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Appendix A. Multivariate Skew Distributions

Different versions of multivariate skew distributions have been introduced in the literature
(Sahu et al. , 2003; Azzalini & Capitanio, 2003; Azzalini & Genton, 2008; Jara et al. , 2008).
A new class of distributions by introducing skewness in multivariate elliptically distributions
were developed in publication (Sahu et al. , 2003). The class, which is obtained by using
transformation and conditioning, contains many standard families including the multivariate
skew-normal (SN) and skew-t (ST) distributions as special cases. A k-dimensional random
vector Y follows a k-variate skew-elliptical (SE) distribution if its probability density function
(pdf) is given by

f(y|µ,Σ,∆;m
(k)
ν ) = 2kf(y|µ,A;m

(k)
ν )P (V > 0), (A.1)

where A = Σ+∆2, µ is a location parameter vector, Σ is a k×k positive (diagonal) covari-
ance matrix, ∆ = diag(δ1, δ2, . . . , δk) is a k × k skewness matrix with the skewness param-
eter vector δ = (δ1, δ2, . . . , δk)

T ; V follows the elliptical distribution El(∆A−1(y − µ), Ik −
∆A−1∆;m

(k)
ν ) and the density generator functionm

(k)
ν (ζ) = Γ(k/2)

πk/2
mν(ζ)∫∞

0 rk/2−1mν(ζ)dr
, withmν(ζ)

being a function such that
∫∞

0
rk/2−1mν(ζ)dr exists. The function mν(ζ) provides the kernel

of the original elliptical density and may depend on the parameter ν. This SE distribution is
denoted by SE(µ,Σ,∆;m(k)). Two examples of mν(ζ), leading to important special cases
used throughout the paper, are mν(ζ) = exp(−ζ/2) and mν(ζ) = (1 + ζ/ν)−(ν+k)/2, where
ν > 0. These two expressions lead to the multivariate SN and ST distributions, respectively.
In the latter case, ν corresponds to the degrees of freedom parameter.

As we know, a normal distribution is a special case of an SN distribution when the skew-
ness parameter is zero, and the ST distribution reduces to the SN distribution when degrees
of freedom are large. For completeness, this Appendix briefly summarizes the multivariate
ST distribution introduced by (Sahu et al. , 2003) to be suitable for a Bayesian inference
since it is built using the conditional method. For detailed discussions on properties of ST
distribution, see Reference (Sahu et al. , 2003). Assume a k-dimensional random vector Y
follows a k variate ST distribution with location vector µ, k × k positive (diagonal) covari-
ance matrix Σ and k× k skewness matrix ∆ = diag(δ1, δ2, . . . , δk) or the degrees of freedom
ν.

A k-dimensional random vector Y follows an m-variate ST distribution if its probability
density function (pdf) is given by

f(y|µ,Σ,∆, ν) = 2ktk,ν(y|µ,A)P (V > 0), (A.2)
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we denote the k-variate t distribution with parameters µ, A and degrees of freedom ν by
tk,ν(µ,A) and the corresponding pdf by tk,ν(y|µ,A) henceforth, V follows the t distribution
tk,ν+k. We denote this distribution by STk,ν(µ,Σ,∆). In particular, when Σ = σ2Ik and
∆ = δIk, the equation (A.2) simplifies to

f(y|µ, σ2, δ, ν) = 2k(σ2 + δ2)−k/2 Γ((ν+k)/2)

Γ(ν/2)(νπ)k/2

{
1 +

(y−µ)T (y−µ)

ν(σ2+δ2)

}−(ν+k)/2

×Tk,ν+k

[{
ν+(σ2+δ2)−1(y−µ)T (y−µ)

ν+k

}−1/2
δ(y−µ)

σ
√
σ2+δ2

]
,

where Tk,ν+k(·) denotes the cumulative distribution function (cdf) of tk,ν+k(0, Ik). However,
unlike in the SN distribution, the ST density can not be written as the product of univariate
ST densities. Here Y is dependent but uncorrelated. It is noted that when δ = 0, the
ST distribution reduces to usual the t-distribution. It can be shown that the mean and
covariance matrix of the ST distribution STk,ν(µ, σ

2Ik,∆) are given by

E(Y ) = µ+ (ν/π)1/2 Γ((ν−1)/2)
Γ(ν/2)

δ,

cov(Y ) =
[
σ2Ik + ∆2(δ)

]
ν
ν−2
− ν

π

[
Γ{(ν−1)/2}

Γ(ν/2)

]2

∆2(δ).
(A.3)

In order to have a zero mean, we should assume the location parameter µ = −(ν/π)1/2

Γ((ν−1)/2)
Γ(ν/2)

δ. According to Lemma 1 of (Azzalini & Capitanio, 2003), if Y follows STk,ν(µ,Σ,∆),
it can be represented by

Y = µ+ ζ−1/2X (A.4)

where ζ follows a Gamma distribution Γ(ν/2, ν/2), which is independent ofX, andX follows
a k-dimensional skew-normal (SN) distribution, denoted by SNk(0,Σ,∆). It follows from
(A.4) that Y |ζ ∼ SNk(µ, ζ

−1Σ, ζ−1/2∆). Following studies by (Azzalini & Genton, 2008),
the SN distribution of Y , conditional on ζ, has a convenient stochastic representation as

Y = µ+ ζ−1/2∆|X0|+ ζ−1/2Σ1/2X, (A.5)

where X0 and X are two independent Nk(0, Ik) random vectors. Note that the expression
(A.5) provides a convenience device for random number generation and for implementation
purpose. Let w = ζ−1/2|X0|; then w, conditional on ζ, follows a k-dimensional normal
distribution Nk(0, ζ

−1Ik) truncated in the space w > 0 (i.e., the half-normal distribution).
Thus, following (Jara et al. , 2008), a hierarchical representation of (A.5) is given by

Y |w, ζ ∼ Nk(µ+ ∆w, ζ−1Σ), w|ζ ∼ Nk(0, ζ
−1Ik)I(w > 0), ζ ∼ Γ(ν/2, ν/2), (A.6)

Note that the ST distribution presented in (A.6) can be reduced to the following three
special cases: (i) as ν → ∞ and ζ → 1 with probability 1 (i.e., the last distributional
specification is omitted), then the hierarchical expression (A.6) becomes an SN distribution
SNk(µ,Σ,∆); (ii) as ∆ = 0, then the hierarchical expression (A.6) is a standard multivariate
t-distribution; (iii) as ν → ∞, ζ → 1 with probability 1, and ∆ = 0, then the hierarchical
expression (A.6) reverts to a standard multivariate normal distribution.
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Appendix B. Winbugs Code:

model

{

##### competing risk hazard at failure time #####

## ncW2R: number of columns of design matrix of the baseline

hazard for AIDS deaths

## ncW2D: number of columns of design matrix of the baseline

hazard for other deaths

etaBaselineR[i] <- gamma * surv.t2[ i, 5 ]

etaBaselineD[i] <- gamma2* surv.t2[ i, 5 ]

log.h0.TR[i] <- inprod(Bs.gammasR [1:( ncW2R)], baseline.hazard.

index1[i, 1:ncW2R ])

log.h0.TD[i] <- inprod(Bs.gammasD [1:( ncW2D)], baseline.hazard.

index2[i, 1:ncW2D ])

log.hazardR[i] <- log.h0.TR[i] + etaBaselineR[i] + inprod(alphasR

[1:nb], b[i,1:nb])

log.hazardD[i] <- log.h0.TD[i] + etaBaselineD[i] + inprod(alphasD

[1:nb], b[i,1:nb])

for (k in 1:K) {

log.h0.sR[i, k] <- inprod(Bs.gammasR [1:( ncW2R)], bl.haz.ind.

quad1[K * (i - 1) + k, 1:ncW2R ])

log.h0.sD[i, k] <- inprod(Bs.gammasD [1:( ncW2D)], bl.haz.ind.

quad2[K * (i - 1) + k, 1:ncW2D ])

SurvLongR[i, k] <- wk[k] * exp(log.h0.sR[i, k] + inprod(alphasR

[1:nb], b[i,1:nb]) + gamma * hazard.cova[K * (i - 1) + k, 24

] )

SurvLongD[i, k] <- wk[k] * exp(log.h0.sD[i, k] + inprod(alphasD

[1:nb], b[i,1:nb]) + gamma2 * hazard.cova[K * (i - 1) + k, 24

] )

}

P[i] <- surv.t2[ i , 3 ] / 2

zeros[i] <- 0

log.survivalR[i] <- - P[i] * sum(SurvLongR[i,])

log.survivalD[i] <- - P[i] * sum(SurvLongD[i,])

phi[i] <- C - ((fail[i] * log.hazardR[i]) + (fail2[i] * log.

hazardD[i])) - (log.survivalR[i] + log.survivalD[i])

zeros[i] ~ dpois(phi[i])

}

C <- 10000

### longitudinal model

for (j in 1:N)

{

fix[ j ] <- y2[j, 27] * beta [1] + y2[j, 28] * beta [2] + y2[j,

29] * beta [3] + y2[j,24] * beta [4]
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ran[ j ] <- y2[j, 27] * b[y2[j,23] ,1] + y2[j, 28] * b[y2[j

,23] ,2] + y2[j, 29] * b[y2[j,23] ,3] + y2[j,24] * b[y2[j

,23] ,4]

dm5[j] <- fix[ j ]+ ran[ j ]

w[j]~dt(0,1,nu)I(0,)

c1[j]<-(nu+w[j]*w[j])/n1

aau[j]<-tau / c1[j]

mu[j]<- dm5[j] +delta *(w[j]-mue) #ST distribution

y2[j,25]~ dt(mu[j],aau[j],n1)

}

### random effects

for (i in 1:m)

{

b2[i,1]<-0

b2[i,2]<-0

b2[i,3]<-0

b2[i,4]<-0

b[i ,1:4]~ dmnorm(b2[i,1:4] , Omega2 [,])

}

## Priors

#Degree of freedom

nu0 <-0.5

nu~ dexp(nu0)I(3,)

n1<-nu+1

mue <-exp(loggam (0.5*(nu -1))-loggam (0.5*nu))*sqrt(nu /3.14159)

for (l in 1:4){beta[l]~ dnorm (0,1.0E-2)}

gamma~dnorm (0 ,1.0E-2)

gamma2~dnorm (0,1.0E-2)

for (l in 1:nb){alphasR[l]~ dnorm (0,1.0E-2)}

for (l in 1:nb){alphasD[l]~ dnorm (0,1.0E-2)}

for (l in 1: ncW2R){Bs.gammasR[l]~ dgamma (0.1 ,0.1)}

for (l in 1: ncW2D){Bs.gammasD[l]~ dgamma (0.1 ,0.1)}

delta ~ dnorm (0.0, 0.01)

Omega2 [1:4 ,1:4] ~ dwish(R2[,],4)

V2[1:4,1:4]<- inverse(Omega2 [,])

tau ~ dgamma (.01 ,.01)

sigma.tau <- 1/tau

}
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