, sug-
gesting that the preferences towards different sushi do not,
as such, depend on age.

The variability in ranking is also reaffirmed by the small
value of λ̂ = 0.175 (se 0.235) and the multi-modal poste-
rior distribution of θi’s. For example, the posterior density
estimate of θ1 is shown in the left panel of Figure 8. It is
important to note that exploring this variability in ranking
is possible because our sandwich algorithm for θ mixes very
well (see right panel of Figure 8) and discovers all the modes
of the posterior distributions of θi’s.

6. DISCUSSIONS

In comparison to the multinomial logit model, the new
rank-data model presented in this paper is far more par-
simonious and it requires estimation of less parameters. In
addition, the new rank-data model allows us to introduce a
notion of central ranking that facilitates a natural modeling
of the observed rank data as perturbations of the central
rank. In the presence of categorical covariates, the central
rank may vary across categories and the rank-data model
has been extended to incorporate this. While the estima-
tion of the parameters of this new rank-data model is con-
ceptually straight forward in a Bayesian set-up, consider-
able computational challenges are encountered due to the
very slow convergence of the Gibbs sampler. Widely used
diagnostics for detecting the convergence of the Gibbs sam-
pler seem to fail in this situation. A new sandwich algo-
rithm is devised for efficient posterior computation and is
seen to perform effectively in the practically important sit-
uation when the number of items to be ranked is small. The
case when one or more covariates are continuous will re-
quire development of a different technique and will be taken
up in a future paper. We are also going to apply the pro-
posed model and the MCMC algorithms in the context of
partial rank data, that is, when not all available items are
ranked.

7. SUPPLEMENTARY MATERIALS

The online supplementary materials, http://intlpress.
com/site/pub/pages/journals/items/sii/content/vols/0010/
0004/s001, contain codes for analyzing the sushi data.
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Figure 8. Left: Multimodal posterior density of θ1. Right: Autocorrelation plots of the θi chains after thinning by 5.

APPENDIX A. STANDARD ERRORS OF λ̂

To obtain the standard error of λ̂, note that the negative
of the observed information for λ is given by

−I(λ|y) = d2

dλ2
log cλ(y)

= E

(
d2

dλ2
log p(y,θ,π|λ)

∣∣∣∣ λ)
+Var

(
d

dλ
log p(y,θ,π|λ)

∣∣∣∣ λ)
= E

(
d2

dλ2
log p(θ|λ)

∣∣∣∣ λ)
+Var

(
d

dλ
log p(θ|λ)

∣∣∣∣ λ)

=

p!∑
i=1

|ζi|2eλ|ζi|
{
E(log θi|y, λ)

−Ψ1

(
eλ|ζi|

)
eλ|ζi| −Ψ

(
eλ|ζi|

)}
+Ψ1

(
p!∑
i=1

eλ|ζi|

)(
p!∑
i=1

eλ|ζi|

)2

+Ψ

(
p!∑
i=1

eλ|ζi|

)
p!∑
i=1

eλ|ζi|

+Var

(
p!∑
i=1

|ζi|eλ|ζi| log θi
∣∣∣∣ y, λ

)
,

where the first equality follows from [4, p. 497], the sec-
ond equality follows from Figure 1, and Ψ(·) and Ψ1(·) are
the digamma and the trigamma functions respectively. In
the above, we approximate the conditional expectation and
variance terms by the corresponding MCMC estimate using
our sandwich chain. Consequently, the standard error of λ̂
is given by s.e.(λ̂) = I(λ̂|y)−1/2.

APPENDIX B. THE MTM Kπ WHEN
P = 2, G = 2

In order to write down the Mtm Kπ of the DA chain
{π(m)}m≥0, we need to introduce some notations. Let nij

denote the number of observations in the jth category with
rank ζi for i, j = 1, 2. Let ni. = ni1 + ni2 for i = 1, 2,
nd = n11+n22, and nod = n12+n21. Let r(x) = 1/[xn1.(1−
x)n2. + xn2.(1− x)n1. + xnd(1− x)nod + xnod(1− x)nd ], a =
1/Beta(n1.+a1, n2.+a2), b = 1/Beta(nd+a1, nod+a2), c =
1/Beta(nod+a1, nd+a2), and d = 1/Beta(n2.+a1, n1.+a2).
Let kij be the (i, j)th element of the matrix Kπ, i, j =
1, 2, 3, 4. Then straightforward calculations show that

k11 = a

∫ 1

0

r(x)x2n1.+a1−1(1− x)2n2.+a2−1dx

k12 = a

∫ 1

0

r(x)xn1.+nd+a1−1(1− x)n2.+nod+a2−1dx

k13 = a

∫ 1

0

r(x)xn1.+nod+a1−1(1− x)n2.+nd+a2−1dx

k14 = a

∫ 1

0

r(x)xn+a1−1(1− x)n+a2−1dx

k21 = b

∫ 1

0

r(x)xn1.+nd+a1−1(1− x)n2.+nod+a2−1dx

k22 = b

∫ 1

0

r(x)x2nd+a1−1(1− x)2nod+a2−1dx

k23 = b

∫ 1

0

r(x)xn+a1−1(1− x)n+a2−1dx

k24 = b

∫ 1

0

r(x)xn2.+nd+a1−1(1− x)n1.+nod+a2−1dx

k31 = c

∫ 1

0

r(x)xn1.+nod+a1−1(1− x)n2.+nd+a2−1dx

k32 = c

∫ 1

0

r(x)xn+a1−1(1− x)n+a2−1dx
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k33 = c

∫ 1

0

r(x)x2nod+a1−1(1− x)2nd+a2−1dx

k34 = c

∫ 1

0

r(x)xn2.+nod+a1−1(1− x)n1.+nd+a2−1dx

and finally

k41 = d

∫ 1

0

r(x)xn+a1−1(1− x)n+a2−1dx

k42 = d

∫ 1

0

r(x)xnd+n2.+a1−1(1− x)nod+n1.+a2−1dx

k43 = d

∫ 1

0

r(x)xn2.+nod+a1−1(1− x)n1.+nd+a2−1dx

k44 = d

∫ 1

0

r(x)x2n2.+a1−1(1− x)2n1.+a2−1dx.

As mentioned before, here we have ordered the points in the
state space as follows: (ζ1, ζ1), (ζ1, ζ2), (ζ2, ζ1), and (ζ2, ζ2).
So, for example, the element k23 is the probability of mov-
ing from (ζ1, ζ2) to (ζ2, ζ1). Note that all of the transition
probabilities are strictly positive, which implies that the DA
chain is Harris ergodic.
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