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APPENDIX A Some results on SAEM implementation

A.1 A Gibbs Sampler Algorithm

In order to draw a sample frorfi{b;, uj|y;i) we can use the Gibbs Sampler, an Markov chain Monte
Carlo (MCMC) algorithm proposed by (Casella and George2) %8 obtaining a sequence of
observations which are approximated from the joint proltghdistribution of two or several
random variables just using their full conditional distiilons. Computing the full conditional
distributionsf (bi|u;,y;) and f (uj|bi,yi), we have for the first one that

f(bilyi,ui) O f(yilbi,ui) f(bi),
0 ¢ (yi\XiTBerZibi +z9pui,ar§D(ui)) x @y (bi|0, W) (A.1)
so we have a product of multivariate normal densities whattt®on is based in the next lemma:

Lemma 1. Smplifying the notation above it follows that

h(YIXB+2Zb, Q)@ (b|0,W) = gh(y|XB,Z)@y(b[H1(y —XB),A) (A.2)

where
u=AZ'Q ! T=Q+zwz", A=(w1lizTQlz)L (A.3)

Due the equation (A.2) from the lemma 2 it leads us to
f(oilyi,ui) O ¢ (yi| XiTBp+19pui,ar§D(ui)+Zi\IJZiT) X
-1
@ (bilAZiT (03D () (i~ X{ Bp—Ipui) )

whereA; = (W—1+GT§ZFD(ui)Zi)*1. Then dropping the first term of the product by pro-
portionality it's easy to see that|y;, uj ~ Nq (AiZiT (argD(ui))fl (yi—XiTBp—ﬁpui) ,Ai>.



On other hand, for the full conditional distributidriu;|y;, bi) note that the vectau;|y;,b; can
be constructed asily;,bi = [ Ui1lyis,bi Ui2|yi2,bi -+ Uin|Yin, bi ]T given thatuij| yij,b; L
Uik| ik, bi for all j,k=1,2,...,nj andj # k. So, the univariate distribution of thigu;;|yi;, b;) is
proportional to the product of(y;;|bj,u;j;) and f (uij), a Normal and a Exponential distribution,
that is

f(Uijlyij, i) O @(yij| X{jBp+Zi bi + 8plij, 0THUj) x Guy(1,0),

- X3; By~ 21 bi|

d
-~ an

then the Lemma 1 leads us thag|yij, bj ~ GlG(%,Xij,L[I) whereij; =

W—T

In resume, the Gibbs Sampler proceeds as follow:
Given = 8™ for i = 1....n;
(1) Start with suitable initial valuegh{®*, u(®¥)

-1
(2) Drawb{™y;, uf )~Nq(A§k>ZF(a“)rzD(u-“”k))) (yi—xmék)—ﬁpufo“),Af”)

() 1k
yij—Xij Zﬂbf )

1 T
TR SNl = P_|forallj=12....n
(2 Tp\/O' 2\/0(")) : '
.
| pt¥ as[ (1K) A0 (AR pK <,k>]

o U yin b
(5) Repeat the steps 2-4 until dremsamples(bi(l’k) , ui(l’k)) , <b.(2*k), ui(z’k)> e, <bi(m’k) , ui(m’k))

(3) Draw u( K

4) Construclui(l’k)

|
from b;, ui| 6K,y

Note that for a given a iteratiok and for alli = 1,...,n, drawing from the conditional distri-
bution of the vect0|u(I K b("k)implies to draw from the univariate conditional distritmris
” |y.,, % for all j =1,2,....n;, so this construction results in a heavy computationalrélgo

A.2 Specification of initial values

It is well known that a smart choice of the initial values of Mktimates can assure a fast con-
vergence of an algorithm to the global maxima solution fertéspective likelihood. Obviating
the random effects term, Igt ~ ALD(xiTBp,a, p). Next, considering the MLEs g8, ando

as defined in Yu and Zhang (2005) for this model, we follow tteps below for the QR-LMM
implementation:

i ~(0)
1. Compute an initial valu@,, as

pp =arg min pr TBp

ﬁpeR



2. Using the initial value foﬁfoo) obtained above, compu&? as

O pr TBp
3. Use aq x q identity matrixl,, for the the initial value¥©,

A.3 Computing the conditional expectations

Due the independence betwe&rj]\ Yij,bi and uik|yik, bi, for all j,k=1,2,...,n andj #k, we
can writeu;lyi,bi = [ Ui1]yi1,bi  Ui2lyi2,bi -+ uin|Vin,bi |. Using this fact, we are able to
compute the conditional expectatiofi$u;) and&'(D; ) in the following way. Using matrix ex-
pectation properties, we define these expectations as

E(up) = [€(uin) &(uir) - & (Uin)]" (A.4)
and
sugh)y o 0

&(Djt) = diag & (u ™)) = (A.5)

We already haveij|yij,bi ~ GIG( %,Xij,w) wherey;; andy are defined in (14). Then using
(5), we compute the moments involved in the equations absvg(g;j) = X (1+ ) and

éa(ufjl) = ﬂ Thus, for iteratiork of the algorithm and for théth Monte Carlo reallzatlon, we

can comput$( ui)“® and&’[D; 1% using equations (A.4)-(A.5) where

K 2|yij B XEB“( B Zﬂbfik | +40 —1\(tk) _ TS
éa(uu) — and 5)(UIJ ) = Tk T (k)
Tp 2yij —X;;Bp —z”bI a

A.4 The empirical information matrix

In light of (10), the complete log-likelihood function cae bewritten as

3 1 _ 1 1
(a(8) = —n IOQO_FT%ZiTDi 1z —élog}‘P]—ébiT 1b.——uTlnl (A.6)
where(; =i —xiTBp—zi bi—9pu; andB = (B;,a,aT)T. Taking partial derivatives with respect
to 0, we have the following score functions:

00:(0) ¢ 04 (0) 1

_ _ nN-17
0B, — 0B, a4 oD

and

Jo 2 0 ' 20?12

_ 1
T2 Z|—r 1ZI 0_ Tln,
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Let a be the vector of reduced parameters frinthe dispersion matrix fdo;. Using the trace
properties and differentiating the complete log-likebldunction, we have that

1 1
= —étr{qfl}jtétr{qfl‘lflbibf}

1
= étr{qu(bi b —w)w-1
Next, taking derivatives with respect to a specificfrom a based on the chain rule, we have

006 (8) oW 904(0)
001 001 ow
oWv 1

_ YT = “1hh! _ -1
= 3a; 2tr{‘-lJ (bib; —W)W -} (A.7)

where, using the fact thatftARBCD} = (veqA ")) (D" @ B)(veqC)), (A.7) can be rewritten as

006(0) T
sa, = veddy )

)73 e w ) (veabib ~w)). (A8)

Let Z4 be the elimination matrix (Lavielle, 2014) that transforthe vectorized¥ (written
as ve¢W)) into its half-vectorized form vecH), such thatZoveqW) = vech'W). Using the
fact that for allj =1,..., %q(q+ 1), the vec:tor(veqf;.—:!:)T)T corresponds to thgh row of the
elimination matrix%,, we can generalize the derivative in (A.8) for the vector afgmetersy

as
0€ci(9)
Ja

Finally, at each iteration, we can compute the empiricanmiation matrix (19) by approximating
the score for the observed log-likelihood using the stahapproximation given in (20).

= %@q(wl @ W) (veqbib —W)).



APPENDIX B Figures
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Figure B.1: Comparison of the Bias (upper row) and RMSE (loweev) at the 95-th quantile
from fitting the QR-LMM and the Geraci (2014) model for the ftixeffectsfy, 51 andfs.
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Figure B.2: Comparison of the Monte Carlo standard devidfoo the estimatives gB; and 3,
obtained by the SAEM procedure and the Geraci (2014) alyarfor the set of quantiles 5, 10,

50, 90 and 95.
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Figure B.3: Fitted mean regression overlayed with five d#fife quantile regression lines for the
Cholesterol data, by gender.
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Figure B.4: Orthodontic distance growth data: Individuafpes for 10 random children (Panel
a); Individual profiles for the same children, by gender @ ).
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Figure B.5: Fitted mean regression overlayed with five dgfife quantile regression lines for the
Orthodontic distance growth data, by gender.
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Figure B.6: Graphical summary of convergence for the fixéeceparameters, variance compo-
nents of the random effects, and nuisance parameters,ajedérom theyrLMM package for the
orthodontic distance growth data. The vertical dasheddeiamits the beginning of the almost
sure convergence, as defined by the cut-point pararoeter
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APPENDIX C Sample output from R packageqrLMM()

Quantile = 0.75
Subjects = 27 ; Observations = 108 ; Balanced = 4

- Fixed effects

Estimate Std. Error =z value Pr(>|zl)

beta 1 17.08405 0.53524 31.91831 0
beta 2 2.15393 0.36929 5.83265 0
beta 3 0.61882 0.05807 10.65643 0

sigma = 0.38439

Random effects Variance-covariance matrix
zl z2

zl 0.16106 -0.00887

z2 -0.00887 0.02839

Loglik AIC BIC HQ
Value -216.454 446.907 465.682 454.52

Convergence reached? = FALSE
Iterations = 300 / 300
Criteria = 0.00381

MC sample = 10

Cut point 0.25

Processing time = 7.590584 mins
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