
Supplementary Materials forQuantile Regression in
Linear Mixed Models: A Stochastic Approximation EM

approach

Christian E. Galarza, Victor H. Lachos and Dipankar Bandyopadhyay

Note: The numbers in parentheses inside the text in the material below refer to the equation
numbers in the main paper.

APPENDIX A Some results on SAEM implementation

A.1 A Gibbs Sampler Algorithm

In order to draw a sample fromf (bi,ui|yi)we can use the Gibbs Sampler, an Markov chain Monte
Carlo (MCMC) algorithm proposed by (Casella and George, 1992) for obtaining a sequence of
observations which are approximated from the joint probability distribution of two or several
random variables just using their full conditional distributions. Computing the full conditional
distributionsf (bi|ui,yi) and f (ui|bi,yi), we have for the first one that

f (bi|yi,ui) ∝ f (yi|bi,ui) f (bi),

∝ φni

(
yi|X⊤

i βββ p +Zibi +ϑpui,στ2
pD(ui)

)
×φq(bi|0,ΨΨΨ) (A.1)

so we have a product of multivariate normal densities which solution is based in the next lemma:

Lemma 1. Simplifying the notation above it follows that

φn(y|Xβββ +Zb,ΩΩΩ)φq(b|0,ΨΨΨ) = φn(y|Xβββ ,ΣΣΣ)φq(b|µµµ1(y−Xβββ ),ΛΛΛ) (A.2)

where
µµµ1 = ΛΛΛZT ΩΩΩ−1, ΣΣΣ = ΩΩΩ+ZΨΨΨZT , ΛΛΛ = (ΨΨΨ−1+ZT ΩΩΩ−1Z)−1. (A.3)

Due the equation (A.2) from the lemma 2 it leads us to

f (bi|yi,ui) ∝ φni

(
yi| X⊤

i βββ p +ϑpui,στ2
pD(ui)+ZiΨZ⊤

i

)
×

φq

(
bi|ΛΛΛiZ i

⊤ (
στ2

pD(ui)
)−1

(
yi−X⊤

i βββ p−ϑpui

)
,ΛΛΛi

)

whereΛΛΛi =
(
Ψ−1+στ2

pZ⊤
i D(ui)Zi

)−1
. Then dropping the first term of the product by pro-

portionality it’s easy to see thatbi|yi,ui ∼ Nq

(
ΛΛΛiZ⊤

i

(
στ2

pD(ui)
)−1

(
yi−X⊤

i βββ p−ϑpui

)
,ΛΛΛi

)
.
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On other hand, for the full conditional distributionf (ui|yi,bi) note that the vectorui|yi,bi can

be constructed asui|yi,bi =
[

ui1|yi1,bi ui2|yi2,bi · · · uini |yini,bi
]⊤

given thatui j
∣∣yi j,bi ⊥

uik|yik,bi for all j,k = 1,2, . . . ,ni and j 6= k. So, the univariate distribution of thef (ui j|yi j,bi) is
proportional to the product off (yi j|bi,ui j) and f (ui j), a Normal and a Exponential distribution,
that is

f (ui j|yi j,bi) ∝ φ(yi j
∣∣X⊤

i jβββ p +Z⊤
i jbi +ϑpui j, στ2

pui j)×GUi j(1,σ),

then the Lemma 1 leads us thatui j|yi j,bi ∼ GIG( 1
2,χi j,ψ), whereχi j =

∣∣∣yi j−X⊤
i jβββ p−Z⊤

i j bi

∣∣∣

τp
√

σ
and

ψ =
τp

2
√

σ
.

In resume, the Gibbs Sampler proceeds as follow:

Givenθθθ = θθθ (k) for i = 1, . . . ,n;

(1) Start with suitable initial values(b(0,k)
i ,u(0,k)

i )

(2) Draw b(1,k)
i |yi,u

(0,k)
i ∼ Nq

(
ΛΛΛ(k)

i Z⊤
i

(
σ (k)τ2

pD(u(0,k)
i )

)−1(
yi−X⊤

i βββ (k)
p −ϑpu(0,k)

i

)
,ΛΛΛ(k)

i

)

(3) Draw u(1,k)i j |yi j,b
(1,k)
i ∼ GIG


1

2
,

∣∣∣∣yi j−X⊤
i jβββ

(k)

p −Z⊤
i jb

(1,k)
i

∣∣∣∣

τp

√
σ (k)

,
τp

2
√

σ (k)


 for all j = 1,2, . . . ,ni

(4) Constructu(1,k)
i |yi,b

(1,k)
i as

[
u(1,k)i1 |yi1,b

(1,k)
i u(1,k)i2 |yi2,b

(1,k)
i · · · u(1,k)ini

|yini,b
(1,k)
i

]⊤

(5) Repeat the steps 2-4 until drawm samples
(

b(1,k)
i ,u(1,k)

i

)
,
(

b(2,k)
i ,u(2,k)

i

)
, . . . ,

(
b(m,k)

i ,u(m,k)
i

)

from bi,ui|θ (k),yi.

Note that for a given a iterationk and for all i = 1, . . . ,n, drawing from the conditional distri-

bution of the vectoru(l,k)
i |yi,b

(l,k)
i implies to draw from the univariate conditional distributions

u(k)i j |yi j,b
(k)
i for all j = 1,2, . . . ,ni, so this construction results in a heavy computational algorith-

m.

A.2 Specification of initial values

It is well known that a smart choice of the initial values of MLestimates can assure a fast con-
vergence of an algorithm to the global maxima solution for the respective likelihood. Obviating
the random effects term, letyi ∼ ALD(x⊤i βββp,σ , p). Next, considering the MLEs ofβββp andσ
as defined in Yu and Zhang (2005) for this model, we follow the steps below for the QR-LMM
implementation:

1. Compute an initial valuêβββ
(0)

p as

β̂ββ
(0)

p = arg min
βp∈Rk

n

∑
i=1

ρp(yi −x⊤i βββp).
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2. Using the initial value for̂βββ
(0)

p obtained above, computêσ (0) as

σ̂ (0) =
1
n

n

∑
i=1

ρp(yi −x⊤i β̂ββ
(0)

p ).

3. Use aq×q identity matrixI q×q for the the initial valueΨΨΨ(0).

A.3 Computing the conditional expectations

Due the independence betweenui j
∣∣yi j,bi and uik|yik,bi, for all j,k = 1,2, . . . ,ni and j 6= k, we

can writeui|yi,bi = [ ui1|yi1,bi ui2|yi2,bi · · · uini |yini,bi ]
⊤. Using this fact, we are able to

compute the conditional expectationsE (ui) andE (D−1
i ) in the following way. Using matrix ex-

pectation properties, we define these expectations as

E (ui) = [E (ui1) E (ui1) · · · E (uini)]
⊤ (A.4)

and

E (D−1
i ) = diag(E (u−1

i )) =




E (u−1
i1 ) 0 ... 0

0 E (u−1
i2 ) ... 0

...
...

...
...

0 0 ... E (u−1
ini

)


 . (A.5)

We already haveui j|yi j,bi ∼ GIG( 1
2,χi j,ψ), whereχi j andψ are defined in (14). Then, using

(5), we compute the moments involved in the equations above as E (ui j) =
χi j
ψ (1+ 1

χi jψ ) and

E (u−1
i j ) = ψ

χi j
. Thus, for iterationk of the algorithm and for theℓth Monte Carlo realization, we

can computeE (ui)
(ℓ,k) andE [D−1

i ](ℓ,k) using equations (A.4)-(A.5) where

E (ui j)
(ℓ,k) =

2|yi j −x⊤i jβββ
(k)
p −z⊤i jb

(ℓ,k)
i |+4σ (k)

τ2
p

and E (u−1
i j )(ℓ,k) =

τ2
p

2|yi j −x⊤i jβββ
(k)
p −z⊤i jb

(ℓ,k)
i |

.

A.4 The empirical information matrix

In light of (10), the complete log-likelihood function can be rewritten as

ℓci(θθθ ) = −3
2

ni logσ − 1
2στ2

p
ζ⊤

i D−1
i ζi −

1
2

log
∣∣ΨΨΨ

∣∣−1
2

b⊤
i ΨΨΨ−1bi−

1
σ

u⊤
i 1ni (A.6)

whereζi = yi−x⊤i βββp−zibi−ϑpui andθθθ = (βββ⊤
p ,σ ,ααα⊤)⊤. Taking partial derivatives with respect

to θθθ , we have the following score functions:

∂ℓci(θθθ)
∂βββ p

=
∂ζi

∂βββ p

∂ℓci(θθθ)
∂ζi

=
1

στ2
p
xiD−1

i ζi,

and

∂ℓci(θθθ)
∂σ

= −3ni

2
1
σ
+

1
2σ2τ2

p
ζ⊤

i D−1
i ζi+

1
σ2u⊤

i 1ni.
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Let ααα be the vector of reduced parameters fromΨΨΨ, the dispersion matrix forbi. Using the trace
properties and differentiating the complete log-likelihood function, we have that

∂ℓci(θθθ)
∂ΨΨΨ

=
∂

∂ΨΨΨ

[
−n

2
log

∣∣ΨΨΨ
∣∣−1

2
tr{ΨΨΨ−1bib⊤

i }
]

= −1
2

tr{ΨΨΨ−1}+ 1
2

tr{ΨΨΨ−1ΨΨΨ−1bib⊤
i }

=
1
2

tr{ΨΨΨ−1(bib⊤
i −ΨΨΨ)ΨΨΨ−1}

Next, taking derivatives with respect to a specificα j from ααα based on the chain rule, we have

∂ℓci(θθθ)
∂α j

=
∂ΨΨΨ
∂α j

∂ℓci(θθθ)
∂ΨΨΨ

=
∂ΨΨΨ
∂α j

1
2

tr{ΨΨΨ−1(bib⊤
i −ΨΨΨ)ΨΨΨ−1}. (A.7)

where, using the fact that tr{ABCD}= (vec(A⊤))⊤(D⊤⊗B)(vec(C)), (A.7) can be rewritten as

∂ℓci(θθθ )
∂α j

= (vec(∂ΨΨΨ
∂α j

⊤
))⊤

1
2
(ΨΨΨ−1⊗ΨΨΨ−1)(vec(bib⊤

i −ΨΨΨ)). (A.8)

Let Dq be the elimination matrix (Lavielle, 2014) that transformsthe vectorizedΨΨΨ (written
as vec(ΨΨΨ)) into its half-vectorized form vech(ΨΨΨ), such thatDqvec(ΨΨΨ) = vech(ΨΨΨ). Using the

fact that for all j = 1, . . . , 1
2q(q+1), the vector(vec(∂ΨΨΨ

∂α j
)⊤)⊤ corresponds to thejth row of the

elimination matrixDq, we can generalize the derivative in (A.8) for the vector of parametersααα
as

∂ℓci(θθθ)
∂ααα

=
1
2
Dq(ΨΨΨ−1⊗ΨΨΨ−1)(vec(bib⊤

i −ΨΨΨ)).

Finally, at each iteration, we can compute the empirical information matrix (19) by approximating
the score for the observed log-likelihood using the stochastic approximation given in (20).
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APPENDIX B Figures
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Figure B.1: Comparison of the Bias (upper row) and RMSE (lower row) at the 95-th quantile
from fitting the QR-LMM and the Geraci (2014) model for the fixed effectsβ0, β1 andβ2.
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Figure B.2: Comparison of the Monte Carlo standard deviation for the estimatives ofβ1 andβ2

obtained by the SAEM procedure and the Geraci (2014) algorithm for the set of quantiles 5, 10,
50, 90 and 95.
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Figure B.3: Fitted mean regression overlayed with five different quantile regression lines for the
Cholesterol data, by gender.
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female male

Figure B.4: Orthodontic distance growth data: Individual profiles for 10 random children (Panel
a); Individual profiles for the same children, by gender (Panel b).
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Figure B.5: Fitted mean regression overlayed with five different quantile regression lines for the
Orthodontic distance growth data, by gender.
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Figure B.6: Graphical summary of convergence for the fixed effect parameters, variance compo-
nents of the random effects, and nuisance parameters, generated from theqrLMM package for the
orthodontic distance growth data. The vertical dashed linedelimits the beginning of the almost
sure convergence, as defined by the cut-point parameterc.
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APPENDIX C Sample output from R packageqrLMM()

-------------------------------------------------

Quantile Regression for Linear Mixed Models

-------------------------------------------------

Quantile = 0.75

Subjects = 27 ; Observations = 108 ; Balanced = 4

-----------

Estimates

-----------

- Fixed effects

Estimate Std. Error z value Pr(>|z|)

beta 1 17.08405 0.53524 31.91831 0

beta 2 2.15393 0.36929 5.83265 0

beta 3 0.61882 0.05807 10.65643 0

sigma = 0.38439

Random effects Variance-covariance matrix

z1 z2

z1 0.16106 -0.00887

z2 -0.00887 0.02839

------------------------

Model selection criteria

------------------------

Loglik AIC BIC HQ

Value -216.454 446.907 465.682 454.52

-------

Details

-------

Convergence reached? = FALSE

Iterations = 300 / 300

Criteria = 0.00381

MC sample = 10

Cut point = 0.25

Processing time = 7.590584 mins
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