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The beta transmuted-H family for lifetime data
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We introduce a new family of continuous distributions
called the beta transmuted-H family which extends the
transmuted family pioneered by Shaw and Buckley [34].
Some of its mathematical properties including explicit ex-
pressions for the ordinary moments, quantiles, generating
functions and order statistics are derived. Some special mod-
els of the new family are provided. The maximum likelihood
method is used for estimating the model parameters, and the
finite sample performance of the estimators is assessed by
simulation. The importance and flexibility of the proposed
family are illustrated by applications to two real data sets.
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1. INTRODUCTION

Recently, there has been a great interest in developing
more flexible distributions through extending the classical
distributions by introducing additional shape parameters
to the baseline model. Many generalized families of dis-
tributions have been proposed and studied over the last
two decades for modeling data in many applied areas such
as economics, engineering, biological studies, environmen-
tal sciences, medical sciences and finance. For example, Zo-
grafos and Balakrishnan [37] proposed the gamma-generated
family, Nofal et al. [31] defined and studied the generalized
transmuted-G family, Yousof et al. [36] proposed the trans-
muted exponentiated generalized-G class and Afify et al. [2]
proposed the Kumaraswamy transmuted-G family.

The generated families have attracted many researchers
and statisticians to develop new models because of the com-
putational and analytical facilities available in most sym-
bolic computation software platforms. Several mathemati-
cal properties of the extended distributions may be easily
explored using mixture forms of exponentiated-G (exp-G)
distributions.

Consider a baseline cumulative distribution function
(cdf) H (x;φ) with corresponding probability density func-
tion (pdf) h (x;φ) and parameter vector φ. Then, the cdf of
the transmuted-H (T-H) family of distributions (for x > 0)
is
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G (x;λ,φ) = H (x;φ) [1 + λ− λH (x;φ)] .(1)

The corresponding pdf is

g (x;λ,φ) = h (x;φ) [1 + λ− 2λH (x;φ)] ,(2)

where |λ| ≤ 1. It is clear that the T-H family is a mixture
of the baseline and exp-H distributions, the last one with
power parameter equal to two. Further, if λ = 0, (2) gives
the baseline distribution. More details can be found in Shaw
and Buckley [34].

In this paper, we define and study a new family of dis-
tributions by adding two extra shape parameters in (1) to
provide more flexibility to the generated family. Using the
beta-generalized (B-G) family due to Eugene et al. [14], we
construct a new family called the beta transmuted-H (BT-
H) family and give a description of some of its mathematical
properties. The BT-H family is shown to provide better fits
than at least five other families each having the same num-
ber of parameters. We hope that the new family will attract
wider applications in reliability, engineering and other areas
of research.

For an arbitrary baseline cdf G (x) the B-G family due to
Eugene et al. [14] has the cdf and pdf given (for x > 0) by

F (x; a, b) = IG(x) (a, b) =
1

B (a, b)

∫ G(x)

0

ta−1 (1− t)
b−1

dt

and

f(x; a, b) =
1

B (a, b)
g (x)G (x)

a−1 {1−G (x)}b−1
,

respectively, where g(x) = dG(x)/dx, a and b are
two additional positive shape parameters, Iy (a, b) =
By (a, b) /B (a, b) is the incomplete beta function ratio,

By (a, b) =
∫ y
0
ta−1 (1− t)

b−1
dt is the incomplete beta func-

tion, B (a, b) = Γ (a) Γ (b) /Γ (a+ b) is the beta function and
Γ (·) is the gamma function. Clearly, for a = b = 1, we ob-
tain the baseline distribution. The additional parameters a
and b govern skewness and tail weight of the generated dis-
tribution. An attractive feature of this family is that a and
b can afford greater control over the weights in both tails
and in the center of the distribution.

To this end, we generalize the T-H family by incorporat-
ing two additional shape parameters to yield a more flexible
generator. The cdf of the BT-H family is defined (for x > 0)
by

F (x) = IH(x;φ)[1+λ−λH(x;φ)] (a, b) .(3)
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Table 1. Sub-models of the BT-H family

Reduced model a b λ Authors

B-H family a b 0 Eugene et al. [14]
T-H family 1 1 λ Shaw and Buckley [34]
exp-H family a 1 0 Gupta et al. [18]
GT-H family 1 b λ New
ET-H family a 1 λ New

H (x;φ) 1 1 0 –

The pdf corresponding to (3) is

f(x) = {1 + λ− 2λH (x;φ)}

·
{
(1 + λ)H (x;φ)− λH (x;φ)

2
}a−1

·h (x;φ)
B (a, b)

{
1−
[
(1 + λ)H (x;φ)− λH (x;φ)

2
]}b−1

,(4)

where a > 0, b > 0 and |λ| ≤ 1. A random variable X having
the pdf (4) shall be denoted by X ∼BT-H(a, b, λ,φ). The
quantile function (qf) of X, say Q(u) = F−1 (u), can be
obtained by inverting (3) numerically. Some special cases of
the new family are listed in Table 1.

The remainder of this paper is outlined as follows. Five
special models of the BT-H family are presented in Section
2 and some plots of their pdfs are provided. In Section 3,
we derive a useful representation for the BT-H pdf and ob-
tain some mathematical properties of the proposed family
including ordinary moments, quantiles, generating functions
and order statistics. Maximum likelihood estimation of the
model parameters is investigated in Section 4. The finite
sample performance of the estimators is assessed by simu-
lation in Section 5. In Section 6, we provide applications to
two real data sets to illustrate the importance of the new
family. Finally, some concluding remarks are presented in
Section 7.

2. SPECIAL MODELS

In this section, we provide five special models of the BT-
H family. The pdf (4) will be most tractable when h (x;φ)
and H (x;φ) have simple analytic expressions. These spe-
cial models generalize some well-known distributions in the
literature. These special models correspond to the baseline
Weibull (W), Pareto (Pa), Fréchet (Fr), Gompertz (Go) and
Lindley (Li) distributions. The pdf and cdf of these baseline
distributions are listed in Table 2.

The parameters of the above pdfs belong to the set of
positive real numbers.

2.1 The BT-W distribution

The BT-W pdf is given (for x > 0) by

f(x) =
1

B (a, b)
βαβxβ−1 e−(αx)

β
[
1− λ+ 2λe−(αx)

β
]

Table 2. The pdfs and cdfs of baseline distributions

Distribution h(x) H(x)

W (x > 0) βαβxβ−1 e−(αx)
β

1− e−(αx)
β

Pa (x ≥ θ) αθα/xα+1 1−
(
θ
x

)α
Fr (x > 0) βαβx−(β+1) e−(

α
x )

β

e−(
α
x )

β

Go (x > 0) βeαxe−
β
α
(eαx−1) 1− e−

β
α
(eαx−1)

Li (x > 0) α2

1+α
(1 + x)e−αx 1− 1+α+αx

1+α
e−αx

·
{[

1− e−(αx)
β
] [

1 + λe−(αx)
β
]}a−1

·
{
1−
[
1− e−(αx)

β
] [

1 + λe−(αx)
β
]}b−1

,

where α > 0, β > 0, a > 0, b > 0 and |λ| ≤ 1. The BT-W
distribution includes the transmuted Weibull (TW) distri-
bution (Aryal and Tsokos [9]) when a = b = 1. For λ = 0
the BT-W distribution (Pal and Tiensuwan [32]) reduces
to the BW distribution (Lee et al. [21]). For λ = 0 and
b = 1, we obtain the exponentiated Weibull (EW) distribu-
tion (Mudholkar and Srivastava [27]). For β = 2, we obtain
the BT-Rayleigh (BT-R) distribution. For β = 1, we have
the BT-exponential (BT-E) distribution. For a = b = 1
and β = 2, we obtain the T-Rayleigh (T-R) distribution
(Merovci [23]). Plots of the BT-W pdf for some parameter
values are displayed in Figure 1.

2.2 The BT-Pa distribution

The BT-Pa pdf is given (for x ≥ θ) by

f(x) =
αθα

B (a, b)
x−α−1

[
1− λ+ 2λ

(
θ

x

)α]
·
{[

1−
(
θ

x

)α] [
1 + λ

(
θ

x

)α]}a−1

·
{
1−
[
1−
(
θ

x

)α] [
1 + λ

(
θ

x

)α]}b−1

,

where α > 0, θ > 0, a > 0, b > 0 and |λ| ≤ 1. The BT-
Pa distribution includes the transmuted Pareto (T-Pa) dis-
tribution (Merovcia and Puka [25]) when a = b = 1. For
λ = 0 the BT-Pa distribution reduces to the B-Pa distribu-
tion (Akinsete et al. [6]). For λ = 0 and b = 1, we obtain the
exponentiated Pareto (E-Pa) distribution (Nadarajah [28]).
Plots of the BT-Pa pdf are displayed in Figure 2 for some
parameter values.

2.3 The BT-Fr distribution

The BT-Fr pdf is given (for x > 0) by

f(x) =
βαβx−β−1

B (a, b)
e−a(α

x )
β
[
1 + λ− 2λe−(

α
x )

β
]
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Figure 1. The BT-W pdfs: α = β = a = b = λ = 0.5 (blue
line, left); α = b = 0.5, β = 5, a = 2, λ = 1 (black line, left);

α = β = a = b = λ = 1 (red line, left); α = 0.5,
β = a = b = 2, λ = 0.8 (yellow line, left); α = a = 0.5,
β = 3, b = 1, λ = 0.9 (dotted line, left); α = 2, β = 0.9,

a = 9, b = 0.5, λ = 0.8 (green line, left); α = a = 2, b = 2,
β = 0.5, λ = 0.4 (dashed line, right); α = a = 2, β = 1.5,
b = 3, λ = 0.5 (dotted line, right); α = a = 2, β = 4,
b = 0.5, λ = 0.6 (red line, right); α = a = 2, β = 1.5,

b = λ = 0.5 (black line, right); α = a = 2, β = 2.5, b = 0.5,
λ = −0.6 (blue line, right).

·
[
1 + λ− λe−(

α
x )

β
]a−1

·
{
1− e−(

α
x )

β
[
1 + λ− λe−(

α
x )

β
]}b−1

,

where α > 0, β > 0, a > 0, b > 0 and |λ| ≤ 1. The BT-Fr
distribution includes the transmuted Fréchet (T-Fr) distri-
bution (Mahmoud and Mandouh [22]) when a = b = 1.
For λ = 0 the BT-Fr distribution reduces to the B-Fr

Figure 2. The BT-Pa pdfs: α = 0.2, θ = 0.5, a = b = 0.5,
λ = −0.5 (blue line, left); α = 0.2, θ = 0.5, a = 5, b = 7,
λ = 0.7 (dotted line, left); α = 0.2, θ = 0.5, a = b = 1.5,
λ = 0.7 (red line, left); α = 0.2, θ = 0.5, a = 1, b = 2,

λ = 0.6 (dashed line, left); α = 0.2, θ = 0.5, a = 1.5, b = 2,
λ = 0.5 (green line, left); α = 5, θ = a = 1.5, b = 2.5,

λ = −0.5, (dotted line, right); α = 5, θ = a = 1.5, b = 0.5,
λ = 0.2 (black line, right); α = 5, θ = a = 1.5, b = 0.8,
λ = 0.4 (red line, right); α = 5, θ = a = 1.5, b = λ = 0.9
(dashed line, right); α = 5, θ = a = 1.5, b = 2, λ = 0.5

(green line, right).

distribution (Nadarajah and Gupta [29]). For λ = 0 and

b = 1, we obtain the exponentiated Fréchet (E-Fr) distribu-

tion (Nadarajah and Kotz [30]). We display some possible

shapes of the BT-Fr pdf in Figure 3.

2.4 The BT-Go distribution

The BT-Go pdf is given (for x > 0) by
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Figure 3. The BT-Fr pdfs: α = a = 2, β = 2.5, b = 0.5,
λ = −0.6 (red line, left); α = a = 2, β = 1.5, b = λ = 0.5

(black line, left); α = a = 2, β = 4, b = 0.5, λ = 0.6 (dashed
line, left); α = a = 2, β = 1.5, b = 3, λ = 0.5 (dotted line,
left); α = a = 2, β = 0.5, b = 2, λ = 0.4 (green line, left);
α = 0.5, β = λ = a = b = 0.5 (blue line, right); α = 0.5,

β = 0.7, a = 2, b = 0.5, λ = 0.4 (black line, right); α = 0.5,
β = a = 1, b = 0.5, λ = 0.2 (red line, right); α = 0.5,

β = 1.5, a = 2, b = 0.6, λ = 0.8 (dotted line, right); α = 0.5,
β = 0.3, a = 0.5, b = 1, λ = 0.3 (dashed line, right);

α = 0.5, β = 0.9, a = 9, b = 0.5, λ = 0.8 (green line, right).

f(x) =
βeαx

B (a, b)
e−

β
α (eαx−1)

[
1− λ+ 2λe−

β
α (eαx−1)

]
·
{[

1− e−
β
α (eαx−1)

] [
1 + λe−

β
α (eαx−1)

]}a−1

·
{
1−
[
1− e−

β
α (eαx−1)

] [
1 + λe−

β
α (eαx−1)

]}b−1

,

where α > 0, β > 0, a > 0, b > 0 and |λ| ≤ 1. The BT-

Go distribution includes the transmuted Gompertz (T-Go)

Figure 4. The GT-Go pdfs: β = 0.5, α = 0.9, a = 3, b = 2,
λ = 0.4 (blue line, left); β = 0.5, α = 0.5, a = 1, b = 3,

λ = −1 (black line, left); β = 0.5, α = 2, a = 0.4, b = 0.5,
λ = 0.6 (red line, left); β = 0.5, α = 1, a = b = λ = 0.4

(dotted line, left); β = 0.5, α = 0.4, a = 5, b = 3.5, λ = 0.9
(dashed line, left); β = 0.5, α = 2, a = 0.5, b = 2.5,

λ = −0.3 (green line, left); α = 0.5, β = a = b = λ = 0.5
(blue line, right); α = 0.5, β = 0.2, a = 4, b = 3, λ = 0.7
(black line, right); α = 0.5, β = 0.2, a = 2, b = 5, λ = 0.5
(dashed line, right); α = 0.5, β = 0.3, a = 4, b = 3, λ = 0.8
(yellow line, right); α = 0.5, β = 0.3, a = 0.5, b = 1, λ = 0.9
(dotted line, right); α = 0.5, β = 0.8, a = 2, b = 0.5, λ = 0.4

(green line, right).

distribution (Abdul-Moniem et al. [4]) when a = b = 1. For
λ = 0 the BT-Go distribution reduces to the B-Go distri-
bution (Jafari et al. [19]). For λ = 0 and b = 1, we obtain
the exponentiated Gompertz (E-Go) distribution. For a = 1
and λ = 0, we obtain the generalized Gompertz (G-Go) dis-
tribution (El-Gohary et al. [13]). Figure 4 plots the BT-Go
pdf for selected parameter values.
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2.5 The BT-Li distribution

The BT-Li pdf is given (for x > 0) by

f(x) =
α2(1 + x)e−αx

B (a, b) (1 + α)

(
1− λ+

1 + α+ αx

1 + α
2λe−αx

)
·
(
1− 1 + α+ αx

1 + α
e−αx

)a−1

·
(
1 +

1 + α+ αx

1 + α
λe−αx

)a−1

·
[
1−
(
1− 1+α+αx

1 + α
e−αx

)(
1+

1+α+αx

1 + α
λe−αx

)]b−1

,

where α, β, a and b are positive parameters and |λ| ≤ 1. The
BT-Li distribution includes the transmuted Lindley (T-Li)
distribution (Merovci [24]) when a = b = 1. For λ = 0 the
BT-Li distribution reduces to the B-Li distribution (Merovci
and Sharma [26]). For λ = 0 and b = 1, we obtain the
exponentiated Lindley (E-Li) distribution. Plots of the BT-
Li pdf are displayed in Figure 5 for some parameter values.

3. MATHEMATICAL PROPERTIES

The formulae derived throughout the paper can be easily
handled in most symbolic computation software platforms
such as Maple, Mathematica and Matlab because of their
ability to deal with analytic expressions of formidable size
and complexity. Established explicit expressions to calculate
statistical measures can be more efficient than computing
them directly by numerical integration.

3.1 Mixture representation

In this section, we derive a useful representation for the
BT-H pdf. The derived representation is crucial for the
derivation of mathematical properties in Sections 3.2 to
3.4. It allows moments, generating functions, order statis-
tic properties, etc to be expressed as mixtures.

Consider the power series

(1− z)
b−1

=

∞∑
j=0

(−1)
j
Γ (b)

j! Γ (b− j)
zj ,(5)

which holds for |z| < 1 and b > 0 real non-integer.
The pdf in (4) can be rewritten as

f(x) =
1

B (a, b)
h (x) [1 + λ− 2λH (x)]

·
[
(1 + λ)H (x)− λH (x)

2
]a−1

·
{
1−
[
(1 + λ)H (x)− λH (x)

2
]}b−1

.

Consider A =
{
1−
[
(1 + λ)H (x)− λH (x)

2
]}b−1

.

Applying the power series (5) to the quantity A, we ob-
tain

Figure 5. The BT-Li pdfs: α = 0.5, λ = 0.3, a = 3, b = 5
(black line, left); α = 0.5, λ = 0.6, a = 1, b = 4 (dotted line,
left); α = 0.5, λ = 0.7, a = 2.3, b = 7 (dashed line, left);
α = 0.5, λ = 0.8, a = 3, b = 1.5 (green line, left); α = 0.5,
λ = a = 0.5, b = 5 (blue line, left); α = 1.5, a = 0.5, b = 2,
λ = −1 (black line, right); α = 2, a = 9, b = 0.9, λ = 0.2
(dotted line, right); α = 1.5, a = 2, b = 3, λ = 0.4 (dashed
line, right); α = 0.9, a = λ = 0.5, b = 0.3 (green line, right);

α = 0.7, a = b = 2, λ = 0.5 (blue line, right).

f(x) =
1

B (a, b)
h (x) [1 + λ− 2λH (x)]︸ ︷︷ ︸

g(x)

·
∞∑
k=0

(−1)
k
Γ (k)

k!Γ (b− k)

·
[
(1 + λ)H (x)− λH (x)

2
]a+k−1

︸ ︷︷ ︸
G(x)a+k−1

.

Further, we can write the last equation as
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f(x) =

∞∑
j=0

(−1)
k
Γ (k)

B (a, b) k!Γ (b− k)
g (x)G (x)

a+k−1
.(6)

Finally, the pdf (6) can be expressed as a mixture of exp-G
pdfs

f(x) =

∞∑
k=0

tk πa+k (x) ,(7)

where πα (x) = αg (x)G (x)
α−1

is the exp-G pdf with power
parameter α > 0 and

tk =
(−1)

k
Γ (k)

B (a, b) k!Γ (b− k) (a+ k)
.

Thus, several mathematical properties of the BT-H family
can be obtained simply from those properties of the exp-G
family. Equation (7) is the main result of this section.

The cdf of the BT-H family can also be expressed as a
mixture of exp-G cdfs. By integrating (7), we obtain the
mixture representation

F (x) =

∞∑
k=0

tk Πa+k (x) ,

where Πa+k (x) is the cdf of the exp-G family with power
parameter a+ k.

3.2 Moments

The rth moment of X, say μ′
r, follows from (7) as

μ′
r = E (Xr) =

∞∑
k=0

tk E
(
Y r
a+k

)
.

Henceforth, Ya+k denotes the exp-G random variable with
power parameter a+ k.

The nth central moment of X, say Mn, is given by

Mn = E (X − μ′
1)

n
=

n∑
r=0

(
n

r

)
(−μ′

1)
n−r

E (Xr)

=

n∑
r=0

∞∑
k=0

(−1)
n−r

tk

(
n

r

)
μ
′(n−r)
1 E

(
Y r
a+k

)
.

The cumulants, κn, of X follow recursively from

κn = μ′
n −

n−1∑
r=0

(
n− 1

r − 1

)
κrμ

′
n−r,

where κ1 = μ′
1, κ2 = μ′

2 − μ′2
1 , κ3 = μ′

3 − 3μ′
2μ

′
1 + μ′3

1 , etc.
The skewness and kurtosis measures can be calculated from
the ordinary moments using well-known relationships.

3.3 Quantile and generating functions

The qf of X, where X ∼BT-H(a, b, λ,φ), is easily sim-
ulated by inverting (3) as follows: if T is a beta random
variable with positive parameters a and b, then

X = H−1

⎧⎨⎩λ+ 1−
√

(λ+ 1)
2
+ 4λT

2λ
;φ

⎫⎬⎭(8)

is a BT-H variate.
Now, we provide two formulae for the moment generating

function (mgf) MX (t) = E
(
et X
)
of X. Clearly, the first

one can be derived from (7) as

MX (t) =

∞∑
k=0

tk Ma+k (t) ,

where Ma+k (t) is the mgf of Ya+k. Hence, MX (t) can be
determined from the exp-G generating function.

A second formula for MX (t) follows from (7) as

MX (t) =

∞∑
k=0

ta+k τ (t, a+ k − 1) ,

where τ (t, a+ k − 1) =
∫ 1
0
exp [t QH (u)] ua+k−1du and

QH(u) is the qf corresponding to H (x;φ), i.e., QH(u) =
H−1 (u;φ).

3.4 Order statistics

Order statistics make their appearance in many areas of
statistical theory and practice. Let X1, . . . , Xn be a random
sample from the BT-H family of distributions. The pdf of
ith order statistic, say Xi:n, can be written as

fi:n (x) =
f (x)

B (i, n− i+ 1)

·
n−i∑
j=0

(−1)
j

(
n− i

j

)
F (x)j+i−1.(9)

Then

F (x)j+i−1 =

( ∞∑
k=0

tk Πa+k (x)

)j+i−1

=

{ ∞∑
k=0

tk

[
H (x)

a
k+1
]k}i+j−1

.(10)

Here and henceforth, we use an equation given in page 17
of Gradshteyn and Ryzhik [16] for a power series raised to
a positive integer n:( ∞∑

r=0

br ur

)n

=

∞∑
r=0

Cn,r ur,(11)
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where the coefficients Cn,r are easily determined from the
recurrence equation

Cn,r = (rb0)
−1

r∑
m=1

[m (n+ 1)− r] (bm) (Cn,r−m) ,

where Cn,0 = bn0 . The coefficient Cn,r can be calculated from
Cn,0, . . . , Cn,r−1 and hence from the quantities b0, . . . , br.

Using (10) and (11), we obtain

F (x)j+i−1 =

{ ∞∑
k=0

tk

[
H (x)

a
k+1
]k}j+i−1

=

∞∑
k=0

Ck,i+j−1

[
H (x)

a
k+1
]k

.(12)

Substituting (7) and (12) into (9) and using a power series
expansion, the pdf of Xi:n can be expressed as

fi:n (x) =

∑n−i
j=0 (−1)

j (n−i
j

)
B (i, n− i+ 1)

∞∑
k=0

Ck,i+j−1 πa+k (x) ,

where πa+k (x) is the exp-G pdf with power parameter a+k.
It follows that the pdf of BT-H order statistics is a mix-

ture of exp-G pdfs. Hence, the properties of Xi:n follow from
properties of Ya+k. For example, the moments of Xi:n can
be expressed as

E (Xq
i:n) =

∞∑
k=0

n−i∑
j=0

(−1)
j

B (i, n− i+ 1)

·
(
n− i

j

)
Ck,i+j−1E

(
Y q
a+k

)
.(13)

The L-moments are analogous to the ordinary moments but
can be estimated by linear combinations of order statistics.
They exist whenever the mean of the distribution exists,
even though some higher moments may not exist, and are
relatively robust to the effects of outliers. Based upon the
moments in (13), we can derive explicit expressions for the
L-moments of X as infinite weighted linear combinations of
the means of suitable BT-H order statistics. They are linear
functions of expected order statistics defined by

λr =
1

r

r−1∑
d=0

(−1)
d

(
r − 1

d

)
E (Xr−d:r)

for r ≥ 1.

4. MAXIMUM LIKELIHOOD ESTIMATION

Several approaches for parameter estimation exist in the
literature but maximum likelihood method is the most
commonly employed. The maximum likelihood estimators
(MLEs) enjoy desirable properties and can be used when

constructing confidence intervals and also in test statistics.
The normal approximation for these estimators in large sam-
ple theory is easily handled either analytically or numeri-
cally. So, we consider estimation of the unknown parameters
for the BT-H family only by maximum likelihood. Here, we
determine the MLEs of the parameters for complete samples
only. Let x1, . . . , xn be a random sample from the BT-H fam-
ily with parameters λ, a, b and φ. Let Θ = (a, b, λ,φᵀ)ᵀ be
a (p · 1) parameter vector. Then, the log-likelihood function
for Θ, say 	 = 	 (Θ), is

	 = −n log [B (a, b)] +

n∑
i=1

log h (xi;φ) +

n∑
i=1

log pi

+(a− 1)

n∑
i=1

log qi + (b− 1)

n∑
i=1

log (1− qi) ,(14)

where pi = 1 + λ − 2λH (xi;φ), qi = ziH (xi;φ) and zi =
1 + λ− λH (xi;φ).

The score vector components, say U (Θ) = ∂�
∂Θ =(

∂�
∂a ,

∂�
∂b ,

∂�
∂λ ,

∂�
∂φk

)ᵀ
= (Ua, Ub, Uλ, Uφk

)
ᵀ
, are given by

Ua = −n {ψ (a)− ψ (a+ b)}+
n∑

i=1

log qi,

Ub = −n {ψ (b)− ψ (a+ b)}+
n∑

i=1

log (1− qi) ,

Uλ =

n∑
i=1

1

pi
[1− 2H (xi;φ)]

+ (a− 1)

n∑
i=1

1

qi

[
H (xi;φ)−H (xi;φ)

2
]

− (b− 1)

n∑
i=1

1

1− qi

[
H (xi;φ)−H (xi;φ)

2
]

and

Uφk
= (a− 1)

n∑
i=1

1

qi
H ′ (xi;φ) [zi − λH (xi;φ)]

−2λ

n∑
i=1

H ′ (xi;φ)

pi

+

n∑
i=1

h′ (xi;φ)

h (xi;φ)

−(b− 1)

n∑
i=1

H ′ (xi;φ) [zi − λH (xi;φ)]

(1− qi)
,

where ψ (a) is the digamma function, h′ (xi;φ) =
∂h (xi;φ) /∂φk and H ′ (xi;φ) = ∂H (xi;φ) /∂φk. Setting
the nonlinear system of equations Ua = Ub = Uλ = Uφk

= 0

and solving them simultaneously yields the MLE Θ̂ =(
â, b̂, λ̂, φ̂ᵀ

)ᵀ
of Θ = (a, b, λ,φᵀ)ᵀ. These equations cannot

The beta transmuted-H family 511



be solved analytically and statistical software can be used
to solve them numerically using iterative methods such as
Newton-Raphson type algorithms.

The MLEs can also be obtained by maximizing (14) di-
rectly by using R (optim function), SAS (PROC NLMIXED),
Ox program (sub-routine MaxBFGS) or a MATHCAD program.
In Sections 5 and 6, we used the optim function in R. We
maximized (14) using a wide range of starting values. The
starting values were taken in a fine scale. For the BT-Go
distribution, for example, they were taken to correspond to
all combinations of α = 1, 2, . . . , 10, β = 1, 2, . . . , 10, a =
1, 2, . . . , 10, b = 1, 2, . . . , 10 and λ = −0.9,−0.7, . . . , 0.9. For
the BT-Li distribution, for example, the starting values were
taken to correspond to all combinations of α = 1, 2, . . . , 10,
a = 1, 2, . . . , 10, b = 1, 2, . . . , 10 and λ = −0.9,−0.7, . . . , 0.9.
The call to optim converged about 98 percent of the time.
When the calls to optim did converge, the maximum likeli-
hood solution was unique. The unique solution was verified
by using the PROC NLMIXED function in SAS. None of the
unique solutions corresponded to boundaries of the param-
eter spaces.

We experimented maximization of (14) for a wide range
of choices for H that are smooth (smooth in the sense of
continuity and differentiability) and for a wide range of
starting values. The reported observations held for each
choice. That is, optim converged about 98 percent of the
time, the maximum likelihood solution was unique when
optim did converge and none of the unique solutions cor-
responded to boundaries of the parameter spaces. Gener-
ally, the likelihood surface was smooth whenever H was
smooth.

For interval estimation of the model parameters, we re-
quire the observed information matrix

J (Θ) = −

⎛⎜⎜⎜⎜⎝
Uaa Uab Uaλ � Uᵀ

aφ

Uba Ubb Ubλ � Jᵀ
bφ

Jλa Uλb Uλλ � Uᵀ
λφ

−− −− −− −− −−
Uaφ Jbφ Uλφ � Uϕφ

⎞⎟⎟⎟⎟⎠ .

Explicit expressions for the elements of this matrix are avail-
able from the corresponding author.

Under standard regularity conditions as n → ∞, the
distribution of Θ̂ approximates to a multivariate normal

Np

(
0, J
(
Θ̂
)−1
)

distribution to construct approximate

confidence intervals for the parameters. Here, J
(
Θ̂
)

is

the total observed information matrix evaluated at Θ̂. The
method of re-sampling bootstrap can be used for correct-
ing the biases of the MLEs of the model parameters. In-
terval estimates may also be obtained using the boot-
strap percentile method. Likelihood ratio tests can be per-
formed for the proposed family of distributions in the usual
way.

5. SIMULATION STUDY

Here, we assess the finite sample behaviors of the MLEs
for the five-parameter BT-Go and four-parameter BT-Li dis-
tributions, the distributions used in the data application
section. The assessments were based on simulation studies.

5.1 BT-Go distribution

The assessment of the finite sample behavior of the MLEs
for this distribution was based on the following:

1. use the inversion method to generate ten thousand sam-
ples of size n from the BT-Go distribution, i.e., generate
values of

X = H−1

⎧⎨⎩λ+ 1−
√
(λ+ 1)

2
+ 4λT

2λ
;φ

⎫⎬⎭ ,

where T is a beta variate with parameters (a, b) and

H−1(u) =
1

α
log

[
1− α

β
log(1− u)

]
.

2. compute the MLEs for the ten thousand samples, say(
α̂i, β̂i, âi, b̂i, λ̂i

)
for i = 1, 2, . . . , 10000.

3. compute the standard errors of the MLEs for the ten

thousand samples, say
(
sα̂i

, sβ̂i
, sâi

, sb̂i , sλ̂i

)
for i =

1, 2, . . . , 10000. The standard errors were computed by
inverting the observed information matrix.

4. compute the biases and mean squared errors given by

biash(n) =
1

10000

10000∑
i=1

(
ĥi − h

)
,

MSEh(n) =
1

10000

10000∑
i=1

(
ĥi − h

)2
for h = α, β, a, b, λ.

5. compute the coverage probabilities and coverage
lengths given by

CPh(n) =
1

10000

10000∑
i=1

I
{
ĥi − 1.959964sĥi

< h < ĥi + 1.959964sĥi

}
,

CLh(n) =
3.919928

10000

10000∑
i=1

sĥi

for h = α, β, a, b, λ, where I{·} denotes the indicator
function.

We repeated these steps for n = 10, 11, . . . , 200 with α = 1,
β = 2, a = 1, b = 1 and λ = 1, so computing biash(n),
MSEh(n), CPh(n) and CLh(n) for h = α, β, a, b, λ and n =
10, 11, . . . , 200.
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Figure 6. Biases of α, β, a, b and λ versus
n = 10, 11, . . . , 200 for the BT-Go distribution (left); Biases
of α, λ, a and b versus n = 10, 11, . . . , 200 for the BT-Li

distribution (right).

Figure 6 shows how the five biases vary with respect to
n. Figure 7 shows how the five mean squared errors vary
with respect to n. Figure 8 shows how the five coverage
probabilities vary with respect to n. Figure 9 shows how
the five coverage lengths vary with respect to n. The broken
line in Figure 6 corresponds to the biases being zero. The
broken line in Figure 7 corresponds to the mean squared
errors being zero. The broken line in Figure 8 corresponds
to the nominal coverage probabilities of 0.95. The broken
line in Figure 9 corresponds to the coverage lengths being
zero.

The following observations can be made from Figures 6
to 9: the biases for each parameter are generally positive
and decrease to zero as n → ∞; the mean squared errors
for each parameter decrease to zero as n → ∞; the coverage
probabilities for each parameter approach the nominal level
as n → ∞; the coverage lengths for each parameter decrease
to zero as n → ∞.

Figure 7. Mean squared errors of α, β, a, b and λ versus
n = 10, 11, . . . , 200 for the BT-Go distribution (left); Mean
squared errors of α, λ, a and b versus n = 10, 11, . . . , 200 for

the BT-Li distribution (right).

5.2 BT-Li distribution

The assessment of the finite sample behavior of the MLEs
for this distribution was based on the following:

1. use the inversion method to generate ten thousand sam-
ples of size n from the BT-Li distribution, i.e., generate
values of

X = H−1

⎧⎨⎩λ+ 1−
√
(λ+ 1)

2
+ 4λT

2λ
;φ

⎫⎬⎭ ,

where T is a beta variate with parameters (a, b) and

H−1(u) = W
(
−(1 + α)e−1−α(1− u)

)
,

where W (·) denotes the Lambert W function, see Cor-
less et al. [12] for detailed properties.
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Figure 8. Coverage probabilities of α, β, a, b and λ versus
n = 10, 11, . . . , 200 for the BT-Go distribution (left);

Coverage probabilities of α, λ, a and b versus
n = 10, 11, . . . , 200 for the BT-Li distribution (right).

2. compute the MLEs for the ten thousand samples, say(
α̂i, âi, b̂i, λ̂i

)
for i = 1, 2, . . . , 10000.

3. compute the standard errors of the MLEs for the

ten thousand samples, say
(
sα̂i

, sâi
, sb̂i , sλ̂i

)
for i =

1, 2, . . . , 10000.

4. compute the biases and mean squared errors given by

biash(n) =
1

10000

10000∑
i=1

(
ĥi − h

)
,

MSEh(n) =
1

10000

10000∑
i=1

(
ĥi − h

)2
for h = α, a, b, λ.

5. compute the coverage probabilities and coverage

lengths given by

Figure 9. Coverage lengths of α, β, a, b and λ versus
n = 10, 11, . . . , 200 for the BT-Go distribution (left);

Coverage lengths of α, λ, a and b versus n = 10, 11, . . . , 200
for the BT-Li distribution (right).

CPh(n) =
1

10000

10000∑
i=1

I
{
ĥi − 1.959964sĥi

< h < ĥi + 1.959964sĥi

}
,

CLh(n) =
3.919928

10000

10000∑
i=1

sĥi

for h = α, a, b, λ.

We repeated these steps for n = 10, 11, . . . , 200 with α =
1, a = 1, b = 1 and λ = 1, so computing biash(n),
MSEh(n), CPh(n) and CLh(n) for h = α, a, b, λ and n =
10, 11, . . . , 200.

Figure 6 also shows how the four biases vary with respect
to n. Figure 7 also shows how the four mean squared errors
vary with respect to n. Figure 8 also shows how the four
coverage probabilities vary with respect to n. Figure 9 also
shows how the four coverage lengths vary with respect to n.
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The observations from these figures are the same as those
for the BT-Go distribution. That is, the biases for each
parameter are generally positive and decrease to zero as
n → ∞; the mean squared errors for each parameter de-
crease to zero as n → ∞; the coverage probabilities for each
parameter approach the nominal level as n → ∞; the cover-
age lengths for each parameter decrease to zero as n → ∞.

We have presented results for only one choice for
(α, β, a, b, λ) for the BT-Go distribution and one choice for
(α, λ, a, b) for the BT-Li distribution. But the results were
similar for a wide range of other values of the parameters
and for other BT-H distributions. In particular, the biases
for each parameter always approached zero as n → ∞, the
mean squared errors for each parameter always decreased
to zero as n → ∞, the coverage probabilities for each pa-
rameter always approached the nominal level as n → ∞ and
the coverage lengths for each parameter always decreased to
zero as n → ∞.

6. DATA APPLICATIONS

Here, we provide applications to two real data sets to il-
lustrate the importance and potentiality of the BT-Go and
BT-Li distributions presented in Section 2. The goodness-
of-fit statistics for these distributions and other competitive
distributions are compared and the MLEs of their parame-
ters are provided.

6.1 Waiting times in a queue

The first real data set (Ghitany et al. [15]) consists of
100 observations on waiting time (in minutes) before the
customer received service in a bank. The data are: 0.8, 0.8,
1.3, 1.5, 1.8, 1.9, 1.9, 2.1, 2.6, 2.7, 2.9, 3.1, 3.2, 3.3, 3.5, 3.6,
4, 4.1, 4.2, 4.2, 4.3, 4.3, 4.4, 4.4, 4.6, 4.7, 4.7, 4.8, 4.9, 4.9,
5.0, 5.3, 5.5, 5.7, 5.7, 6.1, 6.2, 6.2, 6.2, 6.3, 6.7, 6.9, 7.1, 7.1,
7.1, 7.1, 7.4, 7.6, 7.7, 8, 8.2, 8.6, 8.6, 8.6, 8.8, 8.8, 8.9, 8.9, 9.5,
9.6, 9.7, 9.8, 10.7, 10.9, 11.0, 11.0, 11.1, 11.2, 11.2, 11.5, 11.9,
12.4, 12.5, 2.9, 13.0, 13.1, 13.3, 13.6, 13.7, 13.9, 14.1, 15.4,
15.4, 17.3, 17.3, 18.1, 18.2, 18.4, 18.9, 19.0, 19.9, 20.6, 21.3,
21.4, 21.9, 23, 27, 31.6, 33.1, 38.5. We compare the fits of the
BT-Go distribution with other competitive distributions,
namely: the T-Go, G-Go beta Burr XII (BBXII) (Paranaba
et al. [33]), McDonald Weibull (McW) (Cordeiro et al. [11]),
modified beta Weibull (MBW) (Khan [20]), transmuted ex-
ponentiated modified Weibull (TEMW) (Ashour and Elte-
hiwy [10]), transmuted Weibull Lomax (TWL) (Afify et al.
[5]) and generalized transmuted Weibull (GTW) (Nofal et
al. [31]) distributions. The pdfs of these distributions are
(for x > 0):

BBXII: f(x) = δβ
B(a,b)α

−βxβ−1
[
1 +
(
x
α

)β]−(δb+1)

{
1−
[
1 +
(
x
α

)β]−δ
}a−1

;

McW: f(x) = βcαβ

B(a/c,b) xβ−1 e−(αx)β
[
1− e−(αx)β

]a−1

{
1−
[
1− e−(αx)β

]c}b−1

;

MBW: f(x) = βα−βca

B(a/c,b) xβ−1 e−b( x
α )

β
[
1− e−(

x
α )

β
]a−1

{
1− (1− c)

[
1− e−(

x
α )

β]c}−a−b

;

TEMW: f (x) = δ
(
α+ γβxβ−1

)
e−(αx+γxβ)[

1− e−(αx+γxβ)
]δ−1{

1 + λ− 2λ
[
1− e−(αx+γxβ)

]δ}
;

TWL: f(x) = abα
β

(
1 + x

β

)bα−1

e−a[(1+ x
β )

α−1]
b

[
1−
(
1 + x

β

)−α
]b−1

{
1− λ+ 2λe−a[(1+ x

β )
α−1]

b
}
;

GTW: f(x) = βαβxβ−1e−(αx)
β [

1− e−(αx)
β ]a−1{

a (1 + λ)− λ (a+ b)
[
1− e−(αx)

β ]b}
.

The parameters of the above pdfs are all positive real
numbers except for the TEMW, TWL and GTW distribu-
tions for which |λ| ≤ 1.

6.2 Relief times of twenty patients

The second data set (Gross and Clark [17], page 105) on
the relief times of twenty patients receiving an analgesic is:
1.1, 1.4, 1.3, 1.7, 1.9, 1.8, 1.6, 2.2, 1.7, 2.7, 4.1, 1.8, 1.5,
1.2, 1.4, 3, 1.7, 2.3, 1.6, 2. For these data, we compare
the fits of the BT-Li distribution with the B-Li, T-Li, G-
Li, transmuted complementary Weibull geometric (TCWG)
(Afify et al. [3]), McDonald log-logistic (McLL) (Tahir et
al. [35]), beta Weibull (BW) (Lee et al. [21]), exponentiated
transmuted generalized Rayleigh (ETGR) (Afify et al. [4]),
Kumaraswamy-transmuted exponentiated modified Weibull
(KwTEMW) (Al-Babtain et al. [7]) and the new modified
Weibull (NMW) (Almalki and Yuan [8]) distributions. The
pdfs of these distributions are (for x > 0):

TCWG: f (x) = αβγ (γy)
β−1

e−(γy)β[
α (1− λ)− (α− αλ− λ− 1) e−(γy)β

]
[
α+ (1− α) e−(γy)β

]−3

;

McLL: f(x) = αc
B(a/c,b)β

(
x
β

)aα−1 [
1 +
(

x
β

)α]−a−1(
1−
{
1−
[
1 +
(

x
β

)α]−1
}c)

;

BW: f (x) = βαβ

B(a,b)x
β−1e−b(αx)β[

1− e−(αx)β
]a−1

;

ETGR: f (x) = 2αδβ2 x e−(βx)2
[
1− e−(βx)2

]αδ−1

{
1+λ− 2λ

[
1− e−(βx)2

]α}{
1+λ− λ

[
1− e−(βx)2

]α}δ−1

;

KwTEMW: f (x) = abδe−(αx+γxβ) (α+ γβxβ−1
)[

1− e−(αx+γxβ)
]aδ−1
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Table 3. Goodness-of-fit statistics for waiting times data

Model −2�̂ AIC CAIC HQIC BIC W ∗ A∗

BT-Go 634.007 644.007 644.645 649.279 657.033 0.01824 0.12988
McW 634.042 644.042 644.68 649.314 657.068 0.01835 0.13181
BBXII 634.63 644.63 645.268 649.902 657.656 0.01902 0.13501
TWL 634.725 644.725 645.364 649.997 657.751 0.01936 0.13445
TEMW 635.289 645.289 645.927 650.561 658.315 0.03366 0.216
MBW 637.248 647.248 647.886 652.519 660.273 0.04528 0.34588
GTW 641.837 651.837 652.475 657.109 664.863 0.0916 0.66481
G-Go 647.928 653.928 654.178 657.091 661.744 0.15536 1.18407
T-Go 648.335 654.335 654.585 657.499 662.151 0.1545 1.18453

Table 4. MLEs and their standard errors for waiting times data

Model Estimates (Standard errors)

G-Go(α, β, b) 0.0408 0.0636 1.1198
(0.012) (0.192) (3.377)

T-Go(α, β, λ) 0.047 0.0603 0.1833
(0.007687) (0.013) (0.299)

BT-Go(α, β, a, b, λ) 0.0021 0.0892 2.3033 1.5698 0.3812
(0.016) (0.073) (0.499) (2.615) (0.832)

McW(α, β, a, b, c) 1.9083 0.2639 16.5138 10.9511 24.6904
(186.163) (4.54) (574.036) ( 249.095) (924.94)

BBXII(α, β, a, b, δ) 18.5011 1.4159 1.4773 2.4928 1.6005
(14.266) (0.766) (1.271) (12.649) (7.612)

TWL(α, β, a, b, λ) 0.2331 7.4315 14.1387 1.4984 -0.8317
(0.258) (11.9819) (39.457) (0.633) (0.247)

TEMW(α, β, γ, δ, λ ) 0.1695 0.6532 0.0004 1.5409 -0.6625
(0.017) (0.4) (0.009455) (0.431) (0.375)

MBW(α, β, a, b, c) 1.8449 0.4477 20.6663 2.0835 2.0677
(3.842) (0.405) (14.989) (3.203) (3.369)

GTW(α, β, a, b, λ) 5.532 0.3669 33.8286 0.0118 0.0533
(6.208) (0.062) (22.276) (0.425) (0.915)

{
1 + λ− 2λ

[
1− e−(αx+γxβ)

]δ}
{
1 + λ− λ

[
1− e−(αx+γxβ)

]δ}a−1

(
1−
[
1− e−(αx+γxβ)

]aδ
{
1 + λ− λ

[
1− e−(αx+γxβ)

]δ}a)b−1

;

NMW: f(x) =
[
αθxθ−1 + γ (β + δx)xβ−1eδx

]
e−(αx

θ+γxβeδx).
The parameters of the above pdfs are all positive real

numbers except for the TCWG, ETGR and KwTEMW dis-
tributions for which |λ| ≤ 1.

In order to compare the fitted distributions, we consider
some goodness-of-fit measures including the Akaike informa-
tion criterion (AIC), Bayesian information criterion (BIC),
Hannan-Quinn information criterion (HQIC), consistent

Akaike information criterion (CAIC), −2	̂, Anderson-
Darling statistic (A∗) and Cramér-von Mises statistic

(W ∗), where 	̂ denotes the maximized log-likelihood. Gen-

erally, the smaller these statistics are, the better the
fit.

Tables 3 and 5 list the values of −2	̂, AIC, BIC, HQIC,
CAIC, W ∗ and A∗ whereas the MLEs of the model param-
eters and their corresponding standard errors are given in
Tables 4 and 6.

Table 3 compares the fits of the BT-Go distribution with
the T-Go, G-Go, McW, BBXII, TEMW, TWL, MBW and
GTW distributions. The figures in these tables show that
the BT-Go distribution has the lowest values for the −2	̂,
AIC, BIC, HQIC, CAIC, W ∗ and A∗ statistics (for wait-
ing times data) among the fitted distributions. So, the BT-
Go distribution could be chosen as the best model. Table 5
compares the fits of the BT-Li distribution with the B-Li,
T-Li, G-Li, TCWG, McLL, BW, ETGR, KwTEMW and
NMW distributions. The BT-Li distribution has the low-
est values for goodness-of-fit statistics (for the relief times
data) among all fitted distributions. So, the BT-Li distri-
bution can be chosen as the best model. It is clear from
Tables 3 and 5 that the BT-Go and BT-Li distributions
provide the best fits. The histograms of the fitted distri-
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Table 5. Goodness-of-fit statistics for the relief times data

Model −2�̂ AIC CAIC HQIC BIC W ∗ A∗

BT-Li 32.849 40.849 43.515 41.626 44.832 0.06125 0.35992
TCWG 33.607 41.607 44.274 42.385 45.590 0.07252 0.43603
McLL 33.854 43.854 48.833 44.826 48.14 0.07904 0.46199
BW 34.396 42.396 45.063 43.174 46.379 0.0873 0.51316
B-Li 36.977 42.977 44.477 43.56 45.964 0.13201 0.77319
ETGR 36.856 44.856 47.523 45.633 48.839 0.13629 0.79291
KwTEMW 37.203 51.203 60.537 52.564 58.173 0.13212 0.77604
G-Li 39.029 43.0289 43.735 43.418 45.0204 0.11962 1.12444
NMW 41.173 51.173 55.459 52.145 56.151 0.17585 1.0678
T-Li 61.729 65.729 66.435 66.118 67.721 0.53509 10.74948

Table 6. MLEs and their standard errors for the relief times data

Model Estimates (standard errors)

T-Li(α, λ) 0.6653 0.3587
(0.048) (0.332)

G-Li(α, b) 1.5895 5.4124
(0.251) (2.121)

B-Li(α, a, b) 0.2427 5.6308 35.4058
(0.012) (0.002792) (0.133)

BT-Li(α, λ, a, b) 2.175 0.4893 30.8824 1.057
(0.297) (0.338) (32.65) (0.5568)

TCWG(α, β, γ, λ) 43.6627 5.1271 0.2823 -0.2713
(45.459) (0.814) (0.042) (0.656)

BW(α, β, a, b) 0.8314 0.6126 29.9468 11.6319
(0.954) (0.34) (40.413) (21.9)

ETGR(α, β, λ, δ) 0.1033 0.6917 -0.342 23.5392
(0.436) (0.086) (1.971) (105.137)

McLL(α, β, a, b, c) 0.8811 2.0703 19.2254 32.0332 1.9263
(0.109) (3.693) (22.341) (43.077) (5.165)

NMW(α, β, γ, δ,θ ) 0.1215 2.7837 8.2272 · 10−5 0.0003 2.7871
(0.056) (20.37) (1.512 · 10−3) (0.025) (0.428)

KwTEMW 0.462 9.157 · 10−3 1.248 · 10−7 2.247 0.33
(α, β, γ, δ, λ, a, b) (0.197) (0.379) (6.059 · 10−5) (2.398) (0.419)

2.508 8.929
(2.877) (8.447)

butions for the BT-Go and BT-Li models are displayed in
Figure 10. The plots support the results obtained from Ta-
bles 3 and 5. Figures 11 and 12 display the fitted cdf’s
and the QQ plots for both models. It is evident from these
plots that the two models provide close fit to the two data
sets.

If a and b are integers then the distribution given
by (3)–(4) is the distribution of the ath order statistic
for a random sample of size a + b − 1 from the trans-
muted H distribution. So, the fitted BT-Go and BT-
Li distributions can be interpreted approximately as fol-
lows:

• Suppose there are a + b − 1 ≈ 3 customers in a bank
with each having waiting time distributed according
to a transmuted Gompertz distribution with mean 8.9
and variance 89.5. Then the fitted BT-Go distribu-

tion is the distribution of the second longest waiting
time.

• Suppose there are a+ b− 1 ≈ 32 patients receiving an
analgesic with each having relief time distributed ac-
cording to a transmuted Lindley distribution with mean
0.5 and variance 0.2. Then the fitted BT-Li distribution
is the distribution of the second longest relief time.

The moments of order statistics given by (13) can be used
to give future predictions. Using the estimates of the fit-
ted BT-Go distribution, we obtain the longest waiting time
when the bank has 200, 300, . . . , 1000 customers as 57.6,
159.3, 205.2, 240.6, 433.1, 501.8, 541.7, 668.7, 940.2, these
were obtained by setting n = i = 200, 300, . . . , 1000 and
q = 1 in (13). Using the estimates of the fitted BT-Li distri-
bution, we obtain the longest relief time when the clinic has
30, 40, . . . , 100 patients as 4.7, 5.2, 5.9, 6.7, 7.3, 9.6, 10.2,
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Figure 10. Fitted pdfs of the BT-Go and BT-Li distributions.

11.2, these were obtained by setting n = i = 30, 40, . . . , 100
and q = 1 in (13).

The strengths of the proposed distributions evident from
the two data applications are: their ability to provide better
fits (to the waiting time data) than six other distributions
each having the same number of parameters; their ability
to provide better fits (to the relief times data) than five
other distributions each having the same number of pa-
rameters; their ability to provide better fits (to the relief
times data) than a distribution having one more parame-
ter.

7. CONCLUSIONS

There is great interest among statisticians and prac-
titioners in the past decade to generate new general-
ized families from classic ones. We have presented a new
beta transmuted -H (BT-H) family of distributions, which

Figure 11. Fitted cdfs of the BT-Go and BT-Li distributions.

extends the transmuted-H family by adding two extra
shape parameters. Many well-known distributions emerge
as special cases of the BT-H family. The mathemati-
cal properties of the new family including explicit ex-
pansions for the ordinary moments, quantiles, generating
functions, and order statistics have been provided. The
model parameters have been estimated by the maximum
likelihood estimation method and the observed informa-
tion matrix has been determined. It has been shown, by
means of two real data sets, that special cases of the
BT-H family can provide better fits than at least five
other families each having the same number of parame-
ters.
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Figure 12. QQ plots of the BT-Go and BT-Li distributions.
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