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Bayesian analysis of stochastic volatility-in-mean
model with leverage and asymmetrically
heavy-tailed error using generalized hyperbolic
skew Student’s t-distribution∗

William L. Leão, Carlos A. Abanto-Valle
†
, and Ming-Hui Chen

A stochastic volatility-in-mean model with correlated er-
rors using the generalized hyperbolic skew Student-t (GH-
ST) distribution provides a robust alternative to the pa-
rameter estimation for daily stock returns in the absence of
normality. An efficient Markov chain Monte Carlo (MCMC)
sampling algorithm is developed for parameter estimation.
The deviance information, the Bayesian predictive informa-
tion and the log-predictive score criterion are used to as-
sess the fit of the proposed model. The proposed method is
applied to an analysis of the daily stock return data from
the Standard & Poor’s 500 index (S&P 500). The empirical
results reveal that the stochastic volatility-in-mean model
with correlated errors and GH-ST distribution leads to a
significant improvement in the goodness-of-fit for the S&P
500 index returns dataset over the usual normal model.

Keywords and phrases: Feedback and leverage effect,
GH skew Student-t distribution, Markov chain Monte Carlo,
Non-Gaussian and nonlinear state space models, Stochastic
volatility-in-mean.

1. INTRODUCTION

Stochastic volatility (SV) models were introduced in
the financial literature to describe time-varying volatilities
[41, 42, 21]. Although the basic SV model offers a great flex-
ibility in modeling data with time-varying variances, it can
suffer from a lack of robustness in the presence of extreme
outlying observations [see, e.g., 27, 22, 1, among others] or
skewness of the returns. To deal with this problem, Abanto-
Valle et al. [5] and Abanto-Valle et al. [2] proposed new
stochastic volatility models based on the generalized skew-
Student-t and the skew-Student-t distributions for stock re-
turns, which allow a parsimonious, flexible treatment of the
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skewness and heavy tails in the conditional distribution of
the returns.

However, the volatility of daily stock returns has been
estimated with SV models, but the results have relied on
an extensive pre-modeling of these series to avoid the prob-
lem of simultaneous estimation of the mean and variance.
To remedy this problem, [26] introduced the SV in mean
(SVM) by incorporating the unobserved volatility as an ex-
planatory variable in the mean equation of the returns and
provided an empirical justification that the volatility coef-
ficient in the mean equation is related to the feedback ef-
fect, which implies that an increase in the current level of
volatility causes agents to increase their forecasts of future
volatility and therefore to raise their future required returns.
Recently Abanto-Valle et al. [4] extended this class of mod-
els by using the scale mixture of normal distributions. It
has also long been recognized in stock markets that there
is a negative correlation between today’s return and tomor-
row’s volatility. This phenomenon is called “leverage effect”
or “asymmetry” [45]. The asymmetric stochastic volatility
model is well known to describe these phenomena for stock
returns. Markov chain Monte Carlo (MCMC) methods have
been used for parameter estimation of SV models with lever-
age effect. For example, [30] and Omori and Watanabe [31]
used an efficient mixture sampler and a block sampler for
correlated errors, respectively.

In this article, we propose to enhance the robustness of
the specification of the innovation returns in SVM models
by introducing scale Generalized Hyperbolic skew Student-t
distribution with correlated mean and variance errors. The
resulting class of models takes into account the asymmetric
effect, heavy-tailedness, the feedback, and leverage effects.
We refer to this generalization as the SVML-GH-ST model.
The flexibility of the SVML-GH-ST model can also capture
time varying features in the mean of the returns and heavy
tails simultaneously. The estimation of such intricate models
is not straightforward, since volatility now appears in both
mean and variance equations with correlated innovation er-
rors. Hence, intensive computational methods are needed.
Inference for this new SVML-GH-ST model is performed
under the Bayesian paradigm via MCMC methods, which
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permits obtaining the posterior distribution of parameters
via simulation, starting from reasonable prior assumptions
on the parameters. We simulate the log-volatilities and the
shape parameters by using the block sampler for correlated
errors (31, 3, 29) and Metropolis-Hastings algorithms, re-
spectively.

The rest of the paper is organized as follows. Section 2
outlines the SVML-GH-ST model as well as the Bayesian
estimation procedure using MCMC methods. Section 3 illus-
trates our proposed method using simulated data. In Section
4, the proposed class of models is applied to the S&P 500
daily returns and model comparison is provided among the
competing SVML models. Finally, we conclude the paper
with some concluding remarks and suggestions for future
developments in Section 5.

2. THE ASYMMETRIC HEAVY-TAILED
STOCHASTIC VOLATILITY-IN-MEAN
MODEL WITH LEVERAGE EFFECT

2.1 The SVML-GH-ST model

The basic SV in mean model with leverage effect is de-
fined by

yt = β0 + β1yt−1 + β2e
ht + e

ht
2 εt,(1a)

ht+1 = α+ φht + σηηt,(1b) (
εt
ηt

)
∼ N2

[(
0
0

)
,

(
1 ρ
ρ 1

)]
,(1c)

where yt and ht are, respectively, the compounded return
and the log-volatility at time t. We assume that |φ| < 1,
i.e., the log-volatility process is stationary, and the initial

value h1 ∼ N ( α
1−φ ,

(1−ρ2)σ2
η

1−φ2 ). The parameter ρ measures
the correlation between εt and ηt. A negative value of ρ
(ρ < 0) indicates the so-called leverage effect, i.e., a drop in
the return followed by an increase in the volatility. Empirical
evidence of the leverage effect can be found in Ghysels et al.
[17], Harvey and Shephard [20], Bollerslev and Zhou [8],
Omori et al. [30], and Nakajima and Omori [29].

For a joint model of the asymmetric heavy-tailedness and
the “feedback” and leverage effects, we replace the normal
random variable εt in (1a) by a random variable from the
GH skew Student’s t-distribution, denoted by ωt, which can
be written in the form of the normal variance-mean mixture
as

ωt = μω + δzt +
√
ztεt,(2)

where εt ∼ N (0, 1), zt ∼ IG
(

ν
2 ,

ν
2

)
, and IG(., .) denotes

the inverse gamma distribution, respectively. We assume
that μω = −δμz, where μz = E(zt) = ν/(ν − 2), to en-
sure E(ωt) = 0 and ν > 4 for the finite variance of ωt.

Using the variance-mean mixture representation of the
GH skew Student’s t-distribution defined by equation (2),
the stochastic volatility-in-mean model with asymmetric

heavy-tailedness and leverage effect can be written hierar-
chically as

yt = β0 + β1yt−1 + β2e
ht + e

ht
2 {δ(zt − μz) +

√
ztεt},(3a)

ht+1 = α+ φht + σηηt,
(3b)
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2
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)
.(3d)

The model defined by equations (3a)–(3d) will be denoted by
SVML-GH-ST. In this setup, using equations (3a), (3b), and
(3c) with δ = 0 and zt = 1 ∀t = 1, . . . , T , we obtain the SVM
model with leverage effect and normal distribution (SVML-
N). Equations (3a)–(3d) with δ = 0 define the SVM model
with leverage effect and Student-t distribution (SVML-T)
[see 3, for details].

Equations (3a)–(3d) can be written in an alternative way
as follows(

yt
ht+1

) ∣∣∣∣θ, zt, ht, yt−1

∼ N
([

β0 + β1yt−1 + β2e
ht + e

ht
2 δ(zt − μz)

α+ φht

]
,

[
zte

ht ρσηz
1/2
t eht/2

ρση
√
zte

ht/2 σ2
η(1− ρ2)

])
,(4)

From equation (4), we have that the conditional distribu-
tion yt|θ, zt, ht, ht+1, yt−1 follows a normal distribution with
mean and variance given by

μt = β0 + β1yt−1 + β2e
ht + e

ht
2 δ(zt − μz)

+
ϕ

ϕ2 + τ2
√
zte

ht
2 (ht+1 − α− φht),(5)

Vt =
τ2

τ2 + ϕ2
zte

ht ,(6)

respectively, where τ =
√

1− ρ2ση and ϕ = ρση. This con-
ditional distribution will be useful in the development of the
block sampler in the subsequent subsections.

2.2 Parameter estimation via MCMC

Let θ = (β0, β1, β2, α, φ, τ
2, ϕ, ν)′ be the vector of param-

eters for the SVML-GH-ST model, where ν is the parame-
ter of the mixing variables zt, the degrees of freedom of the
GH-ST distribution. We further let h1:T = (h1, h1, . . . , hT )

′,
z1:T = (z1, . . . , zT )

′ and y0:T = (y0, . . . , yT )
′ denote the

the vector of the log volatilities, the mixing variables and
the information available up to time T , respectively. Using
the data augmentation principle, the joint posterior density
of the parameters and latent unobservable variables can be
written as
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p(θ,h1:T , z1:T | y0:T )

∝
[ T−1∏

t=1

p(yt, ht+1 | zt, ht, yt−1,θ)p(zt | ν)
]

× p(yT | zT , hT , yT−1,θ)p(zT | ν)p(h1 | θ)p(θ),(7)

where p(yt, ht+1 | zt, ht, yt−1,θ) is given by equation (4) and
p(θ) is the prior distribution. To make Bayesian analysis fea-
sible for parameter estimation in the SVML-GH-ST model,
we draw random samples from the posterior distribution of
(θ,h1:T , z1:T ) given y0:T using MCMC simulation methods.
The sampling scheme is described in Algorithm 2.1.

Algorithm 2.1.

1. Set i = 0 and get starting values for the parameters θ(i)

and the latent quantities z
(i)
1:T and h

(i)
1:T .

2. Generate θ(i) in turn from its full conditional distribu-
tion, given y1:T , h

(i−1)
1:T and z

(i−1)
1:T .

3. Draw z
(i)
1:T ∼ p(z1:T | θ(i),h

(i−1)
1:T ,y0:T ).

4. Generate h1:T by blocks as follows:

i) For l = 1, . . . ,K, the knot positions are generated
as kl, the floor of [T×{(l+ul)/(K+2)}], where the
ul’s are independent realizations of the uniform
random variable on the interval (0, 1).

ii) For l = 1, . . . ,K, generate hkl−1+1:kl−1 jointly con-

ditional on ykl−1:kl−1, θ(i), z
(i)
kl−1+1:kl−1, h

(i−1)
kl−1

,

and h
(i−1)
kl

.

iii) For l = 1, . . . ,K, draw h
(i)
kl

conditional on y1:T ,

θ(i), h
(i)
kl−1, and h

(i)
kl+1.

5. Set i = i + 1 and return to 2 until convergence is
achieved.

The prior distributions of the parameters in the SVML–
GH-ST model are specified as follows: β0 ∼ N (β̄0, σ

2
β0
), β1 ∼

N(−1,1)(β̄1, σ
2
β1
), β2 ∼ N (β̄2, σ

2
β2
), α | τ2 ∼ N (α0, τ

2/q0),

ϕ | τ2 ∼ N (ϕ0, τ
2/p0), φ ∼ N(−1,1)(φ0, s

2
φ), τ2 ∼

IG(aτ/2, Sτ/2), and ν ∼ G(aν , bν), where aν , bν , α0, ϕ0,
φ0, s

2
φ, aτ , Sτ , p0, and q0 are known hyperparameters and

N[.,](., .) and G(., .) denote the truncated normal and gamma
distributions, respectively.

As described in Algorithm 2.1, the Gibbs sampler requires
sampling parameters and latent variables from their full con-
ditional distributions. Sampling the log-volatilities h1:T in
Step 4, is the most difficult task due to the nonlinear setup
of the observational equation (3a). An efficient strategy is
to sample from the conditional posterior distribution of h1:T

by dividing it into several blocks and sampling each block
given the other blocks. This idea, called the block sampler
or multi-move sampler, was developed by Shephard and Pitt
[37] and Watanabe and Omori [44] in the context of state
space modeling. They showed that the sampler can produce
efficient draws from the target conditional posterior distri-
bution in comparison with a single-move sampler that prim-
itively samples one state, say ht, at a time given the others,

hs (s �= t). For the SV model with leverage, Omori and
Watanabe [31] developed the associated multi-move sam-
pler and showed that it produces efficient samples. In the
next subsection, we extend their method to sample h1:T in
the SVML-GH-ST model. The full conditional distributions
of θ and the latent variables z1:T are given in Appendix A.
Some of them are easy to simulate from.

2.3 A block sampler algorithm

In order to simulate h1:T = (h1, . . . , hT )
′ in the SVML-

GH-ST model, we first simulate h1 conditional on h2:T and
then generate h2:T conditional on h1. To sample the vec-
tor h2:T , we develop a multi-move block algorithm. In our
block sampler, we divide it into K+1 blocks, hkl−1+1:kl−1 =
(hkl−1+1, . . . , hkl−1)

′ for l = 1, . . . ,K + 1, with k0 = 1 and
kK+1 = T , where kl − 1 − kl−1 ≥ 2 is the size of the l−th
block. We sample the block of disturbances ηkl−1:kl−2 =
(ηkl−1

, . . . , ηkl−2)
′ given the end conditions hkl−1

and hkl

instead of hkl−1+1:kl−1 = (hkl−1+1, . . . , hkl−1)
′. In order to

facilitate the exposition, we omit the dependence on θ and
assume that kl−1 = t and kl = t+ k + 1 for the l−th block
such that t + k < T . Then ηt:t+k−1 = (ηt, . . . , ηt+k−1)

′

are sampled at once from their full conditional distribution
f(ηt:t+k−1|ht, ht+k+1,yt:t+k, zt+1:t+k)

1, which without the
constant terms is expressed in log scale as

log f(ηt:t+k−1|ht, ht+k+1,yt:t+k, zt+1:t+k)

.
= −

t+k−1∑
s=t

η2s
2

+

t+k∑
s=t

ls

− 1

2σ2
η

(ht+k+1 − α− φht+k)
2
I(t+ k < T ),(8)

where I(t + k < T ) is an indicator variable. Excluding the
constant terms, ls denotes the conditional distribution of ys
given hs and hs+1 for s < T , which is normal with mean μs

and variance Vs, given by equations (5) and (6), respectively.
We define

L =
t+k∑
s=t

ls −
(ht+k+1 − α− φht+k)

2

2σ2
η

I(t+ k < T ),

dt+1:t+k = (dt+1, . . . , dt+k)
′, ds = ∂L

∂hs
and Q = E

(
−

∂2L
∂ht+1:t+kh

′
t+1:t+k

)
. See equations (B.1) and (B.2) in the Ap-

pendix B for details.
Since −1

2

∑t+k−1
s=t η2s + L in (8) does not have the closed

form, we use the Metropolis-Hastings algorithm [10] to sam-
ple from this distribution. To obtain the proposal density, we
are going to form an approximated linear state space model
that mimics (8), from which sampling is easy. Applying a
second-order Taylor series expansion to L around the mode
η̂t:t+k−1, we have

1For the last block, we have yT | yT−1, hT ∼ N (β0+β1yT−1+β2ehT +
ehT δ(zT − μz), zT ehT ).
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log f(ηt:t+k−1|ht, ht+k+1,yt+1:t+k, zt+1:t+k)

≈ const− 1

2

t+k∑
r=t+1

η2r + L̂

+
∂L

∂η′
t:t+k−1

∣∣∣∣
ηt:t+k−1=η̂t:t+k−1

(ηt:t+k−1 − η̂t:t+k−1)

+
1

2
(ηt:t+k−1 − η̂t:t+k−1)

′

× E(
∂2L

∂ηt:t+k−1∂η
′
t:t+k−1

)

∣∣∣∣
ηt:t+k−1=η̂t:t+k−1

× (ηt:t+k−1 − η̂t:t+k−1)

= const− 1

2

t+k∑
r=t+1

η2r + L̂+ d̂′
t+1:t+k(ht+1:t+k − ĥt+1:t+k)

− 1

2
(ht+1:t+k − ĥt+1:t+k)

′Q̂(ht+1:t+k − ĥt+1:t+k)

= const+ log f∗(ηt:t+k−1|ht, ht+k+1,θ,yt+1:t+k, zt+1:t+k),
(9)

where d̂t+1:t+k, L̂, and Q̂ denote dt+1:t+k, L, and
Q evaluated at ht+1:t+k = ĥt+1:t+k. The expecta-
tions are taken with respect to ys’s conditional distri-
bution on hs’s. We use an information matrix for Q
because we require that Q is everywhere strictly posi-
tive definite. It can be shown that the proposal density
f∗(ηt:t+k−1|ht, ht+k+1,θ,yt+1:t+k, zt+1:t+k) is the posterior
density of ηt:t+k−1 for a linear Gaussian state space model
given by equations (10) and (11) below [see 31, 3, for details].
The mode η̂t:t+k−1 can be found by repeating the following
algorithm until convergence.

Algorithm 2.2. 1. Initialize η̂t:t+k−1 and calculate

ĥt+1:t+k using (3b).

2. Evaluate d̂s, M̂s, and N̂s using equations (B.1), (B.3)
and (B.4) respectively.

3. Compute Gs, Js, and bs, for s = t+2, . . . , t+ k, recur-
sively, as follows:

Gs = M̂s − N̂2
sG

−1
s−1, Gt+1 = M̂t+1,

Js = K−1
s−1N̂s, Jt+1 = 0, Jt+k+1 = 0,

bs = d̂s − JsK
−1
t−1bs−1 bt+1 = d̂t+1,

where Ks =
√
Gs.

4. Define the auxiliary variables ŷs = γ̂s +G−1
s bs, where

γ̂s = ĥs +K−1
s Js+1ĥs+1, s = t+ 1, . . . , t+ k.

5. Consider the linear Gaussian state-space model

ŷs = cs + Zshs +Hsξs, s = t+ 1, . . . , t+ k,(10)

hs+1 = α+ φhs + Lsξs, s = t, t+ 1, . . . , t+ k,(11)

where ξs ∼ N (0, I2), cs = K−1
s Js+1α, Zs = 1 +

K−1
s Js+1φ, Hs = K−1

s [1, Js+1ση], and Ls = [0, ση]. Ap-

ply the Kalman filter and a disturbance smoother [25]
to the linear Gaussian state space model in equations
(10) and (11) and obtain the posterior mean of ηt:t+k−1

(ht+1:t+k) and set η̂t:t+k−1 (ĥt+1:t+k) to this value.
6. Return to Step 2 and repeat the procedure until achiev-

ing convergence.

Applying the de Jong and Shephard simulation smoother
[11] to the model defined by equations (10) and (11) with the
auxiliary variables ŷt+1:t+k defined in step 4 of Algorithm
2.2 enables us to sample ηt+1:t+k from the density f∗. Since
f is not bounded by f∗, we use the Metropolis-Hastings
algorithm to sample from f as recommended by Chib [10].

In the MCMC sampling procedure, we select the expan-
sion block ĥt+1:t+k in Algorithm 2.2 as follows: the current
sample of ηt:t+k=1 (ht+1:t+k) may be taken as an initial

value of the η̂t:t+k=1 (ĥt+1:t+k) in Step 1. Once an ini-

tial expansion block ĥt+1:t+k is selected, we can calculate
the auxiliary ŷt+1:t+k variables in Step 4. Then, applying
the Kalman filter and a disturbance smoother to the linear
Gaussian state space model consisting of equations (10) and
(11) with the artificial ŷt+1:t+k yields the mean of ht+1:t+k

conditional on ĥt+1:t+k in the linear Gaussian state space
model, which is used as the next ĥt+1:t+k. By repeating the
procedure until the smoothed estimates converge, we obtain
the posterior mode of ht+1:t+k. This is equivalent to the
method of scoring to maximize the logarithm of the condi-
tional posterior density. Although we have just noted that
iterating the procedure achieves the mode, this will slow our
simulation algorithm if we have to iterate this procedure
until full convergence. Instead we suggest using only five
iterations of this procedure to provide a reasonably good
sequence ĥt+1:t+k instead of an optimal one.

Finally, we describe the updating procedure of the
knot conditions hkl

, for l = 2, . . . ,K. As the condi-
tional density p(hkl

| hkl−1, hkl+1) does not have a
closed form, we use the Metropolis-Hastings algorithm with

proposal density N (
α(1−φ)+φ(hkl−1+hkl+1)

1+φ2 ,
σ2
η

1+φ2 ). Let hp
kl

and h
(i−1)
kl

denote the proposal value and the previous
iteration value. Then, the acceptance probability is given

by αMH = min{1, Q(hp
kl

)

Q(h
(i−1)
kl

)
}, where Q(hkl

) is the product

of the conditional densities ykl−1 | zkl−1, ykl−2, hkl−1, hkl
∼

N (μkl−1, Vkl−1), and ykl
| zkl

, ykl−1, hkl+1, hkl
∼

N (μkl
, Vkl

) with μs and Vs defined by equations (5) and
(6), respectively, for s = kl − 1 and kl.

3. NUMERICAL ILLUSTRATION WITH A
SIMULATED DATASET

In order to assess the performance of the MCMC algo-
rithms described in the previous section, we present results
based on a simulated dataset. All the calculations were per-
formed by running a stand alone code developed by the
authors using the Scythe statistical library [32], which is
available for free download at http://scythe.wustl.edu. We
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Figure 1. Simulated dataset from the SVML-GH-ST: Time series of returns (left) and the histogram (right).

Table 1. Simulated dataset: summary results for tge SVML-GH-ST model

Parmater True
value

Posterior
mean

95% CI IF CD

β0 0.2500 0.2810 (0.1220, 0.4650) 6.26 −0.12
β1 0.0300 0.0260 (−0.0170, 0.0680) 1.28 0.95
β2 −0.2000 −0.2500 (−0.4450,−0.0700) 5.38 0.01
α −0.0080 −0.0160 (−0.0340,−0.0030) 10.36 −0.95
φ 0.9500 0.9210 (0.8680, 0.9610) 10.67 −1.01
σ2
η 0.0225 0.0330 (0.0160, 0.0550) 21.83 0.96

δ −0.5000 −0.7680 (−1.6100,−0.3400) 21.31 −0.32
ρ 0.3500 −0.2350 (−0.4270,−0.0420) 7.02 0.52
ν 10.0000 12.4430 (8.2330, 19.5520) 20.02 0.15

simulated a dataset of 2000 observations of the SVM-L-GH-
SST distribution using β0 = 0.25, β1 = 0.03, β3 = −0.2,
α = −0.008, φ = 0.95, σ2

η = 0.0225, ρ = −0.35, and ν = 10,
which correspond to typical values found in daily series of
returns. Figure 1 shows the raw data and the histograms of
the simulated dataset.

We set the prior distributions as follows: β0 ∼
N (0, 100), β1 ∼ N(−1,1)(0.1, 100), β2 ∼ N (−0.1, 100),
α|τ2 ∼ N (0, τ2/0.002), φ|τ2 ∼ N(−1,1)(0.95, 100), τ2 ∼
IG(2.5, 0.025), ϕ|τ2 ∼ N (−0.3, τ2/0.005), δ ∼ N (0, 1) and
ν ∼ G(12, 0.5). The prior means of β1 and φ are, respectively,
0.0032 and 0.0003 and the corresponding prior variances are
0.3328 and 0.3329. In both cases, the priors are equivalent
to the uniform distribution on interval (−1, 1), which gives
zero mean and variance of 0.3333. Thus, it is clear that the
priors specified for β1 and φ are essentially non-informative.

The number of blocks, K, in the block sampler was set
equal to 30 so that each block contained 66 h′

ts on average.
We conducted the MCMC simulation for 50,000 iterations.
The first 10,000 draws were discarded as a “burn-in” pe-
riod, and then the next 40,000 were recorded. In order to
reduce the autocorrelation between successive values of the
simulated chain, only every 10th values of the chain were
stored. With the resulting 4000, we calculated the posterior
means, the 95% credible intervals and the convergence di-
agnostic (CD) statistics proposed by Geweke [16] for all the
parameters.

Figure 2. Simulated dataset. Histograms and estimated
densities from the MCMC output for the SVML-GH-ST. The
solid line indicates the true value and the dotted line the 95%

credible interval.

The proposed algorithm is evaluated in terms of how well
it estimates the true parameter values. From Table 1 and
Figure 2, it can be seen that the estimated results for the
parameters appear quite reasonable, because all the 95%
credible intervals include true values. According to the CD
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Figure 3. SVML-GH-ST, simulated dataset. Autocorrelation
function (acf) for the parameters obtained from the MCMC

output.

Figure 4. SVML-GH-ST, simulated dataset. True values

(solid line) and posterior smoothed mean (dotted line) of e
ht
2 .

values, the null hypothesis that the sequence of 4000 draws
is stationary was accepted at the 5% level for all the pa-
rameters in all the models considered here. The inefficiency
factor is defined by 1+

∑∞
s=1 ρs, where ρs is the sample auto-

correlation at lag s. It measures how well the MCMC chain
mixes [see, e.g, 23]. It is the estimated ratio of the numeri-
cal variance of the posterior sample mean to the variance of
the sample mean from uncorrelated draws. When the ineffi-
ciency factor is equal to m, we need to draw MCMC samples
m times as many as the number of uncorrelated samples.
From Table 1, we found that our algorithm produces a good
mixing of the MCMC chain. This fact is further confirmed
in Figure 3, where the the autocorrelation function (acf) of
the parameters shows a faster decay.

In Figure 4, the smoothed mean calculated from the
MCMC output (dotted line) and true values (solid line) of

e
ht
2 are shown. They show that the estimated values follow

the behavior of the true volatilities.

4. EMPIRICAL APPLICATION

This section analyzes the daily closing prices for the S&P
500 stock market index. The S&P 500 index contains the

Table 2. Summary statistics for the S&P 500 returns

Median SD Minimum Maximum Skewness Kurtosis

0.03 1.12 −22.90 10.95 −1.16 29.54

stocks of 500 Large-Cap corporations. Although a majority
of those corporations are US based, it also includes other
companies having their common stocks within the index.
The data set was obtained from the Yahoo finance web site
available to download at http://finance.yahoo.com. The pe-
riod of analysis is January 4, 1980 – December 31, 2015,
which yields 9078 observations. Throughout, we work with
the compounded return expressed as yt = 100(logPt −
logPt−1), where Pt is the closing price on day t.

The compounded S&P 500 returns are plotted in Fig-
ure 5 as a time series and also as a histogram. The mean
and standard deviation (SD) of returns are 0.03 and 1.12,
respectively. As shown in Figure 5, the returns are skewed
(-1.16) with heavy tails. From Table 2, we also note that
the returns have a large range (minimum, -22.90 and maxi-
mum, 10.95). Some extreme observations, explained by some
turbulences in financial markets as the stock market crash
occurred by October 1987, the Asian financial crises in July
1997, the Russian financial crises in August 1998 and the
U. S. market subprime crises in December 2007, contribute
to the large kurtosis (29.54) of the S&P 500 returns. As a
result, the S&P 500 index returns likely depart from the
underlying normality assumption.

We fitted the SVML-N, SVML-T, and SVML-GH-
ST models. In all cases, we simulated the ht’s in a
multi-move fashion with stochastic knots based on the
method described in Section 2.2. We set the prior dis-
tributions for the common parameters as follows: β0 ∼
N (0, 100), β1 ∼ N(−1,1)(0.1, 100), β2 ∼ N (−0.1, 100),
φ ∼ N(−1,1)(0.95, 100), τ2 ∼ IG(2.5, 0.025), α | τ2 ∼
N (0, τ2/0.002), and ϕ | τ2 ∼ N (−0.3, τ2/0.005). The
prior distribution on the shape parameter was chosen as
ν ∼ G(12, 0.8) for the SVML-T and SVML-GH-ST models,
respectively. For the SVML-GH-ST, we set δ ∼ N (0, 100).
The initial values of the parameters were randomly gener-
ated from the prior distributions. We set initial values of
all the log-volatilities, ht, to be zero. Finally the initial z1:T
were generated from the prior p(zt | ν).

For the block sampler algorithm, we set the number of
blocks K to be 180 in such a way that each block contained
50 h′

ts on average. For the SVML-N, SVML-T, and SVML-
GH-ST models, we conducted the MCMC simulation for
25,000 iterations. In all the cases, the first 5000 draws were
discarded as a burn-in period. As before, in order to reduce
the autocorrelation between successive values of the simu-
lated chain, only every 10th values of the chain were stored.
With the resulting 2000 values, we calculated the posterior
means, the 95% credible intervals and the convergence diag-
nostic (CD) statistics [16]. Table 3 summarizes the results.
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Figure 5. Compounded S & P 500 index returns from January 4, 1980 to December 31, 2015. The left panel shows the plot of
the raw series and the right panel the histogram of returns.

Figure 6. S&P 500 returns dataset. Histograms and
estimated densities from the MCMC output for the

SVML-GH-ST. The solid line indicates the posterior mean
and the dotted line the 95% credible interval.

According to the CD values, the null hypothesis that the
sequence of 2000 draws is stationary was accepted at the
5% level for all the parameters in all the models considered
here. From Table 3 and Figure 7, we found that our algo-
rithm yields a good mixing of the MCMC chain.

Table 3 shows that the posterior mean and 95% credible
interval of φ. For all the models, the posterior means of
φ are above 0.97, showing higher persistence, as expected.
We found that the persistence values of the SVML-T and
the SVML-GH-ST are slightly different from the one for the
SVML-N. The posterior means of σ2

η under the SVML-N and
SVML-GH-ST models are greater than the posterior mean
under the SVML-T model, indicating that the volatilities
of the SVML-T models is less variable than the equivalent
SVML-N and SVM-GH-ST models.

The posterior means together with the 95% credible in-
tervals of the three parameters, which govern the mean pro-
cess for each of the three models, are reported in Table 3.
In all cases the posterior mean of β0 is always positive and
statistically significant under each fitted model. The poste-
rior mean of β1 is positive for the SVML-N and negative
for the SVML-T and SVML-GH-ST models and similar to
the first-order autocorrelation (not reported here). Since the

Figure 7. S&P 500 returns dataset. Autocorrelation function
(acf) for the parameters obtained from the MCMC output.

95% credible interval contains zero, this coefficient is not sig-
nificant. The β2 parameter, which measures both the ex ante
relationship between returns and volatility and the volatility
feedback effect, has a negative posterior mean under all of
the fitted models. Although the credible interval of β2 barely
contains zero under the SVML-N and SVML-T the models,
its posterior distribution is primarily located in the negative
range, as shown in Table 4. The posterior mean of β2 in the
SVML-GH-ST is negative and the 95% credibility interval
does not contains zero. This result confirms previous results
in the literature and indicates that when investors expect
higher persistent levels of volatility in the future, they re-
quire compensation for this in the form of higher expected
returns.

As expected for all the models considered here, the pos-
terior means of ρ, the correlation coefficient between shocks
to return at time t and shocks to volatility at time t + 1,
are always negative and the 95% credible intervals do not
contain zero. This result indicates that this parameter is sta-
tistically significant. Hence, we may conclude that there is
a strong and significant “leverage effect” for the S & P 500
index returns returns dataset.

We found that the posterior mean of δ is -0.1534, which
indicates that the returns are slightly asymmetric. We also
found that the 95% credible interval does not contains zero.
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Table 3. Estimation results for the S & P 500 index returns.
First row: Posterior mean. Second row: 95% credible interval

in parentheses. Third row: CD statistics. Fourth row:
Inefficiency factors

Parameter SVML-N SVML-T SVML-GH-ST

0.0614 0.1801 0.0608

β0 (0.0378,0.0863) (0.0274,0.0761) (0.0356,0.0867)

1.78 -0.70 -0.77

1.63 1.76 1.78

0.0017 -0.0081 -0.0122

β1 (-0.0193,0.0231) (-0.0271,
0.01226)

(-0.0316,0.0082)

-0.01 1.08 -0.82

1.00 1.00 1.00

-0.0237 -0.0176 -0.0270

β2 (-0.0535,0.0058) (-0.0446,0.0017) (-0.0654,
-0.0006)

0.24 1.78 0.49

1.54 1.25 1.26

-0.0078 -0.0063 -0.0126

α (-0.0125,
-0.0037)

(-0.0102,
-0.0030)

(-0.0184,
-0.0074)

-1.72 1.82 -1.46

3.33 7.51 1.26

0.9760 0.9787 0.9743

φ (0.9679,0.9829) (0.9643,0.9826) (0.9661,0.9812)

-1.84 1.17 0.68

9.78 11.26 1.26

0.0332 0.0243 0.0340

σ2
η (0.0251,0.0431) (0.0246,0.0918) (0.0258,0.0437)

1.51 -1.12 0.68

17.30 26.33 13.40

-0.3622 -0.5038 -0.2837

ρ (-0.4385,
-0.2904)

(-0.5933,
-0.4145)

(-0.3443,-0.2192

1.78 -1.69 -0.53

5.25 11.00 2.36

– 9.1988 10.7500

ν – (7.9690,16.9087) (8.5897,13.7853)

– 1.32 0.16

– 26.25 46.83

– – -0.1534

δ – – (-0.3443,
-0.2192)

– – -0.53

– – 9.22

Table 4. S & P 500 index returndataset: P (β2 < 0)
estimated from the MCMC output

SVML-N SVML-T. SVML-GH-ST

P (β2 < 0) 0.9465 0.9710 0.9805

Figure 8. S & P 500 returns dataset. Posterior smoothed

mean (dotted line) of e
ht
2 , SVML-GH-ST (solid line),

SVML-T (dotted line), SVML-N (tiny line).

The magnitude of the tail fatness is measured by the
shape parameter ν in the SVML-T and SVML-GH-ST mod-
els. The posterior means of ν are almost 9.19 and 10.75 un-
der the SVML-T and SVML-GH-ST models, respectively.
This difference can be explained by δ, the extra asymmetry
parameter, which is considered in the specification of the
SVML-GH-ST model. These results seem to indicate that
the measurement errors of the stock returns are better ex-
plained by heavy-tailed distributions.

Now, we compare the volatility estimates. In Figure 8,

we plot the smoothed mean of e
ht
2 . The posterior smoothed

mean of e
ht
2 under the SVML-T, SVML-GH-ST models

show smoother movements than that under the SVML-N
model (solid line). Extreme returns, such as the stock mar-
ket crash occurred and the U. S. market subprime crises in
December 2007, clearly make the differences. The models
with heavy tails accommodate possible outliers in a some-

what different way by inflating the variance e
ht
2 by z

1
2
t e

ht
2 .

This can have a substantial impact, for instance, on the
evaluation of derivative instruments and several strategic or
tactical asset allocation topics.

To assess the goodness of the estimated models, we cal-
culate the deviance information criteria, DIC [39], Bayesian
predictive information criteria, BPIC [6, 7] and the log-
predictive score, LPS [19, 18, 12, 5, 2]. The DIC is defined
as

DIC = −2Eθ|y1:T
[log p(y1:T | θ)] + pD.(12)

The second term in (12) measures the complexity of the
model by the effective number of parameters, pD, defined as
the difference between the posterior mean of the deviance
and the deviance evaluated at the posterior mean of the
parameters:

pD = 2[log p(y1:T | θ̄)− Eθ|y1:T
[log p(y1:T | θ)]].(13)

To calculate the DIC in the context of SVML-GH-
ST model, we use the conditional likelihood p(y1:T |
α, φ, σ2

η, ν, δ, ρ, β0, β1, β2, z1:T ,h0:T ), in this case θ encom-
passes (α, φ, σ2

η, ν, δ, ρ, β0, β1, β2)
′, z1:T and h1:T .

As pointed by Stone [40], Robert and Titterington [34],
Celeux et al. [9], and Ando [7], the DIC suffers from some
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Table 5. S&P 500 returns dataset. Deviance Information Criteria (DIC), Bayesian predictive information criteria (BPIC) and
Log Predictive Score (LPS)

Modelo DIC Ranking BPIC Ranking LPS Ranking

SVML-N 23579.7 3 23988.9 3 1.321 3
SVML-T 23502.3 2 23957.5 2 1.320 2
SVML-GH-ST 23452.7 1 23941.8 1 1.318 1

theoretical aspects. First, in the derivation of DIC, Spiegel-
halter et al. [39] assumed that the specified parametric fam-
ily of probability distributions that generate future obser-
vations encompasses the true model. This assumption may
not always hold true. Secondly, the observed data are used
both to construct the posterior distribution and to compute
the posterior mean of the expected log-likelihood. Thus, the
bias in the estimate of DIC tends to underestimate the true
bias considerably. To overcome these theoretical problems
in DIC, recently Ando [7] proposed the Bayesian predictive
information criterion (BPIC) as an improved alternative of
the DIC. The BPIC criterion is defined as

BPIC = −2Eθ|y1:T
[log{p(y1:T | θ)}] + 2T b̂,(14)

where b̂ is given by

b̂ ≈ 1

T

{
Eθ|y1:T

[log{p(y1:T | θ)p(θ)}]− log[p(y1:T | θ̂)p(θ̂)]

+ tr{J−1
T (θ̂)IT (θ̂)}+ 0.5q

}
.

(15)

Here q is the dimension of θ, Eθ|y1:T
[.] denotes the expec-

tation with respect to the posterior distribution, θ̂ is the
posterior mode, and

IT (θ̂) =
1

T

T∑
t=1

(
∂ηT (yt,θ)

∂θ

∂ηT (yt,θ)

∂θ′

)∣∣∣∣
θ=

ˆθ
,

JT (θ̂) =
1

T

T∑
t=1

(
∂2ηT (yt,θ)

∂θ∂θ′

)∣∣∣∣
θ=

ˆθ
,

with ηT (yt,θ) = log p(yt | y1:t−1,θ) + log p(θ)/T .
Scoring rules provide summary measures for the evalua-

tion of probabilistic forecast by assigning a numerical score
based on the predictive distribution and on the event or
value that materializes. The fit of the models studied here
will be assessed using log predictive scores [19, 18, 12, 5, 2].
The average log predictive score for the one-step ahead pre-
diction is given by

LPS = − 1

T

T∑
t=1

log p(yt | y1:t−1, θ̂),(16)

where θ̂ is an estimate of the model parameters and p(yt |
y1:t−1, θ̂) is the one-step ahead predictive density. The

smaller the DIC, BPIC and LPS values, the better the model
fits the data.

In the SVML class of models, the log-likelihood function,
log p(y1:T | θ) and p(yt | y1:t−1,θ) are estimated using the
auxiliary particle filter [see, e.g., 33, 30] with 10,000 parti-
cles. Table 5 shows the values of BPIC. According with the
DIC, BPIC and LPS criterion, the SVML-GH-ST model fits
the data better among all the considered models, suggest-
ing that the S&P 500 index returns return data demonstrate
sufficient departure from underlying normality assumptions.

In order to check the distribution assumptions of the SV
models, we use an approach similar to Kim, Shephard and
Chib [24]. The diagnostics test is based on the probabil-
ity integral transform of the realizations yot+1 taken with
respect to the one-step-ahead prediction density p(yt+1 |
y1:t,θ). The probability integral transform, εt+1, is sim-
ply the cumulative distribution function corresponding to
the prediction density p(yt+1 | y1:t,θ) evaluated at yot+1 :
εt+1 = Pr(yt+1 ≤ yot+1 | y1:t,θ). For t = 1, . . . , T , un-
der the null hypothesis that the true distribution of yot+1

is p(yt+1 | y1:t,θ) (or equivalently, the model is correctly
specified), the εt+1 converges in distribution to indepen-
dent and identically distributed uniform random variables
on [0, 1] [see, 35, 38, 24, 15, 28, among others]. By let-
ting ςt+1 = Φ−1(εt+1), where Φ() denotes the standard
normal cumulative distribution function, a sequence of in-
dependent standard normal random variables ςt+1 is ob-
tained, which are the standardized innovations. The prob-
ability Pr(yt+1 ≤ yot+1 | y1:t,θ) can then be approximated
by

Pr(yt+1 ≤ yot+1 | y1:t,θ)

=
1

N

N∑
i=1

Pr(yt+1 ≤ yot+1 | y1:t, h
(i)
t+1,θ).

The QQ-plots for pseudo residuals the three models fitted,
SVML-N, SVML-T and SVML-GH-ST are shown in Figure
9. The qq-plots indicate a lack of fit in the left tail, spe-
cially in the SVML-N and SVML-ST models. The indicated
mis-specification could be solved by using the SVML with
generalized skew-Student-t or skew-Student-t distributions
as in Abanto-Valle et al. [5] and Abanto-Valle et al. [2].

5. CONCLUSIONS

This article presented a Bayesian implementation of a
robust alternative for estimation in the stochastic volatility-
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Figure 9. S & P 500 returns dataset. Quantile-Quantile plot of the residuals ςt. The solid line plots the quantiles of the
N (0, 1) against the quantiles of the standard normal and the points were the sorted values of ςt against the quantiles of the

standard normal.

in-mean model with correlated errors, as an extension of
the model proposed by [26] and Abanto-Valle et al. [3] via
MCMCmethods. The SVMLmodel enables us to investigate
the dynamic relationship between returns and their time-
varying volatility. The Gaussian assumption of the mean in-
novation was replaced by univariate thick-tailed processes,
known as the variance-mean mixture of the normal distri-
bution. Under a Bayesian perspective, we developed an al-
gorithm based on MCMC simulation methods to estimate
all the parameters and latent quantities in our proposed
SVML-GH-ST model. We illustrated our methods through
an empirical application of the S&P 500 returns series, which
shows that the SVML-GH-ST model provides a better fit
than the SVML-N and SVML-T models in terms of pa-
rameter estimates, interpretation, and robustness aspects.
The β2 estimate, which measures both the ex ante rela-
tionship between returns and volatility and the volatility
feedback effect, was found to be negative. These results are
in line with those of French et al. [14], who found a simi-
lar relationship between unexpected volatility dynamics and
returns, and confirm the hypothesis that investors require
higher expected returns when unanticipated increases in fu-
ture volatility are highly persistent. This is consistent with
our findings of higher values of φ combined with larger neg-
ative values for the in-mean parameter. On the other hand,
since the posterior mean and 95% credible interval contains
only negative values, we can conclude that there is a strong
and significant “leverage effect” for the S&P 500 returns
dataset.

Our SVML-GH-ST models showed considerable flexibil-
ity to accommodate outliers, but their robustness aspects
could be seriously affected by the prior of the ν and δ pa-
rameters. In this set-up, for example, it would be possible
to study different objective priors for the parameters in the
GH-ST distributions in the same spirit of the works of Fon-
seca et al. [13] and Salazar et al. [36] or using a different
skew-student-t parameterization as in Abanto-Valle et al.
[5] and [2] for example. Nevertheless, an in-depth investiga-
tion of this modification is beyond the scope of the present
paper, but provides stimulating topics for future research.

APPENDIX A: THE FULL CONDITIONAL
DISTRIBUTIONS

In this appendix, we describe the full conditional distri-

butions for the parameters and the mixing latent variables

z1:T of the SVML-GH-ST model.

Full conditional distributions of β0, β1, and
β2

Let mt and Vt be defined by

mt =

{√
zte

ht
2

ϕ
τ2+ϕ2 (ht+1 − α− φht), t < T,

0, t = T,

Vt =

{
zte

ht τ2

τ2+ϕ2 , t < T,

zte
ht , t = T.

For parameters β0, β1 and β2, we set the prior distribu-

tions as: β0 ∼ N (β̄0, σ
2
β0
), β1 ∼ N(−1,1)(β̄1, σ

2
β1
), β2 ∼

N (β̄2, σ
2
β2
). Then, the full conditionals are given by

β0 | y0:T ,h1:T , z1:T , β1, β2 ∼ N (
bβ0

aβ0

,
1

aβ0

),(A.1)

β1 | y0:T ,h1:T , z1:T , β0, β1 ∼ N (
bβ1

aβ1

,
1

aβ1

)I|β2|<1,(A.2)

β2 | y0:T ,h1:T , z1:T , β0, β1 ∼ N (
bβ2

aβ2

,
1

aβ2

),(A.3)

where aβ0 =
∑T

t=1
1
Vt

+ 1
σ2
β0

, bβ0 =
∑T

t=1
wt

Vt
+ β̄0

σ2
β0

, aβ1 =∑T
t=1

y2
t−1

Vt
+ 1

σ2
β1

, bβ1 =
∑T

t=1
utyt−1

Vt
+ β̄1

σ2
β1

, aβ2 =
∑T

t=1
e2ht

Vt
+

1
σ2
β2

, bβ2 =
∑T

t=1
rte

ht

Vt
+ β̄2

σ2
β2

, wt = yt − β1yt−1 − β2e
ht −

e
ht
2 δ(zt−μz)−mt, ut = yt−β0−β2e

ht −e
ht
2 δ(zt−μz)−mt,

rt = yt − β0 − β1yt−1 − e
ht
2 δ(zt − μz) − mt, and I|β2|<1 is

the indicator variable.
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Full conditional distributions of α, φ, ϕ, δ,
and τ 2

We assume the following prior distributions: α | τ2 ∼
N (α0, τ

2/q0), ϕ | τ2 ∼ N (ϕ0, τ
2/p0), φ ∼ N(−1,1)(φ0, s

2
φ),

δ ∼ N (δ0, s
2
δ), and τ2 ∼ GI(aτ/2, Sτ/2), where α0, ϕ0, φ0,

s2φ, δ0, s
2
δ , aτ , Sτ , p0, and q0 are known hyper parameters.

After some simple but tedious algebra, we obtain

α | . ∼ N (
Bα

Aα
,
τ2

Aα
),(A.4)

ϕ | . ∼ N (
Bϕ

Aϕ
,
τ2

Aϕ
),(A.5)

δ | . ∼ N (
Bδ

Aδ
,
1

Aδ
),(A.6)

where Aα = q0 + 1+φ
1−φ + T − 1, Bα = α0q0 + (1 +

φ)h1 +
∑T−1

t=1 kt, kt = ht+1 − φht − ϕgtz
− 1

2
t e−

ht
2 , Aϕ =

p0 +
∑T−1

t=1 g2t zt
−1e−ht , Bϕ = ϕ0p0 +

∑T−1
t=1 ctgtz

− 1
2

t e−
ht
2 ,

Aδ = − ϕ
τ2

∑T−1
t=1

1√
zt
(zt − μz) (ht+1 − α− φht) +(

ϕ2+τ2

τ2

)∑T−1
t=1

1
zteht/2

(zt − μz)
(
yt − β0 − β1yt−1 − β2e

ht
)
,

Bδ =
(

ϕ2+τ2

τ2

)∑T−1
t=1

(
1
zt
(zt − μz)

2
)
+ 1

zn
(zn − μz)

2 + 1
s2δ
,

ct = ht+1 − α − φht, and gt = yt − β0 − β1yt−1 − β2e
ht −

e
ht
2 δ(zt − μz). In a similar way, the conditional distribution

of φ is given by

p(φ | .) ∝ Q(φ) exp

{
− Aφ

2

(
φ− Bφ

Aφ

)2}
,(A.7)

where

Q(φ) =
√

1− φ2 exp{−1− φ2

2τ2
(h1 −

α

1− φ
)2},

Aφ = 1
s2φ

+
∑T−1

t=1
h2
t

τ2 , Bφ = φ0

s2φ
+
∑T−1

t=1
ltht

τ2 , lt = ht+1 −α−

ϕ(yt − β0 − β1yt−1 − β2e
ht)z

− 1
2

t e−
ht
2 , and I|φ|<1 is the indi-

cator variable. As p(φ | h1:T , α, σ
2
η) in (A.7) does not have

a closed form, we sample from it by using the Metropolis-

Hastings algorithm with truncated N(−1,1)(
bφ
aφ

,
σ2
η

aφ
) as the

proposal density. The conditional distribution of τ2 is
IG(T1

2 , M1

2 ), where T1 = aτ +T +2 and M1 = (1−φ2)(h1−
α

1−φ )
2+

∑T−1
t=1 (ct−ϕz

− 1
2

t e−
ht
2 gt)

2+p0(ϕ−ϕ0)
2+q0(α−α0)

2+

Sτ . Once τ2 and ϕ are sampled, respectively, from their
conditional posteriors, we can calculate ρ and σ2

η through
σ2
η = τ2 + ϕ2 and ρ = ϕ/ση.

Full conditional distributions of zt and ν

The full conditional distribution of zt is given by

p(zt|.) ∝ Q(zt)
(γ
ϑ

)λ zλ−1

2Kλ(γ, ϑ)
exp

{
−1

2

(
ϑ2z−1

t + γ2zt
)}

,

where the values of λ, ϑ and γ are the parameters of a
distribution GIG(λ, ϑ, γ) whose values are given by

λ = −ν + 1

2
,

γ2 = δ2
ϕ2 + τ2

τ2
,

ϑ2 =
ϕ2 + τ2

τ2
e−ht

×
(
yt − β0 − β1yt−1 − β2e

ht + μze
ht/2δ

)2

+ ν.

We sample zt by the Metropolis-Hastings algorithm. We
use GIG(λ, ϑ, γ) as the proposal distribution such that z∗t
and z

(i−1)
t are the proposal value and previous iteration

value, respectively. Thus, the acceptance probability is given

by αMH = min{1, Q(z∗
t )

Q(z
(i−1)
t )

}, where

Q(zt) = exp

{
ϕ

τ2

[
z
−1/2
t e−ht/2(ht+1 − α− φht)

(
yt − β0 − β1yt−1 − β2e

ht + μze
ht/2δ

)
−

−z
1/2
t δ(ht+1 − α− φht)

]
I{t<n}

}
.

We assume the prior distribution of ν as G(aν , bν)I4<ν≤40.
Then, the full conditional distribution of ν is

p(ν | z1:T )

∝
ν
2

Tν
2

Γ
(
ν
2

)T exp

{
−

T∑
t=1

1

2Vt

[
yt − β0 − β1yt−1−

β2e
ht − e

ht
2 δ

(
zt −

ν

ν − 2

)
−mt

]2

− ν

2

T∑
t=1

[
1

zt
+ log zt

]}
νaν−1 exp{−bνν}I4<ν≤40.

We sample ν by the Metropolis-Hastings algorithm [43, 10].
Let ν∗ denote the mode (or approximate mode) of p(ν |
z1:T ), and let �(ν) = log p(ν | z1:T ). We use the proposal
density N(4,40)(μν , σ

2
ν), where μν = ν∗ − �′(ν∗)/�′′(ν∗) and

σ2
ν = −1/�′′(ν∗). �′(ν∗) and �′′(ν∗) are the first and second

derivatives of �(ν) evaluated at ν = ν∗.

APPENDIX B: SOME DERIVATIONS OF
THE BLOCK SAMPLER

First, we define

ds =
∂L

∂hs
= −1

2
+

(ys − μs)
2

2Vs
+

(ys − μs)

Vs

∂μs

∂hs

+
(ys−1 − μs−1)

Vs−1

∂μs−1

∂hs
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−φ
(hs+1 − α− φhs)

σ2
η

I(t+ k < T )(B.1)

for s = t+ 1, . . . , t+ k, and

Q =

⎛
⎜⎜⎜⎜⎜⎜⎝

Mt+1 Nt+2 0 . . . 0
Nt+2 Mt+2 Nt+3 . . . 0

0 Nt+3 Mt+3
. . .

...
...

. . .
. . .

. . . Nt+k

0 . . . 0 Nt+k Mt+k

⎞
⎟⎟⎟⎟⎟⎟⎠

,(B.2)

where

Ms = −E

[
∂2L

∂h2
s

]
=

1

2
+

1

Vs

(
∂μs

∂hs

)2

+
1

Vs−1

(
∂μs−1

∂hs

)2

+
φ2

σ2
η

I(t+ k < T ), s = t+ 1, . . . , t+ k,(B.3)

Ns = −E

[
∂2L

∂hs∂hs−1

]
=

1

Vs−1

∂μs−1

∂hs−1

∂μs−1

∂hs
,

(B.4)

where s = 2, . . . , T and Nt+1 = 0. Next, we define

∂μs

∂hs
=

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

β2e
hs + 1

2e
hs
2 δ(zs − μz)+

ϕ
ϕ2+τ2

√
zse

hs
2

[
(hs+1−α−φhs)

2 − φ
]

s = 1, . . . , T − 1,

β2e
hs + 1

2e
hs
2 δ(zs − μz),

s = T,

(B.5)

∂μs−1

∂hs
=

{
0, s = 1,

ϕ
ϕ2+τ2

√
zs−1e

hs−1
2 , s = 2, . . . , T.

(B.6)
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