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Varying-coefficient single-index model
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In this paper we consider a general class of varying-
coefficient single-index models for longitudinal data. This
class of models provides a tool for simultaneous dimen-
sion reduction and the exploration of dynamic patterns. We
develop an estimation procedure using Cholesky decompo-
sition, local linear and backfitting technique. Asymptotic
normality for the proposed estimators of varying-coefficient
functions, link function and parameters will be established.
Monte Carlo simulation studies show excellent finite-sample
performance. We illustrate our methods with a real data
example.
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1. INTRODUCTION

Regression analysis is commonly used to study the re-
lationship between a response variable and a vector of co-
variates. In recent years nonparametric and semiparametric
regression models have attracted a great deal of attention
due to their flexibility and power to uncover hidden rela-
tionship between the response and covariates. See [13], [11],
[7] and [27] for an introduction to nonparametric and semi-
parametric models.

Varying-coefficient models are useful for exploring dy-
namic patterns [14, 3, 15, 23], and single-index models are
useful for dimension reduction [12, 30, 1, 21]. In practice it
may be desirable to explore dynamic patterns for some co-
variates while reduce dimensionality for others. This had led
[28] to propose the following varying-coefficient single-index
model (VCSIM) for independent data:

(1) yi = g0(α
Txi) + gT (ui)zi + εi, i = 1, · · · , n,
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where yi’s are observations of the response variable, xi ∈ R
q,

zi ∈ R
p, and ui ∈ R are observations of the associated co-

variates, εi’s are independent random errors with E(εi) = 0
and Var(εi) = σ2, g0(·) is an unknown univariate smooth in-
dex function, g(·) = (g1(·), · · · , gp(·))T is an unknown vector
of coefficient functions, and α = (α1, . . . , αq)

T is a vector
of unknown parameters. For identifiability, it was assumed
that α1 ≥ 0 and αTα = 1.

The VCSIM (1) is a very inclusive model. It can be seen
as a generation of many important models such as varying-
coefficient models, single index models, partially linear sin-
gle index models [4, 29] and varying-coefficient partially lin-
ear models[31, 8, 34].

The varying-coefficient single-index model is proposed
first by [28], when they analyse the environmental data of
Hong Kong. They develop the theory and method to es-
timate the unknown parameter α0 and the unknown func-
tions g(·) and g(·), based on the local linear method, average
method and backfitting technique. Recently, [27] also study
the VCSIM by the stepwise approaches. The distinct differ-
ence between the two methods is in the way they obtained
initial estimators of unknown functions. [28] obtained the
so called quasi-initial estimators by combining the bi-local
linear smoother and the average method. However, [27] de-
veloped stepwise approaches to estimate the unknown in-
dex parameter α and functions g0, g. They first rewrote the
model as a varying-coefficient model by pretending some
unknown link function g0 and the single-index parameter
vector α to be known. Then, they use the local linear re-
gression technique to obtain an initial estimator of varying
-coefficient function g. Again, they estimated the link func-
tion g0 by pretending the unknown single-index parameter
vector α to be known. However, none of these works ad-
dresses longitudinal data, which is the focus of our paper.

Longitudinal studies are common in many research ar-
eas including social, economic, health and medical sciences.
In this paper, we consider a VCSIM for longitudinal data.
Consisting of outcome measurements repeatedly taken on
each subject, longitudinal data are usually correlated. Many
methods have been developed to model and estimate within-
subject correlation. In particular, the Cholesky decomposi-
tion proposed by [25] is a powerful approach since it auto-
matically leads to positive definite covariance matrices. In
addition, the decomposition is appealing since the parame-
ters have meaningful interpretations as autoregressive coef-
ficients and these parameters can be modeled via regression
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techniques. This method has received considerable attention
in the statistics literature (see for example [22, 33, 17, 32]).
We will develop an estimation procedure using the Cholesky
decomposition, local linear and backfitting technique that
estimates all parameters and nonparametric functions si-
multaneously. One of the advantages of our method is that
there is no need to specify the correlation structure. The
proposed estimation procedure is easy to implement and
computationally fast. We derive the asymptotic normality
of the resulting estimators and evaluate finite sample per-
formance using Monte Carlo simulations. The usefulness of
the new model is illustrated through a real data set.

The article is organized as follows. Section 2 introduces
the VCSIM for longitudinal data and the estimation pro-
cedure. Sections 3 and 4 present asymptotic properties and
finite sample evaluations of the proposed estimators. Sec-
tion 5 illustrates the proposed methods using a real data
example. Technical proofs are given in an Appendix.

2. MODEL AND ESTIMATION

Let yij be the jth observation of the response variable
from subject i, and xij ∈ R

q, zij ∈ R
p and uij ∈ R be the

jth observation of covariates from subject i. A VCSIM for
longitudinal data assumes that

(2)
yij = g0(α

Txij) + gT (uij)zij + εij ,

i = 1, 2, · · · , n, j = 1, 2, · · · , Ji,

where εij ’s are random errors with E(εij) = 0, g0(·) is
an unknown univariate smooth index function, g(·) =
(g1(·), · · · , gp(·))T is an unknown vector of p smooth co-
efficient functions, and α = (α1, · · · , αq)

T is q-dimensional
vector of unknown parameters. For identifiability, we assume
that α1 ≥ 0 and αTα = 1.

The observations within subjects are usually correlated.
Many parametric correlation structures have been proposed
in the literature [24]. Herein, we will extend the work of
[32], model and estimate the correlation structure using
the Cholesky decomposition. For easy of presentation, we
will first consider the balanced case with Ji = J . Denote
εi = (εi1, εi2, . . . , εiJ)

T and cov(εi|xi, zi,ui) = Σ. Based
on the Cholesky decomposition, there exists a lower tri-
angle matrix Φ with 1’s on the main diagonal such that
cov(Φεi) = ΦΣΦT = D where D = diag(d21, d

2
2, . . . , d

2
J ) is

a diagonal matrix. Let ei = (ei1, ei2, . . . , eiJ)
T = Φεi. Then

we have

(3) εij =

j−1∑
k=1

φjkεik + eij , i = 1, 2, . . . , n, j = 1, . . . , J,

where φjk is the negative of the (j, k)-element of Φ and
eij ’s are uncorrelated with var(eij) = d2j . By convention,∑0

k=1 φ1kεik = 0 when j = 1. Substituting equation (3) into

model (2), we obtain the following model with uncorrelated
error terms eij :

(4)
yij = g0(α

Txij) + gT (uij)zij +

j−1∑
k=1

φjkεik + eij ,

i = 1, 2, . . . , n, j = 1, . . . , J.

The terms εij in (4) are not observable. We will estimate
them by ε̌ij = yij − ǧ0(α̌

Txij) − ǧT (uij)zij , where α̌, ǧ0
and ǧ are local linear estimators for model (2) with indepen-
dent random errors [28]. Let φ = (φ21, φ31, . . . , φJJ−1)

T and
Fij = (0T

(j−2)(j−1)/2, ε̌i1, . . . , ε̌ij−1,0
T
J(J−1)/2−j(j−1)/2)

T ,
where 0k is a k-dimension column vector with all entries
0. Replacing the εij ’s in (4) with ε̌ij ’s, we have

(5)
yij = g0(α

Txij) + gT (uij)zij + FT
ijφ+ eij ,

i = 1, 2, . . . , n, j = 1, . . . , J.

Under model (5), our primary interest is to estimate α, φ,
g0(·) and g(·). Suppose that gr(·) has a continuous second
derivative for every r = 0, 1, . . . , p. Then we approximate
gr(·) locally by a linear function

gr(v) ≈ gr(u)+g′r(u)(v−u) ≡ ar+br(v−u), r = 0, 1, · · · , p,

for v in a neighborhood of u. Throughout the paper, let
Ki,hi(·) = Ki(·/hi)/hi where Ki(·) is a kernel function and
hi > 0 is a bandwidth, and μk(Ki) =

∫
tkKi(t)dt, νk(Ki) =∫

tkK2
i (t)dt.

We first describe the derivation of initial estimates for α,
φ, g0(·) and g(·). We apply the minimum average variance
estimation (MAVE) method to obtain initial estimates α̂0

and φ̂
0
of α and φ by fitting a partially linear single index

model in (5) [29]. We then consider the following weighted
sum of squares:

n∑
i=1

J∑
j=1

(y∗ij − a0 − b0(α̂
0Txij − t)− aTzij −bT (uij −u)zij)

2

K1,h1(α̂
0Txij − t)K2,h2(uij − u),

where y∗ij = yij − FT
ijφ̂

0
, and a0, a

T = (a1, · · · , ap), b0 and

bT = (b1, · · · , bp) are parameters. Setting estimates of g0
and g as the estimates of a0 and a respectively, we have

g̃0(t, u; α̂
0, φ̂

0
) =

n∑
i=1

J∑
j=1

cT1,2p+2(V
TWV )−1vij

K1,h1(α̂
0Txij − t)K2,h2(uij − u)y∗ij ,

g̃(t, u; α̂0, φ̂
0
) =

n∑
i=1

J∑
j=1

Ep,2p+2(V
TWV )−1vij

K1,h1(α̂
0Txij − t)K2,h2(uij − u)y∗ij ,
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where cj,2p+2 is a (2p + 2) unit vector with one at the jth
position, Ep,2p+2 is a p × (2p + 2) matrix with cj+1,2p+2

as the jth row, V is an nJ × (2p + 2) matrix with vT
ij =

(1, zT
ij , (α̂

0Txij − t)/h1, z
T
ij(uij − u)/h2) as the ((i− 1)J +

j)th row, and W = diag({K1,h1(α̂
0Txij − t)K2,h2(uij −

u)}n, J
i=1,j=1).
The initial estimates of functions gr(t) for r = 0, . . . , p

are defined as

ğ0(t; α̂
0, φ̂

0
) =

1

nJ

n∑
i=1

J∑
j=1

g̃0(t, uij ; α̂
0, φ̂

0
),

ğ(u; α̂0, φ̂
0
) =

1

nJ

n∑
i=1

J∑
j=1

g̃(α̂0Txij , u; α̂
0, φ̂

0
).

(6)

We now describe our estimation procedure. We apply the
backfitting technique to compute estimates of parameters
and nonparametric functions iteratively. For fixed α and φ
at the current estimates denoted as α̂ and φ̂ , let β̂0 and γ̂0
be the minimizers of the following weighted sum of squares

n∑
i=1

J∑
j=1

d̂−2
ij (ỹij − β0 − γ0(α̂

Txij − t))2K3,h3(α̂
Txij − t),

where ỹij = yij − FT
ijφ̂ − ğ(uij ; α̂ , φ̂ )Tzij . Then the up-

dated estimate of g0 is

(7)
ĝ0(t) = β̂0 =

n∑
i=1

J∑
j=1

d̂−2
ij c1,2(X̃

T
W 1X̃)−1x̃ij

K3,h3(α̂
Txij − t)ỹij ,

where c1,2 = (1, 0)T , X̃ denotes an nJ × 2 matrix

with x̃T
ij = (1, (α̂Txij − t)/h3) as its rows, W 1 =

diag({d̂−2
ij K3,h3(α̂

Txij − t)}n, J
i=1,j=1), and d̂ij is any consis-

tent estimate of dij . In our simulations and real data ex-
ample, dij ’s are estimated by sample standard deviations of
residuals from model (3) [32].

Let β̂ and γ̂ be the minimizers of the following weighted
sum of squares

n∑
i=1

J∑
j=1

d̂−2
ij (˜̃yij − βTzij − γTzij(uij − u))2K4,h4(uij − u),

where ˜̃yij = yij − FT
ijφ̂ − ğ0(α̂

Txij ; α̂ , φ̂ ). Then the up-
dated estimate of g is

(8)
ĝ(u) = β̂ =

n∑
i=1

J∑
j=1

d̂−2
ij Ep,2p(Ũ

TW 2Ũ)−1ũij

K4,h4(uij − u)˜̃yij ,

where Ep,2p is a p× 2p matrix with cj,2p as its jth row, Ũ
denotes an nJ × 2p matrix with ũT

ij = (zT
ij , z

T
ij(uij − u)/h4)

as its rows, and W 2 = diag({d̂−2
ij K4,h4(uij − u)}n, J

i=1,j=1).

For fixed g0 and g at the current estimates denoted as
ĝ0 and g , to update α and φ, we consider the following
weighted sum of squares

(9)

n∑
i=1

J∑
j=1

d̂−2
ij (yij − ĝ0 (αTxij)− ĝT (uij)zij − FT

ijφ)
2,

subject to αTα = 1.

Approximating ĝ0 (αTxij) by its first order Taylor expan-
sion, we update the estimates of α and φ by minimizing the
following approximated weighted sum of squares

(10)

n∑
i=1

J∑
j=1

d̂−2
ij (˜̃̃yij − ĝ

′

0 (α̂Txij)x
T
ijα− FT

ijφ)
2,

subject to αTα = 1,

where ˜̃̃yij = yij − ĝ0 (α̂Txij) + ĝ
′

0 (α̂Txij)α̂
Txij −

ĝT (uij)zij . [4] showed that estimates based on (9) and (10)
are asymptotically equivalent.

One of the key factors in our estimation procedure is the
selection of bandwidths. Theoretical conditions will be dis-
cussed in the next section. In our simulations and real data
example, we will use leave-one-subject-out cross-validation
as in [7], [6] and [16]. When the number of subjects is large,
one may consider a K-fold cross-validation to reduce the
computational cost [18, 5].

The computation procedure is summarized in the follow-
ing algorithm.

Algorithm for fitting a VCSIM

1. Initialize: Derive initial estimates of α and φ and gr(t)
for r = 0, . . . , p.

2. Cycle: Alternate between (a) and (b) until convergence.

(a) Conditional on current estimates of α and φ, up-
date gr(t) for r = 0, . . . , p using equations (6), (7)
and (8).

(b) Conditional on current estimates of gr(t) for r =
0, . . . , p, update α and φ using equation (10).

We now describe our estimation procedure when the
design is unbalanced. Let εi = (εi1, εi2, . . . , εiJi)

T and
cov(εi) = Σi. There exists a lower triangle matrix Φi with
1’s on the main diagonal such that cov(Φiεi) = ΦiΣiΦ

T
i =

Di, where Di is a diagonal matrix. Letting φ
(i)
jl be the neg-

ative of the (j, l)-element of Φi, we have

yij = g0(α
Txij) + gT (uij)zij +

j−1∑
k=1

φ
(i)
jk ε̌ik + eij ,

i = 1, . . . , n, j = 1, . . . , Ji,

where eij ’s are uncorrelated. We estimate Σi by a work-
ing covariance matrix using the same method proposed in
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[9]. The working covariance matrix provides estimates of Φi

and Di. With Φi and Di being fixed at these estimates,
the parameters α and functions gr for r = 0, . . . , p can be
estimated by similar steps described in this section with
straightforward modifications.

3. ASYMPTOTIC PROPERTIES

In this section we study asymptotic properties of the esti-
mators proposed in Section 2 for the balanced case. Covari-
ates as random variables are denoted as upper case letters
such as X, Z and U , while their realizations are denoted as
lower case letters.

The following conditions are needed:

(C1) For every r = 0, 1, . . . , p, gr(·) has a Lipschitz contin-
uous second derivative.

(C2) The kernelsKi(·), i = 1, . . . , 4 are bounded symmetric
density functions with bounded support and satisfy
the Lipschitz condition.

(C3) The marginal density of αTXij , f1j(·), is Lipschitz
continuous, bounded away from 0 and has a continu-
ous second derivative on its support.

(C4) The marginal density of Uij , f2j(·), has a bounded
support Ω, and is Lipschitz continuous and bounded
away from 0 on Ω. The Uij ’s within each subject are
allowed to be correlated.

(C5) There exists an s > 2 such that E‖F1j‖s < ∞, ∀j,
and for some ξ > 0 such that n1−2s−1−2ξh −→ ∞.

(C6) sups∈Ω|ǧr(s) − gr(s)| = op(n
−1/4), where ǧr(s) is ob-

tained by local linear regression under the assumption
that the random errors are independent and identi-
cally distributed.

(C7) Every entry of Zij will not degenerate to a constant.

E(Zij
T |αTXij = t, Uij = u), E(ZijZ

T
ij |αTXij =

t, Uij = u) and E(Hijτ2(Uij)τ
−1
1 (Uij)Z

T
ij |Uij) are all

Lipschitz continuous.

Theorem 3.1. When α and φ are known constants or es-
timated with the order Op(N

−1/2), under the regularity con-
ditions (C1)–(C7), h1/h3 → 0, h2/h3 → 0, Nh1h2 → ∞
and h3 = Cn−1/5, as N → ∞ we have

(11)

√
Nh3

(
ĝ0(t)− g0(t)−

1

2
h2
3μ2(K3)g

′′
0 (t)

)

d−→ N

(
0,

ν0(K3)

τ1(t)

)
,

where τ1(t) =
1
J

∑J
j=1 f1j(t)/d

2
ij.

Remark 1. The asymptotic distribution of ĝ0(t) in (11) is
the same as the estimator for the nonparametric regression
model. See, Theorem 1(b) of [32].

Theorem 3.2. When α and φ are known constants or es-
timated with the order Op(N

−1/2), under the regularity con-
ditions (C1)–(C7), h1/h4 → 0, h2/h4 → 0, Nh1h2 → ∞

and h4 = Cn−1/5, as N → ∞ we have

(12)

√
Nh4

(
ĝ(u)− g(u)− 1

2
h2
4μ2(K4)g

′′(u)

)

d−→ N
(
0, ν0(K4)τ

−1
2 (u)

)
,

where τ2(u) =
1
J

∑J
j=1 E(ZijZ

T
ij | Uij = u)f2j(u)/d

2
ij.

Remark 2. The asymptotic distribution of ĝ(u) in (12)
is same as the estimator for the varying-coefficient model.
Note that τ2(u) is independent of i since Zij and Uij with
different i and fixed j are iid random samples.

Theorem 3.3. Suppose that the conditions (C1)–(C7) hold.
If hi/hj → 0, Nh2

j → ∞, Nh4
j → 0, i = 1, 2; j = 3, 4, as

N → ∞, we have

(13)
√
N

(
α̂−α

φ̂− φ

)
d−→ N(0,B−1ΣB−1),

where

Σ = E
{ 1

J

J∑
j=1

d−2
ij

(
E(Hijτ3(Uij)τ

−1
2 (Uij)Zij | Uij)

)⊗2}
,

B = E

⎧⎨
⎩

1

J

J∑
j=1

d−2
ij H⊗2

ij

⎫⎬
⎭ , Hij =

(
g′0(α

TXij)Xij

Fij

)
,

τ3(u) =
1

J

J∑
j=1

E(ZT
ij | U = u)f2j(u)/d

2
ij .

Remark 3. From (13) we see that the estimator α̂ and

φ̂ follow the usual asymptotic distribution, and their vari-
ances are associated with the nonparametric components
g0 and g. Moreover, Theorem 3 has an important restric-
tion on the bandwidths h3 and h4. To estimate α and φ at
the rate N−1/2, one must undersmooth the nonparamet-
ric functions g0 and g. The need for undersmoothing so
as to obtain the usual rates of convergence is standard in
the kernel literature and has analogs in the spline litera-
ture.

4. SIMULATION STUDIES

In this section we evaluate the finite sample performance
of the proposed estimation methods. We consider the fol-
lowing VCSIM:

yij = g0(α1xij1 + α2xij2) + g1(uij)zij1 + g2(uij)zij2 + εij ,

i = 1, 2, · · · , n, j = 1, 2, · · · , Ji,

where g0(t) = t+ 8 exp(−16t2), g1(u) = 5 sin(2πu), g2(u) =
5 cos(2πu), xij1 and xij2 are iid realizations of U(−0.5, 0.5),
zij1 and zij2 are iid realizations of N(0, 1), uij are iid real-
izations of U(0, 1). For the sake of comparison, we consider
the following two cases:
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Table 1. Averages, standard errors (SE), biases and MSEs of
estimates from the proposed method α̂1 and α̂2 and [28]’s

independent estimates α̌1 and α̌2 for Case I

n Estimation α̌1 α̂1 α̌2 α̂2

50 Average 0.6194 0.7142 1.0614 1.1154
SE 0.3215 0.5300 0.3117 0.4151
Bias 0.1722 0.2670 0.1670 0.2210
MSE 0.1330 0.3522 0.1250 0.2211

100 Average 0.3531 0.5605 0.7983 1.0137
SE 0.2152 0.3194 0.2761 0.3026
Bias -0.0941 0.1133 -0.0961 0.1193
MSE 0.0552 0.1149 0.0855 0.1058

200 Average 0.5206 0.3522 0.9746 0.9914
SE 0.1511 0.2085 0.1473 0.2123
Bias 0.0734 -0.0950 0.0802 0.0970
MSE 0.0282 0.0525 0.0281 0.0545

Table 2. Averages, standard errors (SE), biases and MSEs of
estimates from the proposed method α̂1 and α̂2, oracle

estimates α̂∗
1 and α̂∗

2 and [28]’s independent estimates α̌1 and
α̌2 for Case II

n Estimation α̌1 α̂1 α̂∗
1 α̌2 α̂2 α̂∗

2

50 Average 0.3821 0.4138 0.4175 0.8182 0.9340 0.8628
SE 0.7199 0.2167 0.1252 0.7102 0.2124 0.1216
Bias -0.0651 -0.0334 -0.0297 -0.0762 0.0396 -0.0316
MSE 0.5225 0.0481 0.0166 0.5102 0.0467 0.0158

100 Average 0.4929 0.4695 0.4592 0.9403 0.8671 0.9102
SE 0.4145 0.1097 0.0945 0.4065 0.1064 0.0996
Bias 0.0457 0.0223 0.0120 0.0459 -0.0273 0.0158
MSE 0.1739 0.0125 0.0091 0.1673 0.0121 0.0102

200 Average 0.4143 0.4617 0.4564 0.9248 0.8827 0.8847
SE 0.2523 0.0740 0.0659 0.2606 0.0691 0.0713
Bias -0.0329 0.0145 0.0092 0.0304 -0.0117 -0.0097
MSE 0.0647 0.0057 0.0044 0.0688 0.0049 0.0052

(a) case I, the εij ’s are independent and σ2 = 4;
(b) case II, the random error εij are generated from an

AR(1) model with variance σ2 = 4 and autocorrelation ρ =
0.9.

We set α1 = 1/
√
5, α2 = 2/

√
5. Three sample sizes for

the number of subjects will be considered: n = 50, n = 100
and n = 200. We conduct simulations under two situations:
balanced and unbalanced designs. For the balanced design,
Ji = 5. For the unbalanced design, Ji’s are iid realizations
of a random variables with distribution p(j) = 0.1 for j =
1, . . . , 10. To save space we present results from balanced
design only. Results from the unbalanced design are similar.
All simulations are replicated for 500 times. The good results
presented in this section are typical of the performances we
observed over several runs with different choices of function,
sample sizes.

To investigate the effect of correlated errors on the esti-
mation, we compute oracle estimates α̂∗

1 and α̂∗
2 using the

true covariance matrix. These oracle estimates serve as a

Table 3. Summary of the RASE (Standard Deviation) for
Case I

Coef. curve n Wong (2008) New

g0(t) 50 0.5883(0.1935) 0.6488(0.2107)
100 0.3829(0.1594) 0.4188(0.1700)
200 0.3105(0.0601) 0.3401(0.0744)

g1(u) 50 0.4204(0.1036) 0.4755(0.1172)
100 0.3096(0.0710) 0.3355(0.0776)
200 0.2100(0.0417) 0.2414(0.0473)

g2(u) 50 0.4152(0.1083) 0.4809(0.1271)
100 0.3011(0.0684) 0.3394(0.0762)
200 0.2083(0.0400) 0.2520(0.0577)

Table 4. Summary of the RASE (Standard Deviation) for
Case II

Coef. curve n Wong (2008) New Oracle

g0(t) 50 0.8757(0.2607) 0.4526(0.1491) 0.3853(0.1405)
100 0.6421(0.1900) 0.3326(0.1117) 0.2619(0.1058)
200 0.4128(0.1162) 0.2448(0.0683) 0.1809(0.0643)

g1(u) 50 0.6098(0.1624) 0.3959(0.1090) 0.2943(0.0873)
100 0.4803(0.1282) 0.2515(0.0582) 0.1893(0.0438)
200 0.2173(0.0418) 0.1786(0.0378) 0.1499(0.0299)

g2(u) 50 0.6212(0.1619) 0.4050(0.1227) 0.3015(0.0983)
100 0.4952(0.1065) 0.2596(0.0625) 0.1844(0.0418)
200 0.2150(0.1017) 0.1296(0.0391) 0.1283(0.0351)

benchmark for the comparison. Moreover, to examine the
efficiency of our proposed estimators, we also compute the
estimates α̌1 and α̌2 via the method of [28] pretending that
random errors are independent.

Performance of estimates of α1 and α2 are assessed using
bias and mean squared error (MSE). Performance of esti-
mates of nonparametric functions gk are assessed using the
root of average squared errors (RASE) defined as

RASE (ĝk) =

⎡
⎣ 1

100

100∑
j=1

(ĝk(tj)− gk(tj))
2

⎤
⎦

1
2

, k = 0, 1, 2,

where {tj , j = 1, . . . , 100} are the grid points at which the
functions ĝk(·) are evaluated.

Tables 1 and 2 list averages, standard errors (SE), biases
and MSEs of estimates of α1 and α2 for the case I and case
II designs respectively. The sample mean and standard de-
viation of the RASEs for the case I and case II designs are
summarized in Tables 3–4 respectively. We can see that the
new and oracle methods have smaller MSE, RASE than the
independence model when the data are correlated and the
gain in efficiency can be achieved even for moderate sample
size. Moreover, our proposed estimation methods performed
very well and as well as the oracle method even for moder-
ate sample sizes. As expected, the performance improves as
the number of subjects increases. In particular, for indepen-
dent data (case I), our proposed method does not lose much
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Figure 1. Balanced design, plots of the true functions (solid
lines) together with their estimates correoponding to the
minimum, lower quartile, median, upper quartile and

maximum RASEs (dotted and dashed lines) of g0(·), g1(·)
and g2(·).

efficiency for estimating the correlation structure when com-
pared with the independence model.

For the sample size n = 100, Figures 1 shows the true
functions together with their estimates corresponding to the
minimum, lower quartile, median, upper quartile and max-
imum RASEs for the balanced designs. The estimates are
good even for the ones with the largest RASEs.

5. LONGITUDINAL PROGRESSION OF GFR
AMONG CKD PATIENTS

Chronic kidney disease (CKD) is a worldwide public
health problem. More than 23 million people in the United
States have CKD. CKD patients are at increased risk for kid-
ney failure, cardiovascular disease, hospitalization and mor-
tality. CKD is typically characterized by progressive loss of
renal function as evidenced by declining glomerular filtra-
tion rate (GFR) over time. The trajectory of GFR has been
well-studied in the medical literature [2], and it has been
noted recently that the trajectory can be quite complex and
there is a large heterogeneity among patients [19]. The pat-
tern of GFR trajectory may be related to demographic and
clinical characteristics. In spite of its importance, there is
only one study by [20] to investigate time-varying risk fac-
tors. [20] divided GFR profile for each patient into two pe-
riods, stable and rapidly declining, and then compared risk
factors between these two periods. We note that not all pa-
tients follow the two periods stable and rapidly declining
pattern. In addition, the approach in [20] does not inves-
tigate the relationship between GFR and time-varying risk
factors directly.

We consider a data set consisting of 727 observations
over time from 85 patients. All patients started at stage 2
CKD. At each time point we have measurement of GFR
(mL/min/1.73m2), albumin (g/dL), hemoglobin (HGB)

Figure 2. Estimates of nonparametric functions (solid
lines) and their 95% pointwise confidence intervals (dotted

lines).

Table 5. Estimates of index coefficient estimates

α1 α2 α3

Average 0.5429 -0.4377 0.2644
SE 0.1925 0.2184 0.1718

(g/dL), as well as electrolytes calcium (mg/dL), chloride
(mg/dL) and phosphate (mg/dL). GFR was estimated us-
ing the CKD-EPI equation. Age of each patient at the start
of the study is also available. We use this data set to show
how the VCSIM may be used to investigate potential effects
of time-varying risk factors as well as time-varying effects.
This example is intended as an illustration of the usefulness
of the new methodology rather than a formal data analysis.

We are interested in the relationship between GFR and
the time-independent covariate age as well as the time-
varying covariates albumin, HGB, calcium, chloride and
phosphate. We consider a single index model for electrolytes
to reduce dimension. We will allow dynamic relationships
between GFR and age, albumin and HGB. Specifically, we
consider the following VCSIM

yij = g0(α1xij1 + α2xij2 + α3xij3) + g1(tij)zij1

+ g2(tij)zij2 + g3(tij)zi3 + εij ,

i = 1, 2, · · · , n, j = 1, 2, · · · , Ji,

where yij is the GFR at time tij from the ith patient, xij1,
xij2, xij3, zij1 and zij2 are measurements of calcium, chlo-
ride, phosphate, albumin and HGB respectively at time tij ,
and zi3 is the age of the ith patient. Variables zij1, zij2 and
zi3 are centered to facilitate the interpretation. The design
is unbalanced and the proposed method for the unbalanced
design was used to fit the data.

Table 5 lists the estimates and standard errors of α1, α2

and α3. The estimates and 95% pointwise confidence inter-
vals of nonparametric functions g0, g1, g2 and g3 are shown
in Figure 2. The bootstrap method with 200 replications
was used to compute the standard errors in Table 5 and
95% confidence intervals in Figure 2.
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Figure 2(a) indicates that GFR decreases as the index
of electrolytes increases. The index is positively associated
with calcium and phosphate and negatively associated with
chloride. Figure 2(b) and Figure 2(c) indicate that GFR
increases as albumin or HGB increase. The positive asso-
ciation between GFR and albumin become stronger during
200 and 300 days. The positive association between GFR
and HGB grows stronger over time. Figure 2(d) indicates
that GFR decreases as age increases and this negatively as-
sociation grows stronger over time.

APPENDIX A. PROOFS

We show proofs of Theorems 1 and 2 under the as-
sumption that α and φ are known constants. When α
and φ are estimated to the order of N−1/2, the proofs
can be completed by noting that α̂ − α = Op(N

−1/2) and

φ̂−φ = Op(N
−1/2). The complete proof is omitted to save

space. In addition, since dij can be estimated by a para-
metric rate, we shall assume that dij is known in our proof,
without loss of generality.

Proof of Theorem 1. Note that 1/N(X̃TW 1X̃) =
τ1(t)diag(1, μ2(K3))(1 + op(1)), then

ĝ0(t) = ĝ01(t) + ĝ02(t),

g0(t) =
1

N

n∑
i=1

J∑
j=1

1

τ1(t)
K3,h3(α

Txij − t)/d2ij(g0(t)

+ g
′

0(t)(α
Txij − t))(1 + op(1)),

where

ĝ01(t) =
1

N

n∑
i=1

J∑
j=1

1

τ1(t)
K3,h3(α

Txij − t)/d2ij

(y∗ij − gT (uij)zij)(1 + op(1)),

ĝ02(t) =
1

N

n∑
i=1

J∑
j=1

1

τ1(t)
K3,h3(α

Txij − t)/d2ij

(g(uij)− ğ(uij))
Tzij(1 + op(1)).

Furthermore,

ĝ0(t)− g0(t) = (Δ1 +Δ2)(1 + op(1)) + ĝ02(t),

where

Δ1 =
1

N

n∑
i=1

J∑
j=1

1

τ1(t)
K3,h3(α

Txij − t)/d2ij

(g0(α
Txij)− g0(t)− g

′

0(t)(α
Txij − t)),

Δ2 =
1

N

n∑
i=1

J∑
j=1

1

τ1(t)
K3,h3(α

Txij − t)/d2ijeij .

Then the proof of Theorem 1 is completed by noting the

fact that Δ1 = 1
2g

′′

0 (t)μ2(K3)h
2
3(1 + op(1)),

√
Nh3Δ2

d−→
N(0, ν0(K3)/τ1(t)), and

√
Nh3ĝ02(t) = op(1).

Proof of Theorem 2. Note that 1/N(ŨTW 2Ũ) =
diag(τ2(u), τ2(u)μ2(K4))(1 + op(1)), then

ĝ(u) = ĝ1(u) + ĝ2(u),

g(u) =
1

N

n∑
i=1

J∑
j=1

τ−1
2 (u)zijK4,h4(uij − u)/d2ij

(g(u) + g
′
(u)(uij − u))Tzij(1 + op(1)),

where

ĝ1(u) =
1

N

n∑
i=1

J∑
j=1

τ−1
2 (u)zijK4,h4(uij − u)/d2ij

(y∗ij − g0(α
Txij))(1 + op(1)),

ĝ2(u) =
1

N

n∑
i=1

J∑
j=1

τ−1
2 (u)zijK4,h4(uij − u)/d2ij

(g0(α
Txij)− ğ0(α

Txij))(1 + op(1)).

Furthermore,

ĝ(u)− g(u) = (Q1 +Q2)(1 + op(1)) + ĝ2(u),

where

Q1 =
1

N

n∑
i=1

J∑
j=1

τ−1
2 (u)zijK4,h4(uij − u)/d2ij

(g(uij)− g(u)− g
′
(u)(uij − u))Tzij ,

Q2 =
1

N

n∑
i=1

J∑
j=1

τ−1
2 (u)zijK4,h4(uij − u)/d2ijeij .

Then the proof of Theorem 2 is completed by noting the

fact that Q1 = 1
2g

′′
(u)μ2(K4)h

2
4(1 + op(1)),

√
Nh4Q2

d−→
N(0, ν0(K4)τ

−1
2 (u)), and

√
Nh3ĝ2(u) = op(1).

Proof of Theorem 3. With λ as the Lagrange multiplier, it
follows from (9) that (α̂, φ̂) is the solution to

1

N

n∑
i=1

J∑
j=1

d−2
ij (yij − ĝ0(α̂

Txij ; α̂, φ̂)− ĝT (uij ; α̂, φ̂)zij

− φ̂
T
Fij)

(
ĝ′0(α̂

Txij ; α̂, φ̂)xij

Fij

)
+ λ

(
α̂
0

)
= 0.

Using Taylor expansion, we have

0 = λ

(
α̂
0

)
+

1

N

n∑
i=1

J∑
j=1

d−2
ij Hijeij
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− 1

N

n∑
i=1

J∑
j=1

d−2
ij Hij(φ̂− φ)TFij

− 1

N

n∑
i=1

J∑
j=1

d−2
ij Hij [ĝ0(α̂

Txij ; α̂, φ̂)− g0(α
Txij)]

− 1

N

n∑
i=1

J∑
j=1

d−2
ij Hij [ĝ(uij ; α̂, φ̂)− g(uij)]

T zij

+oP (1),(14)

where Hij =

(
g′0(α

Txij)xij

Fij

)
. Note that

ĝ0(α̂
Txij ; α̂, φ̂)− g0(α

Txij)

= ĝ0(α̂
Txij ; α̂, φ̂)− ĝ0(α

Txij ; α̂, φ̂)

+ ĝ0(α
Txij ; α̂, φ̂)− g0(α

Txij)

= ĝ′0(α
Txij ; α̂, φ̂)(α̂−α)Txij

+ ĝ0(α
Txij ; α̂, φ̂)− g0(α

Txij) + oP (N
−1/2)

= g′0(α
Txij)(α̂−α)Txij + ĝ0(α

Txij ; α̂, φ̂)

− g0(α
Txij) + oP (N

−1/2).(15)

Substituting (15) into (14), we have

1

N

n∑
i=1

J∑
j=1

d−2
ij HijH

T
ij

(
α̂−α

φ̂− φ

)

= λ

(
α̂
0

)
+

1

N

n∑
i=1

J∑
j=1

d−2
ij Hijeij

− 1

N

n∑
i=1

J∑
j=1

d−2
ij Hij [ĝ0(α

Txij ; α̂, φ̂)− g0(α
Txij)]

− 1

N

n∑
i=1

J∑
j=1

d−2
ij Hij [ĝ(uij ; α̂, φ̂)− g(uij)]

Tzij

+oP (N
−1/2).(16)

By the proofs of Theorem 1 and 2, we have

ĝ0(t; α̂, φ̂)− g0(t) =
{1

2
g

′′

0 (t)μ2(K3)h
2
3

+
1

N

n∑
i=1

J∑
j=1

1

τ1(t)
K3,h3(α

Txij − t)/d2ijeij

}
(1 + op(1)),

ĝ(u; α̂, φ̂)− g(u) =
{1

2
g

′′
(u)h2

4μ2(K4)

+
1

N

n∑
i=1

J∑
j=1

τ−1
2 (u)zijK4,h4(uij − u)/d2ijeij

}
(1 + op(1)).

Consequently,

ĝ0(α
Txij ; α̂, φ̂)− g0(α

Txij)

=
{1

2
g

′′

0 (α
Txij)μ2(K3)h

2
3 +

1

N

n∑
k=1

J∑
l=1

1

τ1(αTxij)

K3,h3(α
Txkl −αTxij)/d

2
klekl

}
(1 + op(1)),

ĝ(uij ; α̂, φ̂)− g(uij)

=
{1

2
g

′′
(uij)h

2
4μ2(K4) +

1

N

n∑
k=1

J∑
l=1

τ−1
2 (uij)zkl

K4,h4(ukl − uij)/d
2
klekl

}
(1 + op(1)),

which implies that, by Nh4
3 −→ 0 and Nh4

4 −→ 0, (16)
becomes

1

N

n∑
i=1

J∑
j=1

HijH
T
ij

(
α̂−α

φ̂− φ

)

=λ

(
α̂
0

)
+

1

N

n∑
i=1

J∑
j=1

d−2
ij Hijeij

− 1

N

n∑
i=1

J∑
j=1

{ 1

N

n∑
k=1

J∑
l=1

Hij

τ1(αTxij)d2ij

K3,h3(α
Txkl −αTxij)/d

2
kl

+
1

N

n∑
k=1

J∑
l=1

Hij

d2ij
zT
klτ

−1
2 (uij)zij

K4,h4(ukl − uij)/d
2
kl

}
ekl + oP (N

−1/2).(17)

Since the term in the big brackets converges to d−2
ij Hij +

d−2
ij E(Hijτ3(Uij)τ

−1
2 (Uij)Zij | Uij) uniformly in i and j,

then (17) reduces to

1

N

n∑
i=1

J∑
j=1

d−2
ij HijH

T
ij

(
α̂−α

φ̂− φ

)

= − 1

N

n∑
i=1

J∑
j=1

d−2
ij E(Hijτ3(Uij)τ

−1
2 (Uij)Zij | Uij)eij

+ λ

(
α̂
0

)
+ oP (N

−1/2).

Multiplying the above equation by Pα = diag(I − ααT , I)
where I is a q × q identity matrix, we obtain

Pα
1

N

n∑
i=1

J∑
j=1

d−2
ij HijH

T
ij

(
α̂−α

φ̂− φ

)

= −Pα
1

N

n∑
i=1

J∑
j=1

d−2
ij E(Hijτ3(Uij)τ

−1
2 (Uij)Zij | Uij)eij

+ oP (N
−1/2).(18)

The proof of Theorem 3 is completed by applying the central
limit theorem to (18).
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