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A quantile parametric mixed regression model for

bounded response variables

CRISTIAN L. BAYES*, JORGE L. BAZAN, AND MARIO DE CASTRO

Bounded response variables are common in many appli-
cations where the responses are percentages, proportions, or
rates. New regression models have been proposed recently to
model the relationship among one or more covariates and the
conditional mean of a response variable based on the beta
distribution or a mixture of beta distributions. However,
when we are interested in knowing how covariates impact
different levels of the response variable, quantile regression
models play an important role. A new quantile parametric
mixed regression model for bounded response variables is
presented by considering the distribution introduced by [27].
A Bayesian approach is adopted for inference using Markov
Chain Monte Carlo (MCMC) methods. Model comparison
criteria are also discussed. The inferential methods can be
easily programmed and then easily used for data modeling.
Results from a simulation study are reported showing the
good performance of the proposed inferential methods. Fur-
thermore, results from data analyses using regression mod-
els with fixed and mixed effects are given. Specifically, we
show that the quantile parametric model proposed here is an
alternative and complementary modeling tool for bounded
response variables such as the poverty index in Brazilian
municipalities, which is linked to the Gini coefficient and
the human development index.

KEYWORDS AND PHRASES: proportions, Kumaraswamy dis-
tribution, HDI, Bayesian inference, MCMC methods, Mixed
models, RStan.

1. INTRODUCTION

Regression models for response variables in the unit in-
terval, including regression models for percentages, propor-
tions or rates have been introduced recently in the literature.
Among them the beta regression model introduced by [23]
and [11], the beta-rectangular regression model proposed by
[1], and the beta mixed regression model proposed by [13].

Examples of dependent response variables in these mod-
els include the percentage of time devoted to an activity
during a certain period of time, the fraction of income
spent on food, the unemployment rate, the poverty rate,
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the score achieved in a test, the fraction of “good” choles-
terol (HDL/total cholesterol), the proportion of sand in the
soil, and the fraction of a surface covered by vegetation.

In the beta regression model, the regression parameters
are interpretable in terms of the mean response, and in many
aspects are similar to generalized linear models. Estimation
can be performed by maximum likelihood [11] or Bayesian
methods [3]. The beta regression model is sufficiently doc-
umented in several publications such as [8], [9], [12], and
[6] and in several applications like in [22] and [37]. In ad-
dition, the beta rectangular model proposed by [1] is more
robust to outliers (comparatively large or influential values
of the response variable) than the beta regression model.
This new model, based on a mixture of a beta distribution
and a uniform distribution, includes the beta regression and
the variable dispersion beta regression model [12] as partic-
ular cases.

Linear mixed models have been used to analyze repeated
measures data or clustered data. The popularity of these
models can be explained by the flexibility to model the
within-subject correlation by handling both balanced and
unbalanced data. However, such models are not adequate
when the response variable is restricted to the unit interval.
For these situations, [36] and [13] proposed a beta mixed re-
gression model considering random effects in both the mean
and the dispersion parameters. While the first authors em-
ployed a maximum likelihood methodology, the last ones
opted for a Bayesian approach. Using a logit transformation
of the Student-t distribution, [43] developed a robust mixed-
effect models for longitudinal response variables in the unit
interval.

In the cited literature, the authors concentrated on the
relationship between one or more covariates and the condi-
tional mean of a response variable given the covariates and
random effects. However, in many applications the quantiles
of the response variable are of central interest. Quantile re-
gression, introduced by [24], has attracted the attention of
many researchers in recent years, as can be seen in the works
by [42], [7], and [28], to name just a few.

Quantile regression is particularly useful when the rate
of change in the conditional quantile, expressed by the re-
gression coefficients, depends on the quantile. The main ad-
vantage is its flexibility for modeling data with heteroge-
neous conditional distributions. Data of this type occurs
in many fields, including Econometrics, Survival Analysis,
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and Ecology [see, for example, 25]. Thus, quantile mixed
regression models for proportions can be useful to model
the relationship between the covariates and the conditional
quantiles of the response variable given the covariates and
random effects. Quantile mixed regression models also pro-
vide a more complete picture of the conditional distribution
of the response variable given the covariates and random
effects. Consider, for example, a model for the quantiles of
a socioeconomic level or the achievement in an educational
test. The interest might rest on the upper quantiles.

From a Bayesian perspective, [41] proposed to assume
an asymmetric Laplace distribution (ALD) in a paramet-
ric quantile regression model for an unbounded response
variable. [26] provided an useful stochastic representation
for the ALD that facilitates the implementation of a Gibbs
sampling scheme for this model. This approach has been ex-
tended to a random intercept regression model by [16] and
to a mixed regression model by [17]. Our proposal is sim-
ilar to the one in [17], but for a response variable in the
unit interval, which can be easily extended to any bounded
response variables on the interval (¢1,c2), with ¢1 < co.

Since the cumulative distribution function (cdf) of the
beta distribution does not have a closed form, quantile re-
gression models built upon this distribution pose some diffi-
culties. In contrast, the Kumaraswamy distribution [27, 21]
is a continuous probability distribution defined on the (0, 1)
interval that is similar to the beta distribution, but with
the advantage of having a simple closed form for both the
probability density function (pdf) and the cdf. In order to
formulate a quantile mixed regression models, we consider
a convenient reparameterization of the Kumaraswamy dis-
tribution in terms of a precision parameter and the ¢-th
quantile kK = x(q) € (0,1), which is a location parameter.

The main goal of this paper is to propose a parametric
quantile mixed regression model for proportions assuming
that the response variable follows a Kumaraswamy distri-
bution. The proposed model can be easily extended to any
bounded response variable.

The paper is organized as follows. In Section 2 we present
a short account of the Kumaraswamy distribution and a con-
venient parameterization that is introduced in order to for-
mulate our general mixed quantile regression model. In Sec-
tions 3 and 4 we formulate and develop a Bayesian approach
for the proposed regression model including model compari-
son criteria. In Section 5 we present results from simulation
studies. Two real data sets are analysed in Section 6 us-
ing our proposed models. Final comments are presented in
Section 7.

2. THE KUMARASWAMY DISTRIBUTION

A random variable Y follows the Kumaraswamy distri-
bution if its pdf is given by

(1) f(yle, B) = aBy*H(1—y*)* 1,

484 C. L. Bayes, J. L. Bazdn, and M. de Castro

0<y<1, a,B>0.

The cdf has closed expression and is given by F(y|a, 5) =
1 — (1 —y®)?. The mean and variance of this distribution
are

E(Y|a,8) =3B (1 + é,ﬁ) and
(2)
Var(Y|o, B) = BB (1 + %ﬁ) — %B? (1 + éﬁ) ,

where B(-,-) denotes the beta function.

As pointed out by [30], the expressions for E(Y) and
Var(Y) make a mean-variance based reparameterization un-
feasible. However, we can find a simple expression for the
quantile function, given by x(q) = F~(¢) = {1 — (1 —
q)Y/PYV/e for 0 < ¢ < 1. In particular, the median is given
by £(0.5) = (1 — 0.5Y/8)1/e,

In order to propose a quantile regression analysis, we con-
sider a reparameterization of the Kumaraswamy distribu-
tion in terms of the ¢-th quantile k(g) and the precision
parameter ¢ = ¢(q) following the ideas presented in [30].
Thus, to obtain a more appropriate regression structure for
the Kumaraswamy distribution, we take

(3) k= {1-(1—q)Y/P}/* and ¢ =—log(1—(1—q)/?)

as a new parameterization. In this case, ¢ is assumed to
be known and the parameter space of (k, )T is given by
(0,1) x (0, 00).

Under this parameterization, the pdf and the cdf of the
Kumaraswamy distribution turn out to be

log(1 — q)p 1

 log (1 —e=%)log(k)

— ¥
log(r)

f(y|’€v 30) =

(4)

log(1—gq) 1

% {1 . yiﬁ } Tog(l—e— %)

and
log(1—gq)

Flyli, ) = 1 - {1 -y = } 07

We consider the notation Y ~ K(k, ¢, q) with the quantile
parameter k£ € (0,1) as a location parameter, ¢ > 0 as a
precision parameter, and the probability ¢ is assumed to be
fixed according to the quantile of interest.

Figure 1 depicts the pdf of the reparameterized version
of the Kumaraswamy distribution in (4) for different values
of k and ¢. We pick the first decile, the median, and the
last decile. When & is fixed, we note that ¢ is a parameter
that controls the precision of the distribution. For larger
values of ¢ we observe less dispersion. On the other hand,
when ¢ is fixed we note that x acts as a parameter that
controls the location of the distribution. For instance, for
larger values of ¢ the mode tends to move to the right. In
general, since k is the ¢g-th quantile of Y, we interpret it as
a location parameter in the range of values of the variable
being modeled.
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Figure 1. Kumaraswamy pdf for different values of k and . Left panel: k = 0.5 and different values of : 1 (solid line), 5

(dashed line), and 10 (dotted line). Right panel:

© =5 and different values of k: 0.3 (solid line), 0.5 (dashed line), and 0.7

(dotted line).

3. THE KURAMASWAMY QUANTILE
DISPERSION MIXED REGRESSION
MODEL

As indicated by [40], we introduce random effects for each
sample unit (individual or cluster) to incorporate a corre-
lation between the repeated measurements within the unit
sample. In this situation, there are two sources of variation
in the data: the between-unit variation and the within-unit
variation.

Let Y; = (Yi1,---,¥in;)T be a vector of responses for the
sample unit 4, where each component y;; takes values in the
(0,1) interval. The Kuramaswamy quantile dispersion mixed
regression model is given by

indep.
yij o~ K(kij, 0ij,q)s

(5)

91(kij) = @B+ z[;bs, and ga(pi;) = —w;;6 — h;d;
for 57 = 1,...,n; and ¢« = 1,...,n, where 8 =
(B1y---5Be)T and & = (01,...,6)T are vectors of re-

gression coefficients (fixed effects) associated with the lo-
cation and the precision parameters, respectively, b, =
(bi1,. .., bip)T and d; = (di1,...,d;r)T are the random
effects of the location and precision parameters, respec-
tively, Tij = (xij17 . ,.%'ijk)T, w;; = (wijl, . ,wijl)T,
Zij = (Zijla ey Zijp)T, and w;; = (hijh ceey hijr)T are co-
variate vectors (possibly overlapping or even identical) and
q € (0,1) is the fixed probability associated to the quantile
of interest.

We assume that the random effects bi,...,b, and
dy,...,d, are all independent and normally distributed, i.e.,
b, ~ N,(0,%;) and d; ~ N,(0,%g), for i =1,...,n, being
3, and X4 positive definite matrices.

In general, the link function gi(-) relating the quantile x;;
with the covariates and random effects can be the inverse
of any cdf corresponding to a continuous distribution. Some
examples are the logit, probit, and complementary log-log
functions. In this paper we adopt the logit link, but other
link functions might be explored. Similarly, go(-) is a link
function relating the precision parameter ¢;; with the co-
variates and random effects. Since the ¢;; must be strictly
positive, we will use the log link. We take the negative sign,
similar to [32], to ease the interpretation of the coefficients.
Since ¢ is a precision parameter, a positive-signed d;; indi-
cates smaller variability, which can be confusing. It seems
more natural to model the dispersion rather than the preci-
sion, and the negative sign enables us to do so.

Under the parameterization in (4), the augmented likeli-
hood function can be written as
(6) L(6,b,d|Y) =

n n;
=TT II fwislsis, 015) 00 (i | 0,%0) 0 (ds | 0, 30)

i=1j=1

—log(1 — q)¢i
7H H log(l —e ‘Plf)log(J

1=17=1

_ %
Tog(ri;)

Nie
log(1—q)
{1 — 1"3(”19) }1og(1—c_“’”’>

X ¢p(b | O,Eb)¢r(di 10,%4),

where @ encapsulates 3, §, X, 34, b= (b],.. .,bn)T d=
(d{> cee »df)T7 Kij = 1/{1 + exp(f )}a Pij =
exp(—w/;8 — hiid;), and ¢,(- | m,S) denotes the pdf of
the s-variate normal distribution with mean vector m and

covariance matrix S.
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4. BAYESIAN INFERENCE

With independent observations, the likelihood function
for the Kumaraswamy quantile mixed regression model is
obtained from (5) and (6). In this way, the augmented pos-
terior distribution of 6, b, and d, denoted by p(6,b,d |Y),

(7)

where p(0) stands for the prior distribution of 8. To com-
plete the Bayesian specification of the model, we set the
prior as

(8) p(6) = p(B)p(d)p(Xp)p(Xa)-

We propose the multivariate normal distributions as the
prior distribution for the fixed effects, i.e., B ~ Ng(0, A)
and & ~ N;(0,C). For the covariance matrices of the ran-
dom effects, we adopt inverse Wishart distributions, i.e.,
3~ IWp(djb,‘I’b) and X4 ~ IWr(il}d,\I’d), where A, C,
vy, Wy, 1y, and ¥, are specified hyperparameters.

After combining the likelihood function in (6) with the
prior distribution in (8), we get the posterior distribution

- log(1 — q)¢ij
0,b,d|Y)
p( | HHlog 1 —e=%ii) log(k;

p(6,b,d|Y) o< L(6,b,d | Y)p(6),

__%ii 4
log(r;j)

P

ij log(1—=q) 1
{1 _ 1‘)3(’%1) }10g(1757¢'ij)

X ¢p( i ‘ Oa Eb)¢T(di | O,Ed)
X ¢x(B 1 0,%p)¢1(d | 0,34)
9) X g(Zp | Yy, Op)9(Xa | Ya, ¥a),

where g(- | 1, ¥) denotes the pdf of the inverse Wishart
distribution. In the particular case of the fixed effects re-
gression model with a constant precision parameter ¢ in
Sections 5.2 and 6.1, the prior distribution for (37, )7 will
be p(B,¢) = p(B)p(p), where log(p) ~ N(0,07), with oF
being sufficiently large to ensure vague prior knowledge.

The posterior distribution in (9) is intractable. Hence, a
possible approximation is obtained through MCMC meth-
ods to draw samples from the posterior density. A simple
way is to trust in the capabilities of the WinBUGS soft-
ware [29] or the RStan package [35] in R [34] (see in Ap-
pendix A an example of RStan code). For the particular
case of a location-regression model without modeling the
precision parameter, the MCMC computations in Section
5.2 were implemented using the FORTRAN language.

i=1j=1

4.1 Model comparison criteria

There are several criteria for comparing different mod-
els fitted to a given data set and for selecting the one
that best fits the data. First, we mention the deviance in-
formation criterion (DIC) proposed by [33]. The DIC is
built upon the deviance D(¥) = —24(9]Y), with 9 =
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(07,67,d")T and ¢(9|Y) denoting the logarithm of the
likelihood function in (6). From G samples ¥4,...,0%¢
generated by the Gibbs sampler, the DIC' is computed
as DIC = D(9) + 2pp, where pp = D(I) — D(I) is
termed the effective number of parameters, with D(9) =
25:1 D(¥,)/G and 9 = 25:1 ¥y/G. We also consider
the expected Akaike’s information criteria (EAIC) and its
Bayesian version (EBIC'), all of them detailed for example
n [15]. These criteria are defined as EAIC = D(I) + 2p*
and EBIC = D(V9) + p*log(n), respectively, where p*
is the number of parameters in the model and n is the
sample size. Additionally, we used the criterion proposed
by [39], named Wanatabe’s information criterion (WAIC).
Wanatabe’s proposal can be viewed as an approximation
to cross-validation [15] and the only difference with respect
to FAIC and EBIC' is the computation of the complexity
penalty pw arc. In this work, we adopt the variance version
due to its stability properties. Hence, in this case, WAIC =
D(9) + 2pwarc, with pware = Y1, Var(log(p(yi|9)))
computed from the output of the Gibbs sampler. Given
a set of candidate models, the model yielding the small-
est value of these criteria is the one that best fits the
data.

5. SIMULATIONS

Based on the methodology described in Sections 3 and 4,
simulation studies were carried out and two real data sets
were analyzed. For all situations, we simulate a large number
of samples, discarding the first of them as a burn-in period.
To avoid correlation problems, we consider a spacing of size
equal to five or more. The convergence of the chains was
monitored by the Geweke’s statistic [18] and graphical in-
spection of the chains. The highest posterior density (HPD)
intervals were computed following the steps described in [5,
Section 7.3.1].

5.1 Prior sensitivity analysis

In this section, we conduct a sensitivity analysis of the
prior specification for the precision parameter (¢). We con-
sider a procedure similar to the one developed by [13] for
the mixed beta regression model. First, a single data set
is generated from a Kumaraswamy mixed regression model
given by v;; | b, ¢, B ndsp K(kij, ¢,0.5), with logit(k;;) =
(B + bir) + (B2 + big)wijo + PB3wizs, for j = 1,...,5 and
i=1,...,200, where B = (51, B2, 3)T. The covariates were
generated from a uniform distribution in the unit interval
and b; = (b;1, bi2)T ~ N2(0,%;). The parameters were set at
© =50, 8=(-2,1,2)T, and ¥} has elements Var(b;1) = 1,
Var(big) = 0.2, and COU(bil, big) =—0.3.

Next, we use the generated data set to perform a sensitiv-
ity analysis under different prior specifications for the preci-
sion parameter. Specifically, we consider three priors previ-
ously used in the literature: (i) ¢ ~ I1G(0.01,0.01) (Ma), (ii)
log(¢) ~ N(0,25) (Mb), and (iii) log(p) ~ N(0,10%) (Mc).



Table 1. Model comparison criteria for models fitted to a
synthetic data set with different prior specifications for the
precision parameter under a Kumaraswamy mixed quantile

regression model

Model Prior for ¢ DIC EAIC EBIC WAIC
Ma ¢ ~ IG(0.01,0.01) -2680.2 -2669.1 -1326.7 -2789.8
Mb  log(e) ~ N(0,25) -2684.6 -2669.9 -1326.5 -2795.3
Mc  log(p) ~ N(0,10%) -2684.2 -2668.9 -1326.5 -2792.7

The prior distributions for the remaining parameters were
specified as 3 ~ N3(0,10%I3) and Xy, ~ IWo(5,2013). Then,
we use the MCMC methods outlined in Section 4 to draw
samples from the posterior distribution. We discarded the
first 10,000 of 20,000 iterations and a thinning equal to 10
resulted in 2000 samples upon which the posterior inference
is based on.

Table 1 reports the values of DIC, EAIC, EBIC, and
W AIC for the fitted models with different prior distribu-
tions for ¢. We observe that the models Mb and Mc outper-
form model Ma. Hence, the vaguer prior log(¢) ~ N(0,10%)
is adopted in the models with constant precision (Sections
5.2 and 6.1).

5.2 Parameter recovery

We conduct a brief simulation study to assess the perfor-
mance of our Bayesian approach in estimating the param-
eters of the model given in (5). In this study we consider
a location regression model without random effects and we
assume a constant precision parameter ¢. We choose three
quantiles levels; namely, a lower quantile (¢ = 0.1), the me-

dian (¢ = 0.5), and a higher quantile (¢ = 0.9), that is,

indep. K(li ) o 1
ir$Py4q), 2 1+ exp(—ﬂl — ﬂQZL’iQ - ﬂ3mi3)7

i=1,...,mn, ¢ =0.1,0.5,0.9.

To generate the data, we first draw n independent ;5 ~
N(0,1) covariates with k = 2,3 and z;; = 1 corresponding
to the intercept. These values remain fixed throughout the
500 repetitions of the simulations and the three sample sizes:
small (n = 40), intermediate (n = 100), and relatively big
(n = 300). Therefore, the simulation study comprises nine
scenarios.

The prior distributions were specified as £
N3(0,10%I3) and log(p) ~ N(0,10%), with I3 denoting the
3 x 3 unity matrix. For each replication, after discarding the
first 1000 iterations of the Gibbs sampler, we used 10,000
iterations with thinning equal to 5, leading to 2000 samples
for each parameter.

Some posterior results together with the true parameters
are summarized in Table 2. We observe that, for all the con-
sidered scenarios, our method performs well. In particular,
the bias is negligible, even when the sample size is as small as
n = 40, and the coverage probability of the 95% HPD inter-
vals differs from the nominal value by at most 2.8%. Since
the datasets were generated from several scenarios cover-
ing different quantile values including extremes, this study
indicates that the Bayesian estimator yields good results ir-
respective of the scenario. Furthermore, as expected, for a
given quantile, the average of the posterior standard devia-
tions (SD) and the root mean squared errors of the posterior
means (RMSE) are close and decrease when the sample size
increases.

Yi

~

Table 2. Posterior results from 500 replications (Par: parameter to be estimated, True: true value of the parameter, Est:
average of the posterior means, SD: average of the posterior standard deviations, RMSE: root mean squared error of the
posterior means and CP: coverage probability of the 95% HPD interval)

n =40 0.1-quantile 0.5-quantile 0.9-quantile
Par True Est SD RMSE CP Par True Est SD RMSE CP Par True Est SD RMSE CP
51 0.5 0.16 099 0.89 0.962 1 0.5 047 032 029 0970 p1 0.5 0.51 020 0.21 0.922
B2 -1.5 -1.67 141 1.26 0.950 (2 -1.5 -1.52 0.43 0.39 0.972 (2 -1.5 -1.51 0.23 0.24 0.934
B3 0.9 1.01 0.61 058 0958 f3 09 091 022 023 0934 B3 0.9 090 0.14 0.14 0.932

© 1.2 1.19 0.15 0.16 0.942 o 1.2 1.21 0.20 0.20 0.954 1.2 1.23  0.27 0.29 0.942

n = 100 0.1-quantile 0.5-quantile 0.9-quantile
Par True Est SD RMSE CP Par True Est SD RMSE CP Par True Est SD RMSE CP
51 0.5 044 043 041 0948 f1 0.5 050 0.17 0.17 0962 1 0.5 049 0.13 0.13 0.952
B2 -1.5 156 064 0.60 0966 (B -1.5 -1.50 0.24 023 0960 B2 -1.5 -149 0.16 0.16 0.938
B3 0.9 096 0.38 037 0948 fs 09 090 0.13 0.13 0938 pSs 0.9 0.90 0.09 0.09 0.962

@ 1.2 1.20 0.09 0.09 0952 ¢ 1.2 1.20 0.12 0.12 0.956 ¢ 1.2 1.22 0.16 0.16 0.946

n = 300 0.1-quantile 0.5-quantile 0.9-quantile
Par True Est SD RMSE CP Par True Est SD RMSE CP Par True Est SD RMSE CP
51 0.5 046 024 023 0950 p1 0.5 047 0.09 0.09 0946 p1 0.5 0.50 0.07 0.07 0.952
B2 -1.5 -1.50 0.34 0.33 0.946 (2 -1.5 -1.52 0.13 0.14 0.934 (2 -1.5 -1.50 0.09 0.09 0.952
B3 09 091 0.18 0.17 0956 B3 0.9 088 0.07 0.08 0936 pBs 0.9 090 0.05 0.04 0.954

%) 1.2 1.2 0.05 0.05 0950 ¢ 1.2 1.19 0.07 0.07 0952 o 1.2 121 0.09 0.09 0.960
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6. REAL DATA ANALYSIS

6.1 Location quantile regression model

In this section we analyze a real data set using quantile
regression models without random effects and a fixed preci-
sion parameter ¢. [10] studied the attitudes toward Statis-
tics of 146 Elementary School teachers of primary educa-
tion taking into account some characteristics of them such
as whether they have a specialty or not, named here as spe-
cialty (covariate xo with Sciences as a baseline, and cate-
gories Social Sciences, SS, and Elementary School without
specialty, ES), the country where the teachers live (covari-

ate x3 with categories Spain as baseline and Peru, P), and
gender (covariate x4 with categories female as baseline and
male, M), whereas z; = 1 in order to accommodate the
intercept. The scale of attitudes consists of 25 items from
a five-point Likert scale ranging from “strongly disagree”
(level 1) to “strongly agree” (level 5). The responses of a
subject are added together to form a score S with values
in the set {5,6,...,125}. For this data set, the score ranges
from 48 to 102, with mean and standard deviation equal to
77.9 and 11.0, respectively. In our application, we take the
transformed score Y, given by Y = (S — 25)/(125 — 25), as
the response variable, ranging from 0.23 to 0.77, with mean

Table 3. Posterior summaries for the fitted models (Mean: mean and SD: standard deviation)

Full model Reduced model
Model Parameter Mean SD 95% HPD interval Mean SD 95% HPD interval
0.25-quantile Intercept 0.15 0.09 (-0.02, 0.32) 0.10 0.06 (-0.01, 0.20)
Kumaraswamy Specialty: SS -0.15 0.09 (-0.32, 0.03)
regression Specialty: ES -0.35 0.14 (-0.60, -0.08) -0.23 0.11 (-0.43, 0.01)
Country: P -0.33 0.09 (-0.50, -0.15) -0.38 0.08 (-0.54, -0.22)
Gender: M 0.04 0.08 (-0.11, 0.20)
© 4.58 0.22 (4.16, 5.01) 4.56 0.22 (4.14, 4.98)
DIC -263.4 -264.6
EAIC -257.5 -260.6
EBIC -239.6 -248.7
WAIC -262.9 -264.5
0.5-quantile Intercept 0.43 0.08 (0.28, 0.58) 0.38 0.05 (0.29, 0.48)
Kumaraswamy Specialty: SS -0.14 0.08 (-0.30, 0.02)
regression Specialty: ES -0.32 0.13 (-0.57, -0.08) -0.21 0.11 (-0.41, 0.00)
Country: P -0.31 0.08 (-0.48, -0.16) -0.35 0.08 (-0.50, -0.20)
Gender: M 0.04 0.08 (-0.11, 0.19)
%) 3.72 0.22 (3.29, 4.12) 3.69 0.21 (3.28, 4.12)
DIC -263.4 -264.6
EAIC -257.6 -260.6
EBIC -239.7 -248.7
WAIC -262.9 -264.5
0.75-quantile Intercept 0.68 0.08 (0.54, 0.83) 0.64 0.05 (0.55, 0.74)
Kumaraswamy Specialty: SS -0.13 0.08 (-0.29, 0.02)
regression Specialty: ES -0.31 0.12 (-0.54, -0.08) -0.20 0.10 (-0.39, -0.01)
Country: P 0.29 0.08 (-0.45, -0.15) 0.34 0.07 (-0.48, -0.19)
Gender: M 0.03 0.07 (-0.10, 0.18)
© 3.04 0.21 (2.59, 3.43) 3.01 0.21 (2.59, 3.41)
DIC -263.4 -264.6
EAIC -257.6 -260.6
EBIC -239.7 -248.7
WAIC -262.9 -264.5
Mean Intercept 0.41 0.07 (0.27, 0.56) 0.36 0.05 (0.26, 0.45)
beta Specialty: SS -0.12 0.08 (-0.28, 0.03)
regression Specialty: ES -0.28 0.11 (-0.50, -0.06) -0.18 0.09 (-0.34, -0.01)
Country: P -0.34 0.08 (-0.50, -0.19) -0.38 0.07 (-0.51, -0.24)
Gender: M 0.01 0.07 (-0.13, 0.14)
%) 26.37 3.08 (20.70, 32.73) 26.31 3.02 (20.37, 32.19)
DIC -267.1 -268.9
EAIC -267.3 -268.9
EBIC -249.4 -256.9
WAIC -266.1 -268.6
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and standard deviation equal to 0.53 and 0.11, respectively.

We have interest in capturing the effect of covariates on
different levels of attitude assuming a common effect in the
dispersion, that is, we have interest in a quantile regres-
sion model for the attitude toward Statistics. Thus, the Ku-
maraswamy location quantile regression model was consid-
ered. We fit the model to assess the effect of the covariates
on three levels of attitude, i.e., lower (0.25-quantile), middle
(0.5-quantile), and upper (0.75-quantile). The fitted model

is specified as y; ndsp K(ki, ,q), for ¢ = 0.25,0.5,0.75,
with

10git(l€i) = 51 + 52[(£E2i = SS) + 55[(%21 = ES)+
Bal(x3; = P) + P51 (x4; = M),

for i = 1,...,146, where I(x = A) = 1, if z = A; 0, oth-
erwise. As in Section 5.2, we set the prior distributions as
B ~ N5(0,10*I5) and log(¢) ~ N(0,10%). For comparison,
we include also the usual beta regression model. In this case
we adapted the BUGS code provided by [3]. We ran the
Gibbs sampler under the same conditions, discarding the
first 10,000 iterations and performing 25,000 additional it-
erations with thinning equal to 5, leading to 5000 samples
for each parameter. The convergence analysis of the MCMC
chains provide strong indication of chain convergence in all
fitted models. We fitted also the location-precision model
linking the precision parameter ¢ to the covariates. How-
ever, according to the information criteria in Section 4.1
(not shown), the location model is preferred.

Table 3 collects posterior summaries of the full (with all
covariates) and the reduced models (without non-significant
coefficients, i.e., regression coefficients such that the 95%
HPD intervals include 0). Since the three quantile models
represent different parameterizations of the same model, the
differences in the information criteria are due only to round-
off errors. Taking into account the information criteria in
Table 3, we select for simplicity the reduced models as our
working models. The results indicate that the effect of the
covariates is similar at the three levels of attitude, differ-
ing only in the estimate of the intercept. Note also that
the median regression and the beta regression models have
similar estimates of the coefficients. This is not surprising
because mean and median are comparable measures of loca-
tion. However, note that the estimate of the correspondent
dispersion parameter in the median regression model takes
lower values in comparison to the corresponding dispersion
parameters in the mean regression model.

Considering the results of the four models, we conclude
that Elementary School teachers without specialty and Pe-
ruvian teachers present significant lower attitudes toward
Statistics in comparison with the baseline categories (Sci-
ences/Social Sciences teachers and Spanish teachers, respec-
tively). The results are in accordance with the findings in
[10].

Not surprisingly, the posterior means in Tables 3 have
the same sign. We observe that the larger the quantile, the
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Figure 2. Posterior means and 95% HPD intervals for the
0.25-, 0.5-, and 0.75-quantiles of attitude, from left to right.
1: Spanish teachers of Sciences/Social Sciences, 2:
Elementary School Spanish teachers without specialty, 3:
Peruvian teachers of Sciences/Social Sciences, and 4:
Elementary School Peruvian teachers without specialty.

smaller the estimate of the shape parameter ¢, indicating
less precision and higher kurtosis for the quantile of atti-
tude. We also note that the estimates for the 0.5-quantile
model and the beta regression model are similar. The effect
of specialty slightly changes from non-significant to signifi-
cant, indicating that our model can reveal that the role of
a covariate is not necessarily important at different levels
(quantiles) of the response variable.

From (5) we obtain x = logit(z”3). For a given ¢, using
the output of the Gibbs sampler we get samples of the ¢-
quantile. Figure 2 shows posterior summaries for the 0.25,
0.5, and 0.75 quantiles of attitude. This figure synthesizes
the effects of the covariates on the quantiles. There are four
different combinations of the levels of specialty and coun-
try. Note that for Spanish teachers, comparing the teachers
of Sciences/Social Sciences and Elementary School teachers
without specialty, the three 95% HPD intervals of attitude
do not overlap. Note also the high variability in the attitude
for Peruvian teachers. As pointed out by [10], this can be
explained, at least partially, since in Spain there is a greater
effort in Statistics teachers’ formation, curriculum organiza-
tion, and didactics.

According to Table 3, the beta model yields a better fit to
the data. However, since we are interested in the quantiles,
the Kuramaswamy model was taken as our working model.
Moreover, we are aware of the possible quantile crossing
issue as pointed out by [2]. In this example this problem
was not observed.
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Table 4. Model comparison criteria for the fitted models

Model o PD pwarc D(9) (Dbar) DIC EAIC EBIC WAIC
M1 4 4.0 5.7 -18050.9 -18042.9 -18042.9 -18016.4 -18041.1
M2 6 6.0 7.8 -18429.9 -18418.0 -18417.9 -18378.2 -18416.1
M3 32 32.1 34.3 -19608.9 -19544.8 -19544.9 -19332.9 -19541.7
M4 62 61.7 62.0 -20026.6 -19903.1 -19902.6 -19491.9 -19899.3

6.2 Mixed quantile dispersion regression logit(ki;) = &8+ bi, by ~ N(0,07),
model log(¢ij) = ~whd —d;,  d; ~ N(0,03),
In this section we analyze data collected from a nation- for j = 1, ..., n; municipalities and i = 1, ..., 27 states, with

wide household survey in Brazil, the so-called PNAD (Na-
tional Household Survey) [19], carried out in 2013. The data
comprises 5563 municipalities in Brazil (two of them were
excluded because they present missing values). The response
variable is a poverty index defined as the proportion of peo-
ple with per capita income equal to or less than R$ 140.00
(Brazilian currency) per month (ranging from 0.002 to 0.786,
with mean and standard deviation equal to 0.232 and 0.179,
respectively). As covariates in (5), we take the Gini coef-
ficient (x2 = wsy: Gini) representing the income distribu-
tion inequality (ranging from 0.28 to 0.80, with mean and
standard deviation equal to 0.49 and 0.07, respectively) and
the municipal human development index (MHDI) proposed
by the United Nations Development Programme (UNDP)
(r3 = ws: MHDI) (ranging from 0.42 to 0.86, with mean
and standard deviation equal to 0.66 and 0.07, respectively).
The MHDI is built on per capita income, education, and
life expectancy at birth. Our interest lies in the relationship
between the poverty index and the inequality and human
development indexes. Since in Brazil the municipalities are
grouped in 27 states, the following models for the median
of the poverty index were formulated (in increasing order of
complexity):

M1: quantile model

Yi in(i?ﬂ K("{iv Pis 05)7
logit(k;) = 1B, log(w;) = —d1.

M2: quantile and dispersion model

indep.
~

Yi K(I{i, Diy 05),
logit(k;) = @ B, log(p;) = —wlé,

fori =1,...,27 states.
M3: random intercept quantile model

indep.
Yij ~

logit(liij) = mgﬁ + bi,

K(Hija Pijy 05)3
bi ~ N(Ov 05)7 10g(§01) = _61'
M4: random intercepts quantile and dispersion model

indep.

vi; ~ K(kij,ij,0.5),
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the number of municipalities ranging from 1 to 853 (median
= 143, mean = 206).

M1 and M2 correspond to regression models where the
covariates have an effect on the median (¢ = 0.5) and on
both the median and the dispersion parameter, respectively.
On the other side, M3 and M4 are obtained from M1 and
M2 by introducing random effects in the intercept in order
to capture within-state dependence.

We adopt the prior specifications B8 ~ N3(0,10%I3),
81 ~ N(0,10%) (M1 and M3), and § ~ N3(0,10%I3) (M2
and M4) for the regression coefficients. Furthermore, o ~
Inv-Gamma(0.01,0.01) and 02 ~ Inv-Gamma(0.01,0.01).
We use the RStan package in R taking 20,000 iterations and
four chains. By default, only the second half of the chains
was used leading to a MCMC sample size of 40,000. The con-
vergence analysis of the chains (not shown) provides strong
indication of convergence for all fitted models.

Model comparison criteria are displayed in Table 4. No-
tice that there is a good agreement between the number of
parameters and the effective number of parameters. We see
that mixed models are preferable to models without ran-
dom effects. Overall, model M4 is the one that yields the
best fit to the data set. Posterior summaries for this model
are shown in Table 5. In what follows, all the discussions
pertain to the results from model M4.

Notice that for both components of the model (quantile
and dispersion parameter), the Gini coeflicient (Gini) has a
positive effect while the human development index (MHDI)
has a negative effect. Since both Gini and MHDI are cen-
tered and are in the same scale, we can say that MHDI
has a greater impact on the location and dispersion of the
poverty index than Gini. Moreover, we see that the effect of
the state, measured by the variance of random intercept, is
lower when compared to the effect of the selected covariates.

Looking a little bit closer at the predictions of the random
intercept of the quantile component (b) in Table 5, we can
split the states in three clusters of states, as follows: (i) clus-
ter 1, with negative predictions, is formed by Santa Cata-
rina, Rio Grande do Sul, Sao Paulo, Mato Grosso do Sul,
Parand, Goias, Rio de Janeiro, Rondonia, and Mato Grosso
states, (ii) cluster 3, with positive predictions, is formed by
Pard, Amazonas, Alagoas, Piaui, Roraima, Bahia, Pernam-
buco, Paraiba, Sergipe, Tocantins, Rio Grande do Norte,



Table 5. Posterior summaries for model M4 (Mean: mean, SD: standard deviation, and 95% Cl: 95% credible interval)

Quantile (3)

Dispersion parameter (9)

Mean SD 95% CI Mean SD 95% CI

Coefficients: Intercept -1.45 0.05 (-1.55, -1.34) -2.00 0.05 (-2.10, -1.91)
Gini 3.86 0.09 (3.68, 4.04) 0.62 0.18 (0.27, 0.96)
MHDI -11.18 0.13 (-11.43, -10.94) -2.25 0.24 (-2.72, -1.77)

o2 0.07 0.02 (0.04, 0.13) 0.05 0.02 (0.03, 0.09)

States

Santa Catarina -0.46 0.06 (-0.58, -0.34) 0.30 0.07 (0.18, 0.43)
Rio Grande do Sul -0.39 0.06 (-0.51, -0.28) 0.31 0.06 (0.20, 0.43)
Sdo Paulo -0.38 0.06 (-0.49, -0.26) 0.28 0.06 (0.17, 0.39)
Mato Grosso do Sul -0.31 0.06 (-0.44, -0.18) -0.04 0.09 (-0.21, 0.13)
Parana -0.29 0.06 (-0.40, -0.18) 0.13 0.06 (0.01, 0.25)
Goiss -0.26 0.06 (-0.38, -0.14) 0.18 0.06 (0.06, 0.31)
Rio de Janeiro -0.20 0.06 (-0.31, -0.08) -0.37 0.09 (-0.54, -0.20)
Rondoénia -0.19 0.06 (-0.31, -0.06) -0.19 0.10 (-0.37, 0.01)
Mato Grosso -0.14 0.06 (-0.26, -0.02) 0.06 0.07 (-0.08, 0.21)
Distrito Federal -0.08 0.22 (-0.50, 0.35) -0.03 0.22 (-0.47, 0.41)
Acre -0.07 0.08 (-0.23, 0.09) 0.06 0.13 (-0.18, 0.32)
Minas Gerais -0.07 0.06 (-0.18, 0.04) 0.24 0.05 (0.13, 0.34)
Espirito Santo -0.01 0.06 (-0.13, 0.10) 027 0.09 (-0.45, -0.09)

Random Para 0.01 0.06 (-0.11, 0.13) 0.20 0.07 (0.06, 0.35)
intercepts Amazonas 0.05 0.07 (-0.09, 0.20) 0.33 0.09 (0.16, 0. 51)
(b and d) Alagoas 0.07 0.06 (-0.04, 0.19) -0.14 0.08 (-0.30, 0.02)
Piaui 0.13 0.06 (0.02, 0.24) -0.05 0.06 (-0.18, 0.07)
Roraima 0.20 0.09 (0.02, 0.37) 0.06 0.16 (-0.23, 0.38)
Bahia 0.15 0.05 (0.04, 0.25) 0.13 0.06 (-0.24, -0.02)
Pernambuco 0.17 0.06 (0.06, 0.28) -0.05 0.07 (—0.18, 0.09)
Paraiba 0.18 0.06 (0.07, 0.29) -0.11 0.06 (-0.23, 0.01)
Sergipe 0.20 0.06 (0.09, 0.32) 0.27 0.09 (-0.44, -0.08)
Tocantins 0.24 0.06 (0.13, 0.35) -0.08 0.07 (-0.22, 0.06)
Rio Grande do Norte 0.25 0.06 (0.14, 0.36) -0.17 0.07 (-0.31, -0.04)
Amapi 0.33 0.08 (0.17, 0.49) 0.04 0.15 (-0.32, 0.26)
Maranhio 0.29 0.06 (0.18, 0.40) 0.02 0.06 (-0.11, 0.14)
Ceard 0.55 0.06 (0.44, 0.66) -0.25 0.07 (-0.38, -0.12)

Amapd, Maranhao, and Cear4 states (all of them located at
the north part of the country), and (iii) cluster 2, with pre-
dictions around 0, is formed by Distrito Federal, Acre, Minas
Gerais, and Espirito Santo states. In other words, cluster 1 is
formed by states with low levels of poverty, whereas cluster
3 is composed by states with high levels of poverty. Taking
into account the states in clusters 1 and 3 and the literature
on gross domestic product studies [see, for example, 20], we
can say that our approach clearly identifies the behaviour
of the states with respect to their positions in the poverty
index ranking.

With respect to the predictions of the random intercept of
the dispersion parameter component, there is no a clear-cut
pattern.

7. FINAL COMMENTS

In this paper a new quantile parametric mixed regres-
sion model for bounded response variables is proposed. Our
model is built on the distribution introduced by [27]. A repa-

rameterization of this distribution in terms of a given quan-
tile and the precision parameter enables us to link any quan-
tile of the distribution to covariates. Inference is based on a
Bayesian approach with proper (and vague) prior distribu-
tions.

Since the posterior distribution is not amenable to an-
alytical treatment, we rely on Markov Chain Monte Carlo
methods. Results from a simulation study shows that even
in case of extreme quantiles (0.25 and 0.75), our Bayesian
proposal yields estimators with a good performance. Fur-
thermore, two real data sets are analyzed using the proposed
methodologies. Besides the study in Section 5.1, we ran the
Gibbs sampler with different values of the hyperparameters
in (8). The differences in the results are not important when
compared with our conclusions in Sections 5 and 6.

We envision future works exploring different link func-
tions in (5), possibly asymmetric ones. Bayesian diagnostic
tools [31] are also of interest. Models for zero-inflated and
one-inflated data sets [14] and with a spatial component [4]
would extend the present paper, as well as extensions to cen-
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sored data [38] with a bounded response variable. Another
point of interest for future research is a Bayesian solution to
deal with the quantile crossing problem.

Finally, the model and inferential methods can be eas-
ily implemented using standard software, as can be seen in
Appendix A, and then used for data modeling.
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APPENDIX A. RSTAN CODE

The code for the M4 model in Table 4 is given below. We
adopted the logit link for the quantile parameter and the log
link for the precision parameter. The hyperparameters in the
prior distributions for all the parameters need to be specified
by the user, as well as the probability ¢ corresponding to the
quantile of interest.

data {
int<lower = 0> n; // number of observations
int<lower = 0> M; // number of subjects

real<lower = O,upper = 1> y[n]; // response variable
real x1[n]; // covariate

real x2[n]; // covariate

int<lower = 0> id[n]; // id variable
real<lower = O,upper = 1> q; // quantile
}

parameters {

real deltaO;

real deltal;

real delta2;

real betal;

real betal;

real beta2;

real<lower = 0> sigma2b;

real<lower = 0> sigma2d;

real bib[M];

real bid[M];

}
transformed parameters {
real<lower = 0> sigmab;

real<lower = 0> sigmad;
sigmab <- sqrt(sigma2b);
sigmad <- sqrt(sigma2d);

}

model {

real kappaln];

real philnl;

real al[n];

real b[n];

for(j in 1:M{

bib[j] ~ normal(0, sigmab);
bid[j] ~ normal(0, sigmad);
}

beta0 ~ normal(0, 100);
betal ~ normal(0, 100);
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beta2 ~ normal(0, 100);

delta0 ~ normal(0, 100);

deltal ~ normal(0, 100);

delta2 ~ normal(0, 100);

sigma2b ~ inv_gamma(0.01, 0.01);

sigma2d ~ inv_gamma(0.01, 0.01);

for(i in 1:n){

phi[i] <- exp(-delta0 - deltal * x1[i] - delta2 * x2[il
- bid[id[i]]);

b[i] <- log(1 - q) / log(l - exp(-philil));

kappal[i] <- inv_logit(beta0 + betal * x1[i] + beta2 * x2[i]
+ bib[id[i]1]);

ali] <- -phil[il / log(kappalil);
increment_log_prob(log(alil) + log(bl[il)

+ (alil - 1) * log(yl[il) +

(b[i] - 1) * logim(pow(y[il, alil)));

}

}
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