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1 Simulation with rare variants

Here we conducted simulations to investigate the performance of various methods for

testing less frequent and rare variants. We follow the same simulation setup as described

in the main paper, and report the results for the following scenarios: (1) n = 2000,

p0 = 0.1, p1 = 0.1, ρ = 0.5, τ = 0.95; (2) n = 5000, p0 = 0.05, p1 = 0.05, ρ = 0.5, τ = 0.95;

(3) n = 5000, p0 = 0.01, p1 = 0.01, ρ = 0.5, τ = 0.95. Here we have assumed larger sample

sizes for rare variants.

Table 1 summarizes the estimated type I errors. When estimating parameters for the

POM GEE tests, we have used the iterative re-weighted least squares algorithm, which had

convergence problems leading to missing results for rare variants in the null simulations.

For the ACL based tests, using the “best-guess” genotypes leads to slightly conservative

type I errors compared to their corresponding ACL GEE tests. All tests control the type
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I error rate reasonably well. The ACL GEE tests generally have better performance for

relatively common variants and have subpar performance for rare variants. While both

MLM GEE tests and POM test using “best-guess” genotypes consistently perform well

under both relatively common and rare MAFs.

Table 1: Type I error of testing four continuous traits. The MAFs of SNP are p0 and
p0 + p1 in the two populations. We set p1 = p0 and τ = 0.95. Q is the 4-DF omnibus
test, T and T ′ are the 1-DF tests assuming common or common scaled effect. (Qa, Ta, T

′
a)

are the ACL GEE tests. (Qo, To, T
′
o) are the POM GEE tests. (Qs, Ts, T

′
s) are the MLM

GEE tests. (Q̃a, T̃a, T̃
′
a) are the ACL tests using the “best-guess” genotypes. (Q̃o, T̃o, T̃

′
o)

are the POM tests using the “best-guess” genotypes. The type I errors have been scaled
by the nominal significance level α.

p0 = 0.10

α Qa Ta T ′a Q̃a T̃a T̃ ′a Qo To T ′o Q̃o T̃o T̃ ′o Qs Ts T ′s
10−4 1.19 1.04 1.10 0.95 0.84 0.90 NA 0.89 0.86 0.87 1.02 0.88 0.99
10−3 1.12 1.08 1.08 0.95 0.94 0.90 NA 1.02 0.96 0.98 0.97 0.99 1.00
10−2 1.05 1.03 1.03 0.95 0.97 0.97 NA 0.99 0.99 0.98 0.97 1.00 1.00

p0 = 0.05

α Qa Ta T ′a Q̃a T̃a T̃ ′a Qo To T ′o Q̃o T̃o T̃ ′o Qs Ts T ′s
10−4 1.18 1.09 1.08 0.88 0.83 0.85 NA 0.90 0.77 0.79 1.13 0.89 0.96
10−3 1.09 1.03 1.01 0.97 0.97 0.94 NA 0.98 0.95 0.95 0.97 0.97 0.93
10−2 1.04 1.01 1.01 0.98 0.98 0.96 NA 0.96 0.98 0.97 0.97 0.98 0.98

p0 = 0.01

α Qa Ta T ′a Q̃a T̃a T̃ ′a Qo To T ′o Q̃o T̃o T̃ ′o Qs Ts T ′s
10−4 1.30 1.09 1.25 0.76 0.96 0.95 NA 0.92 1.02 0.99 0.67 0.83 0.86
10−3 1.17 1.13 1.16 0.90 0.94 0.92 NA 0.90 0.96 0.95 0.78 0.88 0.90
10−2 1.13 1.10 1.08 0.95 0.98 0.97 NA 0.96 0.97 0.96 0.95 0.97 0.97

Table 2 summarizes the power under significance level α = 10−4. Here we have as-

sumed larger effect sizes for rare variants (MAF=0.01). When estimating parameters for

the POM GEE tests, we have used the iterative re-weighted least squares algorithm, which

had convergence problems leading to missing results for rare variants in the simulations.

The 1-DF tests are the most powerful when either γj or γj/σj are close to each other.

ACL tests using the “best-guess” genotypes had reduced power compared to the ACL

GEE tests. The ACL GEE tests have comparable performance as the MLM GEE tests.

Interestingly the POM tests using the “best-guess” genotypes have comparable power as
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Table 2: Power of testing four traits at significance level α = 10−4. The MAFs of SNP
are p0 and p0 + p1 in the two populations. We set p1 = p0 and the SNP imputation
uncertainty parameter τ = 0.95. γi is the SNP coefficient.

p0 = 0.10

(γ1, γ2, γ3, γ4) Qa Ta T ′a Q̃a T̃a T̃ ′a Qo To T ′o Q̃o T̃o T̃ ′o Qs Ts T ′s
(0.3,0,0,0) 0.775 0 0.004 0.719 0 0.004 NA 0.770 0 0.005 0.766 0 0.004

(0.3,0.2,0.1,0) 0.879 0.041 0.220 0.839 0.031 0.188 NA 0.878 0.039 0.219 0.873 0.051 0.222
(.25,.18,.18,.18) 0.486 0.658 0.725 0.422 0.599 0.667 NA 0.473 0.649 0.714 0.469 0.651 0.717
(0.2,0.2,0.2,0.2) 0.622 0.831 0.773 0.556 0.784 0.718 NA 0.609 0.823 0.760 0.606 0.827 0.769

p0 = 0.05

(γ1, γ2, γ3, γ4) Qa Ta T ′a Q̃a T̃a T̃ ′a Qo To T ′o Q̃o T̃o T̃ ′o Qs Ts T ′s
(0.3,0,0,0) 0.876 0 0.006 0.803 0 0.005 NA 0.909 0 0.007 0.872 0 0.006

(0.3,0.2,0.1,0) 0.946 0.063 0.307 0.901 0.051 0.257 NA 0.966 0.075 0.356 0.944 0.073 0.311
(.25,.18,.18,.18) 0.615 0.778 0.832 0.517 0.690 0.755 NA 0.673 0.821 0.868 0.605 0.772 0.829
(0.2,0.2,0.2,0.2) 0.751 0.910 0.869 0.660 0.851 0.803 NA 0.806 0.937 0.903 0.744 0.910 0.867

p0 = 0.01

(γ1, γ2, γ3, γ4)/2 Qa Ta T ′a Q̃a T̃a T̃ ′a Qo To T ′o Q̃o T̃o T̃ ′o Qs Ts T ′s
(0.3,0,0,0) 0.155 0 0.002 0.092 0 0.001 NA 0.353 0 0.002 0.138 0 0.001

(0.3,0.2,0.1,0) 0.224 0.008 0.032 0.148 0.005 0.022 NA 0.481 0.015 0.075 0.205 0.009 0.030
(.25,.18,.18,.18) 0.067 0.142 0.171 0.034 0.090 0.110 NA 0.157 0.294 0.343 0.058 0.132 0.161
(0.2,0.2,0.2,0.2) 0.103 0.241 0.199 0.056 0.159 0.128 NA 0.240 0.452 0.393 0.089 0.224 0.190

the ACL and MLM GEE tests for relatively common variants (p0 = 0.1), and perform

better for rare variants (p0 = 0.05, 0.01).

2 Selection of genetic model

In practice the additive model has been the most widely used model in testing genetic

associations. Another two genetic models, recessive or dominant, can also be applied.

For these two alternative models, we can collapse the three genotypes into two groups

correspondingly and model the collapsed genotypes with a Bernoulli distribution. We

can then similarly derive a conditional (on covariates and outcomes) logistic regression

model for the collapsed genotypes, which can be used to test the multi-trait association.

Our previously derived fractional multinomial model can be applied to any K-category

multinomial distribution, and hence the same model and GEE estimation can be applied

to model the collapsed genotypes.

Specifically for the recessive model, we study the following fractional logistic regression
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model based quasi-likelihood, (pi0+pi1) log(φi0+φi1)+pi2 log(φi2), where log φi2
φi0+φi1

is mod-

eled as a linear function of covariates and outcomes; and for the dominant model, we study

the following fractional logistic regression model based quasi-likelihood, pi0 log(φi0) +

(pi1 + pi2) log(φi1 + φi2), where log φi2+pi1
φi0

is modeled as a linear function of covari-

ates and outcomes. Here (pi0, pi1, pi2) are the imputation scores for individual i, and

φik = Pr(Gi = k|Xi, Yi), where Gi is the genotype score, and Xi and Yi are the covariate

and outcome vectors respectively.

3 Joint test of mixed outcomes

Strictly speaking, only for normally distributed multiple continuous traits under multivari-

ate linear regression models, we can derive the ACL model for the conditional genotype

distributions, whereas the POM model closely approximates the ACL model (Wu and

Pankow, 2015). For a set of mixed continuous and discrete outcomes, in general it is very

hard to jointly model their distributions and correspondingly derive an inverted regression

model analytically. A simple approach is to include all outcomes in the inverted regression

model. The MLM GEE test approach of He et al. (2013) can be generally applied. Here

we conduct a simple simulation study to briefly compare the performance of ACL/POM

models and the MLM GEE test.

We consider a mix of one continuous outcome Y and one binary outcome D, and

simulate two covariates (X1, X2) and the genotype G as previously. We simulate the out-

come dependence following the approach of Ghosh et al. (2013). Specifically we simulate

a zero-mean bivariate normal vector (ε1, ε2) with variance (2, 1) and correlation ρ. We

then transform the normal error component ε2 with

e2 = log
Φ(ε2)

1− Φ(ε2)
,
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Table 3: Power of testing two traits at significance level α = 10−5. The MAFs of SNP
are 0.3 and 0.4 in the two populations. γi is the SNP coefficient.

(γ1, γ2) ACL POM MLM GEE
(0.3,0) 0.397 0.401 0.406

(0.3,0.18) 0.410 0.413 0.423
(0.18,0.3) 0.073 0.073 0.074

where Φ is the standard normal cumulative distribution function. We can easily check

that e2 follows a logistic distribution. Define Y = µ1 + ε1 and D = I(µ2 + e2 > 0), where

the two mean components µ1 and µ2 are linear functions of the covariates and genotype:

µ1 = 1 + 0.5X1 + 0.5X2 + γ1G, µ2 = 1 +X1 +X2 + γ2G. Table 3 shows the power results

for ρ = 0.2 at significance level α = 10−5 based on 104 simulations. Overall the MLM

GEE test performs slightly better than the two inverted regression approaches. We have

done simulations at other parameter settings, and have found that the naive approach

of including all outcomes in the inverted regression model may not work as well as the

MLM GEE test. It will be interesting to develop alternative inverted regression approach

to jointly testing association of mixed outcomes, and further extend them to association

test with imputed SNPs.
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