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Optimal progressive Type-I interval censored
scheme under step-stress life testing

Xuejing Zhao
∗
and Laurent Bordes

The parametric estimation and optimal censoring scheme
are considered under the progressive multi-stage Type-I
censoring scheme as well as step-stress accelerated lifetime
model. Nonparametric estimators, using the information of
the observable numbers of failures and numbers of cen-
sored units at the censoring times, are used to derive es-
timates of the reliability function at the censoring times.
Then two parametric estimators, the maximum likelihood
and the minimum-distance, are used to estimate the un-
known Euclidean parameters of a parametric model. We use
D-optimality criterion to determine an optimal sequential
step-stress plan under progressive Type-I censoring. Simu-
lation studies are also conducted to assess the finite perfor-
mance of our estimators.
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1. INTRODUCTION

In medicine tests, the patients may be inspected only at
some specific times, with the potential allowance of remov-
ing surviving patients during the life test, the exact failure
times cannot be observed. The information available is only
the records of the failure numbers and the numbers of cen-
sored in some predetermined time intervals. Which results
in a life test with the progressively type-I interval censoring.
One have to develop life test plans under the progressively
type-I interval censoring with intermittent inspections, es-
pecially under dynamic environment, to give more accurate
results.

In this paper, we consider the parametric estimation and
optimal censoring scheme, under the combination of the
step-stress model and progressive Type-I interval censor-
ing scheme, an issue commonly discussed in life-testing ex-
periments. Finding the “optimal” censoring scheme has at-
tracted considerable attention in the applied statistics liter-
atures, medicine studies and in industrial practical studies
([1]). Considerable number of references has been developed
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in past decades, for example, [2, 3, 4, 5], and [6] give elab-
orate discussions in this direction. When it is necessary to
reduce the cost and/or the duration of a life-testing exper-
iment, one may choose to terminate the experiment early
which results in the so-called censored sampling plan or
censored sampling scheme. Many types of censoring have
been discussed in the literatures, with the most common
censoring schemes being Type-I right censoring and Type-II
right censoring. Generalizations of these censoring schemes
to progressive Type-I and Type-II right censoring have also
been discussed; see, for example, [1] and [7]. When the event
is only known to have occurred in an interval between two
monitoring time points, this type of data is referred to as in-
terval censored data. Applications of interval censored data
can be found in social demographical studies, industrial re-
liability and clinical studies. Progressively censored samples
are observed when at various stages of an experiment, some
of the surviving units are removed from the experiment. The
remaining units are then observed until either a failure or
a subsequent stage of censoring. Several progressive censor-
ing schemes have been extensively studied, and been used
in reliability analysis, product testing, and animal carcino-
genicity experiments.

When the information of the failure is difficult to be ob-
tained under standard environment, such as when dealing
with a unit of high reliability, an accelerated lifetime method
can be used to shorter the lifetime of the tested unit. In step-
stress accelerated lifetime model, the stress is assumed to
be increased step by step until the failure of the tested unit
holds. Step-stress accelerated lifetime methods are discussed
for instance in [8, 9, 10, 11, 12, 13].

The structure of the paper is as follows. In Section 2,
we give the framework of the model we considered. Then
in Section 3, minimum distance estimation and maximum
likelihood estimation are discussed as well as their asymp-
totic properties. Some numerical results based on Monte-
Carlo are presented in Section 4. The optimal sequential
step-stress planning under Type-I progressive censoring is
studied in Section 5.

2. MODEL AND ASSUMPTIONS

We consider a progressively Type-I censored sample de-
fined by the progressive censoring scheme R1, · · · , Rm−1 (or
α1, · · · , αm−1 in [0, 1); see [14] or [15]) and pre-fixed censor-
ing times T1, · · · , Tm. Suppose that n independent units are
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placed simultaneously on stress x1 at time 0, and run until
T1 at which time the stress changes to x2, N1 units fail in
the time interval (0, T1], and R1 (= α1(n−N1)) units are se-
lected at random and removed (censored) from the life-test
at time T1. The test continued for the n − N1 − R1 units
until T2, when the stress changes to x3, N2 units fail in the
time interval (T1, T2], and R2 (= α2(n − N1 − R1 − N2))
units are selected at random and removed (censored) from
the life-test at time T2, and so on. The life-test ends at time
Tm (at the latest), which means that all surviving units at
time Tm are censored by this time.

Assumption 2.1.

(1) The stress level increases gradually, i.e., x1 ≤ x2 ≤
· · · ≤ xm.

(2) The failure probability is defined by the cumulative
exposure model.

(3) For any stress level xi, the lifetime follows an expo-
nential distribution with mean μi:

μi = exp (a+ bxi).(1)

To specify the parameters, let F t(θ) denotes the reliabil-
ity function at time t under the stress θ = (x1, x2, . . . , xm)
(or θ = (μ1, μ2, . . . , μm)). Then under the Assumption 2.1,
the reliability function is (see [16])

F t(θ)=

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

exp(− t
μ1
) 0 ≤ t ≤ T1

exp(− t−T1

μ2
− T1

μ1
) T1 ≤ t ≤ T2

...

exp(− t−Tm−1

μm
− Tm−1−Tm−2

μm−1
− · · · − T1

μ1
)

Tm−1 ≤ t ≤ Tm

,(2)

and F t(θ) ≡ FTm(θ) for t > Tm, where μi are defined as
Eq. (1).

The special case of equi-spaced stress level xi = x0 + id
is extensively discussed in, for example [13, 17, 18], where
d > 0 is the amount of stress cumulated at each stage, the
relationship between mean lifetimes of the i-th and the (i+
1)-th stages is μi+1 = ρμi, i = 1, 2, ...,m − 1 and μ1 = μ,
where 0 < ρ < 1 is the ratio of mean lifetimes between two
successive stages.

Lemme 2.2. Suppose that Y1 ∼ F = 1−F , and G is an ar-
bitrary invertible distribution function, then G−1(F (Y1)) ∼
G.

Remark 2.3. Denote Y1 the random lifetime under cu-
mulative stress x1, . . . , xk(k = 1, · · · ,m), i.e., Y1 ∼
exp(− t−Tk−1

μk
− Tk−1

μk−1
−· · ·− T1

μ1
), t ≥ Tk−1, then the random

lifetime Y2 of the survival units after Tk, with cumulative
stress x1, . . . , xk+1, can be defined by Y2 = Tk +

μk+1

μk
(Y1 −

Tk), t ≥ Tk.

Remark 2.4. The reliability functions at censoring times
Ti can be defined recursively, i.e.

FTi(θ) = FTi−1(θ) exp

(
−Ti − Ti−1

μi

)
=

i∏
k=1

exp

(
−Tk − Tk−1

μk

)
with the convention that T0 = 0. For convenience, the reli-
ability function FTi(θ) is denoted by Fi(θ) hereafter.

3. PARAMETRIC ESTIMATION

In this Section, we consider a parametric model defined
by the Euclidean parameter θ = (a, b) ∈ R

2. We then pro-
pose a simple estimator of θ and give its asymptotic prop-
erties as well.

3.1 Nonparametric estimation of the
reliability function

In the case of m = 1, corresponding to a single-stage
Type-I censoring sampling plan, the variable N1 has a bi-
nomial distribution with parameters n and FT1(μ1). Then,
(n−N1)/n is an estimator of FT1(μ1).

In the case of m = 2, the random variable N2, if being
not null, contains the information that can be accounted
for. Indeed, conditional on (N1, R1) = (n1, r1), the lifetimes
of the remaining n − n1 − r1 units under test follow left-
truncated distribution with density (see [2])

ft(μ1, μ2)

FT1(μ1)
1(t ≥ T1).

Then, conditionally on (N1, R1) = (n1, r1) and n1 + r1 < n,
the random variable N2 has a binomial distribution with pa-
rameters n− n1 − r1 and (FT2(μ1, μ2)− FT1(μ1))/FT1(μ1).
Consequently, 1−p = FT2(μ1, μ2)/FT1(μ1) is approximated
by (n−n1− r1−n2)/(n−n1− r1), and since FT1(μ1) is ap-
proximated by (n−n1)/n, we can approximate FT2(μ1, μ2)
by

(n− n1)(n− n1 − r1 − n2)

n(n− n1 − r1)
,

For m ≥ 2, let us introduce the following notations, for
j = 1, · · · ,m:

V −
j = #{i ∈ {1, · · · , n} : Xi ≥ Tj},

V +
j = #{i ∈ {1, · · · , n} : Xi > Tj}.(3)

Here, V −
j (1 ≤ j ≤ m) denotes the number of items still

functioning just before time Tj , and V +
j (0 ≤ j ≤ m) de-

notes the number of items still functioning at time Tj . By
induction we show that FTi(θ) is approximated by

i∏
j=1

V −
j

V +
j−1

,

with the convention that 0/0 = 0.
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Remark 3.1. Estimators above only take into account par-
tial information from the progressively censored sample. In-
deed, to estimate the reliability function F (.), we only need
to know the Ni’s and the Ri’s. In fact,

V −
j = n−

j∑
k=1

Nk −
j−1∑
k=1

Rk,

and

V +
j = n−

j∑
k=1

Nk −
j∑

k=1

Rk.

It shows that estimating F at the censoring times do not
require to know the actual lifetimes of the failed units.

Remark 3.2. The expectation of Ni and R̃i = αiV
−
i can

be expressed as follows:

E(Ni) = n(F i−1(θ)− F i(θ))

i−1∏
j=1

(1− αj),

and

E(R̃i) = nF i(θ)αi

i−1∏
j=1

(1− αj).

3.2 Minimum distance estimator

We propose to estimate θ = (μ1, . . . , μm) by min-
imizing the square of the Euclidean distance between
(F 1(θ), · · · , Fm(θ)) and its nonparametric estimate. The es-
timator is therefore defined by

(4) θ̂ = argmin
θ∈Θ

m∑
i=1

⎛⎝F i(θ)−
i∏

j=1

V −
j

V +
j−1

⎞⎠2

,

where V +
j and V −

j is defined by (3).
Define

φ(θ) =

m∑
i=1

(F i(θ)− F i(θ0))
2.

We have φ(θ0) = 0.
In [7], the authors have proved the following asymptotic

result.

Theorem 3.3. Let θ̂ be the estimator of θ defined by (4). If
φ is a contrast function, i.e., φ(θ) = 0 if and only if θ = θ0,

then we have θ̂
P−→ θ0 as n → +∞.

Theorem 3.4. Let θ̂ be the estimator of θ defined by (4).
Assume that φ is a contrast function, then we have

(5)
√
n(θ̂ − θ0) � N (0,MBΣBTMT ),

where,

(i) Σ is a m×m matrix whose (i, j)-th entry is given by

σij =

⎧⎪⎨⎪⎩
(F i−1(θ)−F i(θ))F i(θ)

F
3
i−1(θ)

i−1∏
j=1

(1−αj)

, i = j

0, i 
= j

;

(ii)

B = −

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 · · · 0
F2(θ)

F1(θ)
F 1(θ) 0 · · · 0

...
. . .

...
Fm−1(θ)

F1(θ)

Fm−1(θ)F1(θ)

F2(θ)

Fm−1(θ)F2(θ)

F3(θ)
· · · 0

Fm(θ)

F1(θ)

Fm(θ)F1(θ)

F2(θ)

Fm(θ)F2(θ)

F3(θ)
· · · Fm−1(θ)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
;

(iii)

M = −2

(
∂2φ(θ)

∂θ∂θT

)−1

×Q(θ)

= −2

(
∂F i(θ)

∂θ

∂F i(θ)

∂θT

)−1

×Q(θ)

with Q(θ) = (qij) =
(

∂F j(θ)
∂θi

)
and

∂F i(θ)

∂θ
=

(
∂F i(a,b)

∂a

∂F i(a,b)
∂b

)
(6)

=

⎛⎝ F i(θ)
(

Ti−Ti−1

μi
+ Ti−1−Ti−2

μi−1
+ · · ·+ T1

μ1

)
F i(θ)

(
Ti−Ti−1

μi
xi +

Ti−1−Ti−2

μi−1
xi−1 + · · ·+ T1

μ1
x1

)
⎞⎠.

3.3 Maximum likelihood estimator

Also we can estimate θ by maximizing the likelihood func-
tion. The likelihood function for a Type-I progressive group-
censoring sample is

(7) L(θ) ∝
m∏
i=1

(F i−1(θ)− F i(θ))
Ni(F i(θ))

Ri .

The estimator is therefore defined by

(8) θ̂ = argmax
θ∈Θ

logL(θ).

The score function is

U(θ) =
∂ logL(θ)

∂θ

=

m∑
i=1

(
Ni

∂F i−1(θ)
∂θ − ∂F i(θ)

∂θ

F i−1(θ)− F i(θ)
+Ri

∂F i(θ)/∂θ

F i(θ)

)

and the estimator θ̂ can be derived by solving U(θ) = 0. For
a regular parametric model, we can show that

(9)
√
n(θ̂ − θ0)

d−→ N (0, I−1(θ0)),
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where

I(θ0) =

m∑
i=1

⎛⎜⎜⎜⎝
Ai(θ0)

i−1∏
j=1

(1− αj)

F i−1(θ0)− F i(θ0)
−
Bi(θ0)αi

i−1∏
j=1

(1− αj)

F i(θ0)

⎞⎟⎟⎟⎠
with

Ai(θ) =

(
∂F i−1(θ)

∂θ
− ∂F i(θ)

∂θ

)(
∂F i−1(θ)

∂θ
− ∂F i(θ)

∂θ

)T

−(
∂2F i−1(θ)

∂θ∂θT
− ∂2F i(θ)

∂θ∂θT

)
(F i−1(θ))− F i(θ)),

and

Bi(θ) =

(
∂F i(θ)

∂θ

)(
∂F i(θ)

∂θ

)T

−
(
∂2F i(θ)

∂θ∂θT

)
F i(θ).

where ∂F i(θ)
∂θ are defined as in Eq. (6) and

∂2F i(θ)

∂θ∂θT
=

(
∂2F i(a,b)

∂a2

∂2F i(θ)
∂a∂b

∂2F i(θ)
∂a∂b

∂2F i(a,b)
∂a2

)

with

∂2F̄i(a, b)

∂a2
= F̄i(θ)(ln(F̄i(θ)))

2 + F̄i(θ) ln(F̄i(θ));

∂2F̄i(a, b)

∂a∂b
= −∂F̄i(θ)

∂b
(ln(F̄i(θ)) + 1);

∂2F̄i(a, b)

∂b2
= F̄i(θ)

⎛⎝(
i∑

k=1

Tk − Tk−1

μk
xk

)2

−
i∑

k=1

(
Tk − Tk−1

μk
x2
k

))
.

4. SEQUENTIAL STEP STRESS PLANNING
UNDER TYPE-I PROGRESSIVE

CENSORING

Based on the variance-covariance matrix derived above,
we compute the expected asymptotic variance-covariance
matrix of the NP-estimators, and then determine an optimal
progressive group-censoring plan based on a D-optimality
criterion.

Given T1, · · · , Ti, assume that θ̂(i) is an estimator of θ
satisfying

(10)
√
n(θ̂(i) − θ) � N (0,Ω(T1, · · · , Ti, θ)).

Since the volume of the asymptotic joint confidence region
of θ is proportional to the determinant of the asymptotic
variance-covariance matrix of θ̂(i), we can find the optimal
Ti+1 by minimizing the determinant |Ω(T1, · · · , Ti, T, θ̂

(i))|.

This is the so-called D-optimality criterion. Therefore, we
have

(11) Ti+1 = arg min
T>Ti

|Ω(T1, · · · , Ti, T, θ̂
(i))|.

4.1 Optimal progressive group-censoring
plans using the maximum likelihood
estimator

We look for the optimal progressive censoring plans us-
ing the maximum likelihood estimator under group-censored
samples. We denote by Ω(Tk, θ) the asymptotic variance of
the k-stage estimator θ(k)(k = 1, · · · ,m). Therefore, the k-
th optimal censoring time can be determined as

Tk = arg max
Tk>Tk−1

k∑
i=1

⎛⎜⎜⎜⎝
Ai(θ̂

(k−1))
i−1∏
j=1

(1− αj)

F i−1(θ̂(k−1))− F i(θ̂(k−1))
+

Bi(θ̂
(k−1))αi

i−1∏
j=1

(1− αj)

F i(θ̂(k−1))

⎞⎟⎟⎟⎠ .(12)

4.2 Optimal progressive group-censoring
plans using the minimum-distance
estimator

In Theorem 3.4, it has been proved that the k-stage MDE
estimator θ̂(k) satisfies

√
n(θ̂(k) − θ) � N (0,MBΣBTMT ),

where the asymptotic variance-covariance matrix
MBΣBTMT , which depends on (T1, · · · , Tk, θ), is written
as Ω(T1, · · · , Tk, θ). Therefore, given T1, · · · , Tk−1 and

θ̂(k−1), we define the k-th optimized censoring time Tk as

(13) Tk = arg min
T>Tk−1

|Ω(T1, · · · , Tk−1, T, θ̂
(k−1))|.

Therefore, an optimal Type-I multi-stage censoring
scheme can be determined in the following manner. Assume
that the initial sample size is n and set the censoring pro-
portions to α1, · · · , αm. The first censoring time is fixed to
be T1. We can then determine the optimal progressive cen-
soring scheme by repeatedly using formule (12) or (13).

5. NUMERICAL RESULTS

5.1 Parametric estimation

We consider an exponential-based distribution as in (2)
with parameters a = 3 and b = −0.5, m = 4 and X =
(x1, . . . , x4) = (1, 2, 3, 5). We choose T = (T1, . . . , T4) =
(10, 25, 35, 40). In this numerical study, we assume that the
proportions to be removed at different stages are all equal.

524 X. Zhao and L. Bordes



Table 1. Minimum distance estimation and maximum likelihood estimation of the parameters a = 3 and b = −0.5 for an
exponential distribution with step-stress for T = (10, 25, 35, 40) and X = (1, 2, 3, 5): mean and standard deviation (within

parentheses)

MDE MLE

sample size n

200
400
600
800
1000

â b̂

3.0202 (0.2345) - 0.5201 (0.1663)
3.0110 (0.1629) - 0.5116 (0.1186)
3.0106 (0.1360) - 0.5082 (0.0958)
3.0105 (0.1232) - 0.5091 (0.0869)
3.0037 (0.1092) - 0.5049 (0.0776)

â b̂

3.0343 (0.2103) - 0.5305 (0.1454)
3.0217 (0.1464) - 0.5197 (0.1031)
3.0186 (0.1229) - 0.5144 (0.0840)
3.0139 (0.1110) - 0.5115 (0.0754)
3.0081 (0.0989) - 0.5083 (0.0681)

Table 2. Minimum distance estimation and maximum likelihood estimation of the parameters μ = 100 and ρ = 0.5 for an
exponential distribution with step-stress for Ti = 25i(i = 1, . . . , 4): mean and standard deviation (within parentheses)

MDE MLE

sample size n

200
400
600
800
1000

ρ̂ μ̂

0.4968 (0.0494) 101.7079 (13.6014)
0.4982 (0.0350) 101.0312 (9.6512)
0.4993 (0.0286) 100.7005 (7.9331)
0.4995 (0.0245) 100.1890 (6.7914)
0.4996 (0.0214) 100.1731 (5.8564)

ρ̂ μ̂

0.4965 (0.0442) 101.5679 (13.1272)
0.4975 (0.0318) 101.0855 (9.3548)
0.4995 (0.0264) 100.6195 (7.7722)
0.4995 (0.0219) 100.1443 (6.5673)
0.4996 (0.0194) 100.1288 (5.6924)

Table 3. Minimum distance estimation and maximum likelihood estimation of the parameters μ = 100 and ρ = 0.5 for an
exponential distribution with step-stress for T = (50, 100, 125, 150): mean and standard deviation (within parentheses)

MDE MLE

sample size n

200
400
600
800
1000

ρ̂ μ̂

0.5015 (0.0562) 100.9777 (10.9522)
0.4984 (0.0425) 100.2709 (7.6124)
0.4980 (0.0331) 100.5626 (6.1301)
0.4986 (0.0293) 100.2538 (5.3538)
0.4993 (0.0254) 100.2420 (4.9341)

ρ̂ μ̂

0.5004 (0.0500) 101.0081 (10.7284)
0.4979 (0.0373) 100.2765 (7.4124)
0.4978 (0.0295) 100.5741 (6.0588)
0.4989 (0.0262) 100.2421 (5.2423)
0.4993 (0.0224) 100.2095 (4.8395)

That is, α1 = α2 = · · · = αm−1 = 0.2 for i = 1, . . . , 4. Then,
at time Ti (i = 1, . . . , 4), 20% of units still functioning are
removed from the sample, which means that Ri = �αiV

−
i 
,

and the stress changes to a higher level. The study finishes
at time T4, meaning that all surviving units at time T4 are
censored.

The estimator θ̂ = (â, b̂) is defined by (4) or (8). The
performance of the estimator is illustrated for various sam-
ple sizes in Table 1. For each sample size the mean and the
standard deviation have been obtained from N = 1000 sim-
ulated samples.

We also explore a special case for an exponential-based
distributed sample with mean μ1 = μ and

(14) μi = ρμi−1 for 2 ≤ i ≤ 4.

We chose Ti = 25i(1 ≤ i ≤ 4) and T = (50, 100, 125, 150)
and αi = 0.2 for i = 1, . . . , 4. The performances of the es-
timators are illustrated for various sample sizes in Table 2
and Table 3.

All the results in Tables 1–3 show that the performances
of the MDE and the MLE are close. As expected the MLE
has a behavior slightly better than the MDE. In addition
we remark that multiplying the sample size by four reduces
the standard deviation by half.

5.2 Optimal sequential step stress planning

Suppose that the lifetimes of the units under test are
exponential distributed with mean μ and scale parameter
ρ. At the censoring time Ti, a proportion αi of surviving
units are randomly selected and removed (censored) from
the experiment. For each simulated sample, the censoring
times T2, · · · , Tm are determined by D-optimality criteria.

We simulated N = 1000 samples and reported the em-
pirical behavior of the estimated Ti’s for various choices of
the μ and ρ.

Table 4 and Table 5 summarize the empirical behavior of
the optimal sequential progressive censoring plans when the
MDE and MLE method are used with various parameters.

From Tables 4 and 5 we can conclude that:
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Table 4. Optimal censoring planning for an exponential distribution with step-stress w.r.t parameter (a, b): T1 = 20

MDE MLE

a b

a = 3 -0.1
-0.25
-0.5

a = 4 -0.1
-0.25
-0.5

a = 5 -0.1
-0.25
-0.5

T2 T3 T4

46.20 62.40 71.62
39.41 49.72 54.06
31.77 36.63 38.45

91.24 136.31 162.49
72.77 101.36 113.60
52.01 65.42 68.88

213.64 344.15 425.77
163.45 245.55 282.93
107.01 145.07 199.15

T2 T3 T4

55.69 90.73 119.86
46.35 68.68 82.46
35.88 46.42 50.37

118.75 213.41 291.16
93.01 153.48 190.34
64.11 92.74 103.36

290.73 542.53 748.51
220.39 381.59 479.26
141.34 217.96 311.89

Table 5. Optimal censoring planning for an exponential distribution with step-stress w.r.t parameter (μ, ρ): T1 = 50

MDE MLE

μ ρ

μ = 100 0.2
0.4
0.5

μ = 300 0.2
0.4
0.5

μ = 500 0.2
0.4
0.5

T2 T3 T4

81.87 86.30 86.84
113.74 132.51 137.72
129.68 159.01 165.90

145.62 160.65 162.98
241.23 297.62 312.63
289.04 382.97 419.45

209.36 237.34 242.05
368.72 480.63 518.39
448.40 651.63 740.28

T2 T3 T4

81.87 88.24 89.52
113.74 139.23 149.43
129.68 169.52 189.44

145.62 164.74 168.56
241.23 317.72 348.32
289.04 408.56 468.32

209.36 241.23 247.60
368.72 496.21 547.21
448.40 647.60 747.20

(1) For a fixed μ (resp. a), a lower value ρ (resp. b) corre-
sponds to a higher stress level (more severe condition)
and results in an acceleration of failures, and finally
gives a shorter interval of censoring time.

(2) Higher censoring-stage results in a quicker censoring
(ΔTk = Tk − Tk−1 decreases as k increases), because
of the data scarcity and more severe stress.

(3) The larger the value of the μ (resp. b) is, which means
longer lifetime of the test unit in standard environ-
ment, the larger the interval of censoring is.

6. CONCLUSIONS

In this paper, we discuss parametric and optimal sequen-
tial censoring plan under the combination of progressive
multi-stage Type-I interval censoring scheme and step-stress
accelerated lifetime model. MLE and MDE are used to esti-
mate the unknown Euclidean parameter of the cumulative
exposure model. Then the D-optimality criterion is used to
determine an optimal sequential progressive censoring plan
under step-stress accelerated life test.
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