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Quantile regression in linear mixed models:
a stochastic approximation EM approach

Christian E. Galarza, Victor H. Lachos, and
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∗,†

This paper develops a likelihood-based approach to ana-
lyze quantile regression (QR) models for continuous longitu-
dinal data via the asymmetric Laplace distribution (ALD).
Compared to the conventional mean regression approach,
QR can characterize the entire conditional distribution of
the outcome variable and is more robust to the presence of
outliers and misspecification of the error distribution. Ex-
ploiting the nice hierarchical representation of the ALD,
our classical approach follows a Stochastic Approximation
of the EM (SAEM) algorithm in deriving exact maximum
likelihood estimates of the fixed-effects and variance compo-
nents. We evaluate the finite sample performance of the al-
gorithm and the asymptotic properties of the ML estimates
through empirical experiments and applications to two real
life datasets. Our empirical results clearly indicate that the
SAEM estimates outperforms the estimates obtained via the
combination of Gaussian quadrature and non-smooth opti-
mization routines of the Geraci and Bottai (2014) approach
in terms of standard errors and mean square error. The pro-
posed SAEM algorithm is implemented in the R package
qrLMM().

Keywords and phrases: Quantile regression, Linear
mixed-effects models, Asymmetric laplace distribution,
SAEM algorithm.

1. INTRODUCTION

Linear mixed models (LMM) are frequently used to ana-
lyze grouped/clustered data (such as longitudinal data, re-
peated measures, and multilevel data) because of their abil-
ity to handle within-subject correlations that characterizes
grouped data [30]. Majority of these LMMs estimate co-
variate effects on the response through a mean regression,
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controlling for between-cluster heterogeneity via normally-
distributed cluster-specific random effects and random er-
rors. However, this centrality-based inferential framework is
often inadequate when the conditional distribution of the
response (conditional on the random terms) is skewed, mul-
timodal, or affected by atypical observations. In contrast,
conditional quantile regression (QR) methods [15, 16] quan-
tifying the entire conditional distribution of the outcome
variable were developed that can provide assessment of co-
variate effects at any arbitrary quantiles of the outcome.
In addition, QR methods do not impose any distributional
assumption on the error terms, except that the error term
has a zero conditional quantile. Because of its popularity
and the flexibility it provides, standard QR methods are
implementable via available software packages, such as, the
R package quantreg.

Although QR was initially developed under a univari-
ate framework, the abundance of clustered data in recent
times led to its extensions to mixed modeling framework
(classical, or Bayesian), via either the distribution-free route
[25, 9, 10, 7], or the traditional likelihood-based route,
mostly using the asymmetric Laplace distribution (ALD)
[12, 40, 13]. Among the ALD-based models, [12] proposed a
Monte Carlo EM (MCEM)-based conditional QR model for
continuous responses with a subject-specific random (uni-
variate) intercept to account for within-subject dependence
in the context of longitudinal data. However, due to the
limitations of a simple random intercept model to account
for the between-cluster heterogeneity, [13] extended it to a
general quantile regression linear mixed model (QR-LMM)
with multiple random effects (both intercepts and slopes).
However, instead of going the MCEM route, the estima-
tion of the fixed effects and the covariance components
were implemented using an efficient combination of Gaus-
sian quadrature approximations and non-smooth optimiza-
tion algorithms.

The literature on QR-LMM is now extensive. However,
there are no studies conducting exact inferences for QR-
LMM from a likelihood-based perspective. In this paper, we
proceed to achieve that via a robust parametric ALD-based
QR-LMM specification, where the full likelihood-based im-
plementation follows a stochastic version of the EM algo-
rithm (SAEM). The SAEM was initially proposed by [5]
using maximum likelihood (ML) techniques as a powerful
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alternative to the EM when the E-step is intractable. The
SAEM algorithm has been proved to be more computation-
ally efficient than the classical MCEM algorithm due to the
recycling of simulations from one iteration to the next in the
smoothing phase of the algorithm. Moreover, as pointed out
in [29], the SAEM algorithm, unlike the MCEM, converges
even in a typically small simulation size. However, since the
unobserved data cannot be simulated exactly under the con-
ditional distributions for a variety of models, [19, 20] coupled
a MCMC procedure to the SAEM algorithm, and studied
the general conditions for its convergence. We adapt this
strategy for inference in the context of QR-LMM, and com-
pare and contrast this to the approximate method proposed
by Geraci and Bottai [13]. Furthermore, application of our
method to two longitudinal datasets is illustrated via the R
package qrLMM().

The rest of the paper proceeds as follows. Section 2
presents some preliminaries, in particular the connection be-
tween QR and ALD, and an outline of the EM and SAEM
algorithms. Section 3 develops the MCEM and the SAEM
algorithms for a general LMM, while Section 4 outlines the
likelihood estimation and standard errors. Section 5 presents
simulation studies to compare the finite sample performance
of our proposed methods with the competing method of
geraci and Bottai [13]. Application of the SAEM method to
two longitudinal datasets, one examining cholesterol level
and the other on orthodontic distance growth are presented
in Section 6. Finally, Section 7 concludes, sketching some
future research directions.

2. PRELIMINARIES

In this section, we provide some useful results on the ALD
and QR, and outline the EM and SAEM algorithms for ML
estimation.

2.1 Connection between QR and ALD

Let yi denote the response of interest and xi the corre-
sponding covariate vector of dimension k × 1 for subject i,
i = 1, . . . , n. Then, the pth (0 < p < 1) QR model takes the
form

Qp(yi) = x�
i βββp, i = 1, . . . , n,

where Qp(yi) is the quantile function (or the inverse cumu-
lative distribution function) of yi given xi evaluated at p,
and βββp is a vector of regression parameters corresponding
to the pth quantile. The regression vector βββp is estimated
by minimizing

(1)

n∑
i=1

ρp(yi − x�
i βββp),

where ρp(·) is the check (or loss) function defined by ρp(u) =
u(p− I{u < 0}), with I{·} the usual indicator function.

Next, we define the ALD. A random variable Y is dis-
tributed as an ALD [39] with location parameter μ, scale

Figure 1. Standard asymmetric Laplace density.

parameter σ > 0 and skewness parameter p ∈ (0, 1), if its
probability density function (pdf) given by

(2) f(y|μ, σ, p) = p(1− p)

σ
exp

{
−ρp

(
y − μ

σ

)}
.

The ALD is an asymmetric distribution with a straightfor-
ward skewness parametrization, and the check function ρp(·)
is closely related to the ALD [17, 39]. Note that minimizing
the loss function in (1) is equivalent to maximizing the ALD
likelihood function. This is in tune to the result from simple
linear regression, where the ordinary least square (OLS) esti-
mator of the regression parameter minimizing the error sum
of squares is equivalent to the maximum likelihood (ML)
estimator of the corresponding Gaussian likelihood.

It is easy to see that ρp
(
Y−μ
σ

)
follows an exponential(1)

distribution. Figure 1 plots the ALD, illustrating how the
skewness changes with p. For example, when p = 0.1, most
of the mass is concentrated around the right tail, while for
p = 0.5, both tails of the ALD have equal mass and the
distribution resemble the more common double exponential
distribution. In contrast to the normal distribution with a
quadratic term in the exponent, the ALD is linear in the
exponent. This results in a more peaked mode, together
with thicker tails. On the contrary, the normal distribu-
tion has heavier shoulders compared to the ALD. The ALD
abides by the following stochastic representation [18, 21].
Let U ∼ exp(σ) and Z ∼ N(0, 1) be two independent ran-
dom variables. Then, Y ∼ ALD(μ, σ, p) can be represented
as

(3) Y
d
= μ+ ϑpU + τp

√
σUZ,

where ϑp = 1−2p
p(1−p) and τ2p = 2

p(1−p) , and
d
= denotes equal-

ity in distribution. This representation is useful in obtaining
the moment generating function (mgf), and formulating the
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estimation algorithm. From (3), the hierarchical representa-
tion of the ALD follows

Y |U = u ∼ N(μ+ ϑpu, τ
2
pσu),

U ∼ exp(σ).(4)

This representation will be useful for the implementation
of the EM algorithm. Moreover, since Y |U = u ∼ N(μ +
ϑpu, τ

2
pσu), one can easily derive the pdf of Y , given by

(5) f(y|μ, σ, p) = 1√
2π

1

τpσ
3
2

exp
(δ(y)

γ

)
A(y),

where δ(y) = |y−μ|
τp

√
σ
, γ =

√
1
σ

(
2 +

ϑ2
p

τ2
p

)
=

τp
2
√
σ

and A(y) =

2
(

δ(y)
γ

)1/2
K1/2

(
δ(y)γ

)
, with Kν(.), the modified Bessel

function of the third kind. It is easy to observe that the
conditional distribution of U , given Y = y, is U |(Y = y) ∼
GIG(12 , δ, γ), where GIG(ν, a, b) is the Generalized Inverse
Gaussian (GIG) distribution [2] with the pdf

h(u|ν, a, b) = (b/a)ν

2Kν(ab)
uν−1 exp

{
− 1

2

(
a2/u+ b2u

)}
;

u > 0, ν ∈ R, a, b > 0

The moments of U can be expressed as

(6) E[Uk] =
(a
b

)k Kν+k(ab)

Kν(ab)
, k ∈ R.

2.2 The EM and SAEM algorithms

In models with missing data, the EM algorithm [6] has
established itself as the centerpiece for ML estimation of
model parameters, mostly when the maximization of the
observed log-likelihood function denoted by �(θθθ; yobs) =
log f(yobs;θθθ) is complicated. Let yobs and q represent ob-
served and missing data, respectively, such that the com-
plete data can be written as ycom = (yobs,q)

�. This itera-
tive algorithm maximizes the complete log-likelihood func-
tion �c(θθθ; ycom) = log f(yobs,q;θθθ) at each step, converging
to a stationary point of the observed likelihood �(θθθ; yobs) un-
der mild regularity conditions [38, 35]. The EM algorithm
proceeds in two simple steps:

E-Step: Replace the observed likelihood by the com-
plete likelihood and compute its conditional expectation

Q(θθθ|θ̂θθ
(k)

) = E{�c(θθθ; ycom)|θ̂θθ
(k)

,yobs}, where θ̂θθ
(k)

is the es-
timate of θθθ at the k -th iteration;

M-Step: Maximize Q(θθθ|θ̂θθ
(k)

) with respect to θθθ to obtain

θ̂θθ
(k+1)

.

However, in some applications of the EM algorithm, the
E-step cannot be obtained analytically and has to be cal-
culated using simulations. The Monte Carlo EM (MCEM)

algorithm was proposed in [36], where the E-step is replaced
by a Monte Carlo approximation based on a large number
of independent simulations of the missing data. This simple
solution is infact computationally expensive, given the need
to generate a large number of independent simulations of
the missing data for a good approximation. Thus, in order
to reduce the amount of required simulations compared to
the MCEM algorithm, the SAEM algorithm proposed by
[5] replaces the E-step of the EM algorithm by a stochas-
tic approximation procedure, while the Maximization step
remains unchanged. Besides having good theoretical prop-
erties, the SAEM estimates the population parameters ac-
curately, converging to the global maxima of the ML es-
timates under quite general conditions [1, 5, 19]. At each
iteration, the SAEM algorithm successively simulates miss-
ing data with the conditional distribution, and updates the
unknown parameters of the model. At iteration k, the SAEM
proceeds as follows:

E-Step:

• Simulation: Draw (q(�,k)), � = 1, . . . ,m from the condi-

tional distribution of the missing data f(q|θθθ(k−1),yobs).

• Stochastic Approximation: Update the Q(θθθ|θ̂θθ
(k)

) func-
tion as

Q(θθθ|θ̂θθ
(k)

) ≈ Q(θθθ|θ̂θθ
(k−1)

)

+ δk

[
1

m

m∑
�=1

log f(yobs,q
(�,k);θθθ)−Q(θθθ|θ̂θθ

(k−1)
)

]
(7)

M-Step:

• Maximization: Update θ̂θθ
(k)

as θ̂θθ
(k+1)

=

arg max
θ

Q(θθθ|θ̂θθ
(k)

),

where δk is a smoothness parameter [19], i.e., a decreasing
sequence of positive numbers such that

∑∞
k=1 δk = ∞ and∑∞

k=1 δ
2
k < ∞. Note that, for the SAEM algorithm, the E-

Step coincides with the MCEM algorithm, however a small
number of simulations m (suggested to be m ≤ 20) is nec-
essary. This is possible because unlike the traditional EM
algorithm and its variants, the SAEM algorithm uses not
only the current simulation of the missing data at the it-
eration k denoted by (q(�,k)), � = 1, . . . ,m but some or all
previous simulations, where this ‘memory’ property is set by
the smoothing parameter δk.

Note, in equation (7), if the smoothing parameter δk is
equal to 1 for all k, the SAEM algorithm will have ‘no mem-
ory’, and will be equivalent to the MCEM algorithm. The
SAEM with no memory will converge quickly (convergence
in distribution) to a solution neighbourhood, however the
algorithm with memory will converge slowly (almost sure
convergence) to the ML solution. We suggested the follow-
ing choice of the smoothing parameter:

δk =

{
1, for 1 ≤ k ≤ cW

1
k−cW , for cW + 1 ≤ k ≤ W
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where W is the maximum number of Monte-Carlo itera-
tions, and c a cut point (0 ≤ c ≤ 1) which determines the
percentage of initial iterations with no memory. For exam-
ple, if c = 0, the algorithm will have memory for all itera-
tions, and hence will converge slowly to the ML estimates. If
c = 1, the algorithm will have no memory, and so will con-
verge quickly to a solution neighbourhood. For the first case,
W would need to be large in order to achieve the ML esti-
mates. For the second, the algorithm will output a Markov
Chain where after applying a burn in and thin, the mean of
the chain observations can be a reasonable estimate.

A number between 0 and 1 (0 < c < 1) will assure an ini-
tial convergence in distribution to a solution neighbourhood
for the first cW iterations and an almost sure convergence
for the rest of the iterations. Hence, this combination will
lead us to a fast algorithm with good estimates. To imple-
ment SAEM, the user must fix several constants matching
the number of total iterations W and the cut point c that
defines the starting of the smoothing step of the SAEM al-
gorithm, however, those parameters will vary depending of
the model and the data. As suggested in [23], to determine
those constants, a graphical approach is recommended to
monitor the convergence of the estimates for all the param-
eters, and, if possible, to monitor the difference (relative
difference) between two successive evaluations of the log-

likelihood �(θθθ|yobs), given by ||�(θθθ(k+1)|yobs)− �(θθθ(k)|yobs)||
or ||�(θθθ(k+1)|yobs)/�(θθθ

(k)|yobs)− 1||, respectively.

3. QR FOR LINEAR MIXED MODELS AND
ALGORITHMS

We consider the following general LMM yij = x�
ijβββ +

zijbi + εij , i = 1, . . . , n, j = 1, . . . , ni, where yij is the
jth measurement of a continuous random variable for the
ith subject, x�

ij are row vectors of a known design matrix
of dimension N × k corresponding to the k × 1 vector of
population-averaged fixed effects βββ, zij is a q × 1 design
matrix corresponding to the q×1 vector of random effects bi,
and εij the independent and identically distributed random
errors. We define pth quantile function of the response yij
as

(8) Qp(yij |xij ,bi) = x�
ijβββp + zijbi.

where Qp denotes the inverse of the unknown distribution
function F , βββp is the regression coefficient corresponding
to the pth quantile, the random effects bi are distributed

as bi
iid∼ Nq(0,ΨΨΨ), where the dispersion matrix ΨΨΨ = ΨΨΨ(ααα)

depends on unknown and reduced parameters ααα, and the
errors εij ∼ ALD(0, σ). Then, yij |bi independently follows
as ALD with the density given by

f(yij |βββp,bi, σ)(9)

=
p(1− p)

σ
exp

{
−ρp

(
yij − x�

ijβββp − zijbi

σ

)}
,

Using an MCEM algorithm, a QR-LMM with random in-
tercepts (q = 1) was proposed by [12]. More recently, [13]
extended that setup to accommodate multiple random ef-
fects where the estimation of fixed effects and covariance
matrix of the random effects were accomplished via a com-
bination of Gaussian quadrature approximations and non-
smooth optimization algorithms. Here, we consider a more
general correlated random effects framework with general
dispersion matrix ΨΨΨ = ΨΨΨ(ααα).

3.1 An MCEM algorithm

First, we develop an MCEM algorithm for ML estimation
of the parameters in the QR-LMM. From (4), the QR-LMM
defined in (8)–(9) can be represented in a hierarchical form
as:

yi|bi,ui ∼ Nni

(
x�
i βββp + zibi + ϑpui, στ

2
pDi

)
,

bi ∼ Nq (0,ΨΨΨ),

ui ∼
ni∏
j=1

exp(σ),(10)

for i = 1, . . . , n, where ϑp and τ2p are as in (3); Di repre-
sents a diagonal matrix that contains the vector of missing
values ui = (ui1, . . . , uini)

�
and exp(σ) denotes the expo-

nential distribution with mean σ. Let yic = (y�
i ,b

�
i ,u

�
i )

�
,

with yi = (yi1, . . . , yini)
�
, bi = (bi1, . . . , biq)

�
, ui =

(ui1, . . . , uini)
�
and let θ(k) = (βββ(k)�

p , σ(k),ααα(k)�)�, the esti-
mate of θ at the k -th iteration. Since bi and ui are in-
dependent for all i = 1, . . . , n, it follows from (4) that
the complete-data log-likelihood function is of the form
�c(θθθ; yc) =

∑n
i=1 �c(θθθ; yic), where

�c(θθθ; yic) = constant−3

2
nilogσ − 1

2
log
∣∣ΨΨΨ∣∣−1

2
b�
i ΨΨΨ

−1bi

− 1

σ
u�
i 1ni −

1

2στ2p
(yi−x�

i βββp−zibi−ϑpui)
�

×D−1
i (yi−x�

i βββp−zibi−ϑpui).

Given the current estimate θθθ = θθθ(k), the E-step calculates

the function Q(θθθ|θ̂θθ
(k)

) =
∑n

i=1 Qi(θθθ|θ̂θθ
(k)

), where

Qi(θθθ|θ̂θθ
(k)

)

(11)

= E
{
�c(θθθ; yic)|θθθ(k),y

}
∝ −3

2
nilogσ−

1

2στ2p

[
(yi−x�

i βββp)
�D̂−1

i

(k)
(yi−x�

i βββp)

− 2(yi − x�
i βββp)

̂(D−1

i zb)i
(k)

+ tr

{
zi ̂(bb�zD−1

i )i
(k)
}

− 2ϑp(yi−x�
i βββp)

�1ni + 2ϑp(zb̂
(k))�i 1ni

+
τ4p
4
ûi

(k)�1ni

]
−1

2
log
∣∣ΨΨΨ∣∣−1

2
tr

{
̂(bb�)i

(k)

ΨΨΨ−1

}
,
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where tr(A) indicates the trace of matrix A and 1p is the
vector of ones of dimension p. The calculation of these func-
tions require expressions for

b̂i

(k)

= E
{
bi|θθθ(k),yi

}
,

(̂bb�)i
(k)

= E
{
bib

�
i |θθθ(k),yi

}
,

̂(bb�zD−1)i
(k)

= E
{
bib

�
i z

�
i D

−1

i |θθθ(k),yi

}
,

ûi
(k) = E

{
ui|θθθ(k),yi

}
,

D̂−1

i

(k)

= E
{
D−1

i |θθθ(k),yi

}
,

̂(D−1zb)i
(k)

= E
{
D−1

i zibi|θθθ(k),yi

}
,

which do not have closed forms. Since the joint distribution
of the missing data (b(k)

i ,u(k)

i ) is unknown and the condi-
tional expectations cannot be computed analytically for any
function g(.), the MCEM algorithm approximates the con-
ditional expectations above by their Monte Carlo approxi-
mations

(12) E[ g (bi,ui) |θθθ(k),yi] ≈
1

m

m∑
�=1

g(b(�,k)

i ,u(�,k)

i ),

which depend on the simulations of the two latent (miss-
ing) variables b(k)

i and u(k)

i from the conditional joint

density f(bi,ui|θθθ(k),yi). A Gibbs sampler can be eas-
ily implemented (see Supplementary Material, http://
intlpress.com/site/pub/pages/journals/items/sii/content/
vols/0010/0003/s003) given that the two full conditional

distributions f(bi|θθθ(k),ui,yi) and f(ui|θθθ(k),bi,yi) are
known. However, using known properties of conditional
expectations, the expected value in (12) can be more
accurately approximated as

Ebi,ui
[ g(bi,ui)|θθθ(k),yi]

= Ebi
[ Eui

[ g(bi,ui)|θθθ(k),bi,yi]|yi ]

≈ 1

m

m∑
�=1

Eui
[ g(b(�,k)

i ,ui)|θθθ(k),b(�,k)

i ,yi],(13)

where b(�,k) is a sample from the conditional density
f(bi|θθθ(k),yi).

Now, to drawn random samples from the full condi-
tional distribution f(ui|yi,bi), first note that the vec-
tor ui|yi,bi can be written as ui|yi,bi = [ui1|yi1,bi,
ui2|yi2,bi, · · · , uini |yini ,bi]

�, since uij | yij ,bi is indepen-
dent of uik| yik,bi, for all j, k = 1, 2, . . . , ni and j 	= k.
Thus, the distribution of f(uij |yij ,bi) is proportional to

f(uij |yij ,bi) ∝ φ(yij
∣∣x�

ijβββp+z�ijbi+ϑpuij , στ
2
puij)×exp(σ),

which, from Subsection 2.1, leads to uij |yij ,bi ∼
GIG( 1

2 , χij , ψ), where χij and ψ are given by

(14) χij =
|yij−x�

ijβββp−z�
ijbi|

τp
√
σ

and ψ =
τp

2
√
σ

From (6), and after generating samples from f(bi|θθθ(k),yi)
(see Subsection 3.3), the conditional expectation
Eui

[·|θθθ,bi,yi] in (13) can be computed analytically.
Finally, the proposed MCEM algorithm for estimating the
parameters of the QR-LMM can be summarized as follows:

MC E-step: Given θθθ = θθθ(k), for i = 1, . . . , n;

• Simulation Step: For � = 1, . . . ,m, draw b(�,k)

i from

f(bi|θθθ(k),yi), as described later in Subsection 3.3.
• Monte Carlo approximation: Using (6) and the sim-

ulated sample above, evaluate

E[ g (bi,ui) |θθθ(k),yi]

≈ 1

m

m∑
�=1

Eui
[ g(b(�,k)

i ,ui)|θθθ(k),b(�,k)

i ,yi].

M-step: Update θ̂θθ
(k)

by maximizing Q(θθθ|θ̂θθ
(k)

) ≈
1
m

∑m
l=1

∑n
i=1 �c(θ; yi,b

(l,k)

i ,ui) over θ̂θθ
(k)

, which leads to the
following estimates:

β̂ββp
(k+1)

=

[
n∑

i=1

{
1

m

m∑
�=1

xiE(D−1

i )(�,k)x�
i

}]−1

×
[

n∑
i=1

{
1

m

m∑
�=1

[
xiE(D−1

i )(�,k)
[
yi − z�i b

(�,k)

i

− ϑpE(ui)
(�,k)
]]}]

,

σ̂(k+1) =
1

3Nτ2p

n∑
i=1

{
1

m

m∑
�=1

[
(yi−x�

i βββ
(k+1)

p − zib
(�,k)

i )�

× E(D−1)(�,k)(yi−x�
i βββ

(k+1)

p − zib
(�,k)

i )

− 2ϑp(yi−x�
i βββ

(k+1)

p − zib
(�,k)

i )�1ni

+
τ4p
4
E(ui)

(�,k)�1ni

]}
,

Ψ̂ΨΨ
(k+1)

=
1

n

n∑
i=1

[
1

m

m∑
�=1

b(�,k)

i b(�,k)�

i

]
,

where N =
∑n

i=1 ni and expressions E(ui)
(�,k) and

E(D−1

i )(�,k) are defined in Appendix A.2 of the Supplemen-
tary Material. Note that for the MC E-step, we need to draw

samples b
(�,k)
i , � = 1, . . . ,m, from f(bi|θθθ(k),yi), where m is

the number of Monte Carlo simulations to be used, a num-
ber suggested to be large enough. A simulation method to
draw samples from f(bi|θθθ(k),yi), is described in Subsection
3.3.

3.2 A SAEM algorithm

As mentioned in Subsection 2.2, the SAEM circumvents
the cumbersome problem of simulating a large number of
missing values at every iteration, leading to a faster and
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efficient solution than the MCEM. In summary, the SAEM
algorithm proceeds as follows:

E-step: Given θθθ = θθθ(k) for i = 1, . . . , n;

• Simulation step: Draw b(�,k)

i , � = 1, . . . ,m, from

f(bi|θθθ(k),yi), for m ≤ 20.
• Stochastic approximation: Update the MC ap-
proximations for the conditional expectations by their
stochastic approximations, given by

S
(k)
1,i = S

(k−1)
1,i + δk

[
1

m

m∑
�=1

[xiE(D−1

i )(�,k)x�
i ]− S

(k−1)
1,i

]
,

S
(k)
2,i = S

(k−1)
2,i + δk

[
1

m

m∑
�=1

[
xiE(D−1

i )(�,k)
[
yi − z�i b

(�,k)

i

− ϑpE(ui)
(�,k)
]]

− S
(k−1)
2,i

]
,

S
(k)
3,i = S

(k−1)
3,i + δk

[
1

m

m∑
�=1

[
(yi−x�

i βββ
(k+1)

p − zib
(�,k)

i )�

×E(D−1)(�,k)(yi−x�
i βββ

(k+1)

p − zib
(�,k)

i )

−2ϑp(yi−x�
i βββ

(k+1)

p − zib
(�,k)

i )�1ni

+
τ 4
p

4
E(ui)

(�,k)�1ni

]
− S

(k−1)
3,i

]
,

S
(k)
4,i = S

(k−1)
4,i + δk

[
1

m

m∑
�=1

[b(�,k)

i b(�,k)�

i ]− S
(k−1)
4,i

]
.

M-step: Update θ̂θθ
(k)

by maximizing Q(θθθ|θ̂θθ
(k)

) over θ̂θθ
(k)

,
which leads to the following expressions:

β̂ββp

(k+1)
=

[
n∑

i=1

S
(k)
1,i

]−1 n∑
i=1

S
(k)
2,i ,

σ̂(k+1) =
1

3Nτ2p

n∑
i=1

S
(k)
3,i ,

Ψ̂(k+1) =
1

n

n∑
i=1

S
(k)
4,i .(15)

Given a set of suitable initial values θ̂θθ
(0)

(see Appendix A.1
of the Supplementary Material), the SAEM iterates till con-

vergence at iteration k, if maxi

{
|θ̂(k+1)

i − θ̂
(k)
i |

|θ̂(k)i |+ δ1

}
< δ2, the

stopping criterion, is satisfied for three consecutive times,
where δ1 and δ2 are pre-established small values. This con-
secutive evaluation avoids a fake convergence produced by
an unlucky Monte Carlo simulation. As suggested by [34]
(page. 269), we use δ1 = 0.001 and δ2 = 0.0001. This pro-
posed criterion will need an extremely large number of iter-
ations (more than usual) in order to detect parameter con-
vergence that are close to the boundary of the paramet-

ric space. In this case for variance components, a param-
eter value close to zero will inflate the ratio in above and
the convergence will not be attained even though the like-
lihood was maximized with few iterations. As proposed by
[4], we also use a second convergence criteria defined by

maxi

{
|θ̂(k+1)

i −θ̂
(k)
i |√

v̂ar(θ
(k)
i )+δ1

}
< δ2, where the parameter estimates

change relative to their standard errors leading to a conver-
gence detection even for bounded parameters. Once again,
δ1 and δ2 are some small pre-assigned values, not necessarily
equal to the ones in the previous criterion. Based on sim-
ulation results, we fix δ1 = 0.0001 and δ2 = 0.0002. This
stopping criteria is similar to the one proposed by [3] for
non-linear least squares.

3.3 Missing data simulation method

In order to draw samples from f(bi|yi, θθθ), we utilize the
Metropolis-Hastings (MH) algorithm [28, 14], a MCMC al-
gorithm for obtaining a sequence of random samples from
a probability distribution for which direct sampling is not
possible. The MH algorithm proceeds as follows:

Given θθθ = θθθ(k), for i = 1, . . . , n;

1. Start with an initial value b
(0,k)
i .

2. Draw b∗
i ∼ h(b∗

i |b
(�−1,k)

i ) from a proposal distribution
with the same support as the objective distribution
f(bi|θθθ(k),yi).

3. Generate U ∼ U(0, 1).

4. If U > min

{
1 ,

f
(
b∗

i |θθθ
(k)

,yi

)
h
(
b

(0,k)
i |b∗

i

)
f
(
b

(0,k)
i |θθθ(k)

,yi

)
h
(
b∗

i |b
(0,k)
i

)
}
, return to

the step 2, else b
(�,k)
i = b∗

i .
5. Repeat steps 2–4 until m samples

(b(1,k)

i ,b(2,k)

i , . . . ,b(m,k)

i ) are drawn from bi|θθθ(k),yi.

Note that the marginal distribution f (bi|yi, θθθ) (omitting
θθθ) can be represented as

f (bi|yi) ∝ f (yi|bi)× f (bi) ,

where bi ∼ Nq(0,ΨΨΨ) and f (yi|bi) =
∏ni

j=1 f (yij |bi), with

yij |bi ∼ ALD
(
x�
ijβββp + zijbi, σ, p

)
. Since the objective func-

tion is a product of two distributions (with both support ly-
ing in R), a suitable choice for the proposal density is a mul-
tivariate normal distribution with the mean and variance-
covariance matrix that are the stochastic approximations of
the conditional expectation E(b(k−1)

i |yi) and the conditional
variance Var(b(k−1)

i |yi) respectively, obtained from the last
iteration of the SAEM algorithm. This candidate (with pos-
sible information about the shape of the target distribution)
leads to better acceptance rate, and consequently a faster

algorithm. The resulting chain b
(1,k)
i ,b

(2,k)
i , . . . ,b

(m,k)
i is a

MCMC sample from the marginal conditional distribution
f(bi|θ(k),yi). Due the dependent nature of these MCMC
samples, at least 10 MC simulations are suggested.
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4. ESTIMATION

4.1 Likelihood estimation

Given the observed data, the likelihood function �o(θθθ|y)
of the model defined in (8)–(9) is given by
(16)

�o(θθθ|y)=
n∑

i=1

log f(yi|θθθ))=
n∑

i=1

log

∫
Rq

f(yi|bi;θθθ)f(bi;θθθ) dbi,

where the integral can be expressed as an expectation with
respect to bi, i.e., Ebi

[f(yi|bi; θ)]. The evaluation of this
integral is not available analytically and is often replaced
by its MC approximation involving a large number of simu-
lations. However, alternative importance sampling (IS) pro-
cedures might require a smaller number of simulations than
the typical MC procedure. Following [29], we can compute
this integral using an IS scheme for any continuous distri-
bution f̂(bi;θθθ) of bi having the same support as f(bi; θ).
Re-writing (16) as

�o(θθθ|y) =
n∑

i=1

log

∫
Rq

f(yi|bi;θθθ)
f(bi;θθθ)

f̂(bi;θθθ)
f̂(bi;θθθ) dbi,

we can express it as an expectation with respect to b∗
i , where

b∗
i ∼ f̂(b∗

i ; θ). Thus, the likelihood function can now be
expressed as
(17)

�o(θθθ|y) ≈
n∑

i=1

log

⎧⎨⎩1

m

m∑
�=1

⎡⎣ ni∏
j=1

[f(yij |b∗(�)

i ;θθθ)]
f(b∗(�)

i ;θθθ)

f̂(b∗(�)

i ;θθθ)

⎤⎦⎫⎬⎭ ,

where {b∗(�)
i }, l = 1, . . . ,m, is a MC sample from f̂(b∗

i ;θθθ),

and f(yi|b∗(�)
i ;θθθ) is expressed as

∏ni

j=1 f (yij |b∗(�)
i ;θθθ) due to

independence. An efficient choice for f̂(b∗(�)

i ; θ) is f(bi|yi).
Therefore, we use the same proposal distribution dis-

cussed in Subsection 3.3, and generate samples b
∗(�)
i ∼

Nq(μ̂μμbi
, Σ̂ΣΣbi), where μ̂μμbi

= E(b(w)

i |yi) and Σ̂ΣΣbi = Var(bi|yi),
which are estimated empirically during the last few itera-
tions of the SAEM at convergence.

4.2 Standard error approximation

Louis’ missing information principle [26] relates the score
function of the incomplete data log-likelihood with the
complete data log-likelihood through the conditional ex-
pectation ∇∇∇o(θθθ) = Eθθθ[∇∇∇c(θθθ;Ycom|Yobs)], where ∇∇∇o(θ) =
∂�o(θθθ;Yobs)/∂θ and ∇∇∇c(θθθ) = ∂�c(θ;Ycom)/∂θθθ are the score
functions for the incomplete and complete data, respectively.
As defined in [27], the empirical information matrix can be
computed as

(18) Ie(θθθ|y) =
n∑

i=1

s(yi|θθθ) s�(yi|θ̂θθ)−
1

n
S(y|θθθ)S�(y|θθθ),

where S(y|θθθ) =
∑n

i=1 s(yi|θθθ), with s(yi|θθθ) the empirical
score function for the i-th individual. Replacing θθθ by its
ML estimator θ̂θθ and considering ∇∇∇o(θ̂θθ) = 0, equation (18)
takes the simple form

(19) Ie(θ̂θθ|y) =
n∑

i=1

s(yi|θ̂θθ) s�(yi|θ̂θθ).

At the kth iteration, the empirical score function for the i-th
subject can be computed as

s(yi|θθθ)(k) = s(yi|θθθ)(k−1)

+ δk

[
1

m

m∑
�=1

s(yi,q
(�,k);θθθ(k))− s(yi|θθθ)(k−1)

]
,(20)

where q(�,k), � = 1, . . . ,m, are the simulated missing val-
ues drawn from the conditional distribution f(·|θ(k−1),yi).
Thus, at iteration k, the observed information matrix can
be approximated as Ie(θθθ|y)(k) =

∑n
i=1 s(yi|θθθ)(k) s�(yi|θθθ)(k),

such that at convergence, I−1
e (θ̂θθ|y) = (Ie(θθθ|y)|θθθ=θ̂θθ

)−1 is an

estimate of the covariance matrix of the parameter esti-
mates. Expressions for the elements of the score vector with
respect to θθθ are given in Appendix A.3 of the Supplementary
Material.

5. SIMULATION STUDIES

In this section, the finite sample performance of the pro-
posed algorithm and its performance comparison with the
method of [13] is evaluated via simulation studies. These
computational procedures were implemented using the R

software [33]. In particular, we consider the following lin-
ear mixed model:

(21) yij = x�
ijβββ + zijbi + εij , i = 1, . . . , n, j = 1, . . . , 3,

where the goal is to estimate the fixed effects parameters βββ
for a grid of percentiles p = {0.05, 0.10, 0.50, 0.90, 0.95}. We
simulated a 3 × 3 design matrix x�

ij for the fixed effects βββ,
where the first column corresponds to the intercept and the
other columns generated from a N2(0, I2) density, for all i =
1, . . . , n. We also simulated a 3× 2 design matrix associated
with the random effects, with the columns distributed as
N2(0, I2). The fixed effects parameters were chosen as β1 =
0.8, β2 = 0.5 and β3 = 1, σ = 0.20, and the matrix ΨΨΨ
with elements Ψ11 = 0.8, Ψ12 = 0.5 and Ψ22 = 1. The error
terms εij are generated independently from an ALD(0, σ, p),
where p stands for respective percentile to be estimated.
For varying sample sizes of n = 50, 100, 200 and 300, we
generate 100 data samples for each scenario. In addition, we
also choose m = 20, W = 500 (the number of Monte-Carlo
simulations corresponding to each data sample) and c = 0.2.
Note, the choice of c depends on the dataset, and also the
underlying model. We set c = 0.2, given that an initial run
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Figure 2. Bias, Standard Deviation and RMSE for β1 (upper
panel) and β2 (lower panel) for varying sample sizes over the

quantiles p = 0.05, 0.10, 0.50, 0.90, 0.95.

of 100 iterations (which is 20% of W) for the 0.05th quantile
led to convergence to the neighborhood solution.

For all scenarios, we compute the square root of the
mean square error (RMSE), the bias (Bias) and the Monte
carlo standard deviation (MC-Sd) for each parameter over

the 100 replicates. They are defined as MC-Sd(θ̂i) =√
1
99

∑100
j=1

(
θ̂i

(j)

− θ̂i

)2
, Bias(θ̂i) = θ̂i−θi, and RMSE(θ̂i) =√

MC-Sd2(θ̂i) + Bias2(θ̂i), where θ̂i = 1
100

∑100
j=1 θ̂

(j)
i and

θi
(j) is the estimate of θi from the j-th sample, j = 1 . . . 100.

In addition, we also computed the average of the stan-
dard deviations (IM-Sd) obtained via the observed infor-
mation matrix derived in Subsection 4.2 and the 95% cov-
erage probability (MC-CP) as CP(θ̂i) = 1

100

∑100
j=1 I(θi ∈

[θ̂i,LCL, θ̂i,UCL]), where I is the indicator function such that

θi lies in the interval [θ̂i,LCL, θ̂i,UCL], with θ̂i,LCL and θ̂i,UCL

Table 1. Monte Carlo standard deviation (MC-Sd), mean
standard deviation (IM-Sd) and Monte Carlo coverage

probability (MC-CP) estimates of the fixed effects β1 and β2

from fitting the QR-LMM under various quantiles for sample
size n = 100

β1 β2

Quantile (%) MC-Sd IM-Sd MC-CP MC-Sd IM-Sd MC-CP

5 0.073 0.060 90 0.067 0.059 90
10 0.045 0.044 95 0.047 0.044 96
50 0.022 0.024 97 0.024 0.025 96
90 0.045 0.045 92 0.047 0.044 96
95 0.060 0.056 88 0.071 0.056 83

as the estimated lower and upper bounds of the 95% CIs,
respectively.

The results are summarized in Figure 2. We observe that
the Bias, SD and RMSE for the regression parameters
β1 and β2 tends to approach zero with increasing sample
size (n), revealing that the ML estimates obtained via the
proposed SAEM algorithm are conformable to the expected
asymptotic properties. In addition, Table 1 presents the IM
Sd, MC-Sd and MC-CP for β1 and β2 across various quan-
tiles. The estimates of MC-Sd and IM-Sd are very close,
hence we can infer that the asymptotic approximation of
the parameter standard errors are reliable. Furthermore, as
expected, we observe that the MC-CP remains lower for ex-
treme quantiles.

Finally, we compare the performance of SAEM algo-
rithm with the approximate method proposed by [11]. The
Geraci’s algorithm can be implemented using the R pack-
age lqmm(). The results are presented in Table 2 and Figure
B.1 (Supplementary Material). We observe that the RMSE
from the proposed SAEM algorithm are lower than Geraci
method across all scenarios, with the differences consider-
ably higher for the extreme quantiles. Finally, Figure B.2
(Supplementary Material) that compares the differences in
SD between the two methods for fixed effects β1 and β2 at
specified quantiles reveals that the SD are mostly smaller
for the SAEM method. Thus, we conclude that the SAEM
algorithm produces more precise estimates.

6. APPLICATIONS

In this section, we illustrate the application of our method
to two interesting longitudinal datasets from the literature
via our developed R package qrLMM, currently available for
free download from the R CRAN (Comprehensive R Archive
Network).

6.1 Cholesterol data

The Framingham cholesterol study generated a bench-
mark dataset [41] for longitudinal analysis to examine the
role of serum cholesterol as a risk factor for the evolution of
cardiovascular disease. We analyze this dataset with the aim
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Table 2. Simulation 1: Root Mean Squared Error (RMSE) for the fixed effects β0, β1, β2 and the nuisance parameter σ,
obtained after fitting our QR-LMM and the Geraci’s model [11] to simulated data under various settings of quantiles and

sample sizes

RMSE

β0 β1 β2 σ

Quantile (%) n SAEM Geraci SAEM Geraci SAEM Geraci SAEM Geraci

5 50 0.249 0.622 0.199 0.311 0.230 0.296 0.024 0.046
100 0.209 0.496 0.134 0.180 0.115 0.165 0.017 0.037
200 0.195 0.303 0.084 0.099 0.090 0.137 0.017 0.029
300 0.163 0.345 0.075 0.100 0.072 0.101 0.012 0.031

10 50 0.159 0.382 0.144 0.187 0.142 0.201 0.023 0.048
100 0.112 0.355 0.094 0.117 0.084 0.130 0.019 0.048
200 0.082 0.231 0.052 0.087 0.061 0.081 0.017 0.036
300 0.073 0.223 0.045 0.072 0.047 0.076 0.011 0.034

50 50 0.063 0.107 0.063 0.090 0.064 0.102 0.025 0.174
100 0.042 0.052 0.040 0.056 0.043 0.070 0.021 0.196
200 0.027 0.053 0.026 0.048 0.028 0.039 0.016 0.164
300 0.024 0.034 0.022 0.022 0.024 0.040 0.012 0.180

90 50 0.160 0.389 0.138 0.159 0.130 0.177 0.025 0.050
100 0.102 0.394 0.089 0.100 0.071 0.126 0.019 0.051
200 0.085 0.240 0.054 0.097 0.062 0.078 0.014 0.038
300 0.065 0.276 0.045 0.066 0.047 0.064 0.011 0.038

95 50 0.255 0.552 0.172 0.255 0.200 0.243 0.020 0.040
100 0.233 0.470 0.156 0.169 0.135 0.161 0.020 0.036
200 0.146 0.423 0.080 0.160 0.105 0.106 0.015 0.038
300 0.157 0.468 0.077 0.113 0.071 0.061 0.014 0.036

of explaining the full conditional distribution of the serum
cholesterol as a function of a set of covariates of interest via
modelling a grid of response quantiles. We fit a LMM model
to the data as specified by

(22) Yij = β0 + β1genderi + β2agei + b0i + b1itij + εij ,

where Yij is the cholesterol level (divided by 100) at the jth
time point for the ith subject, tij = (τ − 5)/10 where τ is
the time measured in years from the start of the study, age
denotes the subject’s baseline age, gender is the dichoto-
mous gender (0=female, 1=male), b0i and b1i the random
intercept and slope, respectively, for subject i, and εij the
measurement error term, for 200 randomly selected subjects.

We fit the proposed SAEM algorithm and the ap-
proximate method of Geraci [11] over the grid p =
{0.05, 0.10, . . . , 0.95} to the cholesterol dataset. Figure 3
plots the standard errors (SE) of the fixed effects param-
eters β0 − β2, and the AIC from both models. We observe
that our SAEMmethod leads to mostly smaller SEs and AIC
compared to the Geraci method. The SEs corresponding to
the extreme quantiles are substantially lower. This supports
the simulation findings. Interestingly, for the extremes quan-
tiles, some warnings messages on convergence were displayed
while fitting Geraci’s method, even after increasing the num-
ber of iterations and reducing the tolerance, as suggested in
the lqmm manual. However, the mean estimation time per
quantile for the SAEM method was about 7 hours compared

Figure 3. Standard errors for the fixed effects β0, β1 and β2

and AIC over the quantiles p = {0.05, 0.10, . . . , 0.95} from
fitting the proposed QR-LMM model and Geraci’s method to

the Cholesterol data.
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Figure 4. Point estimates (center solid line) and 95%
confidence intervals across various quantiles for model

parameters after fitting the proposed QR-LMM model to the
Cholesterol data using the qrLMM package. The interpolated

curves are spline-smoothed.

to 1 hour for Geraci’s method. Hence, although the SAEM
algorithm is relatively slow, the substantial gain in the AIC
criterion and the SEs establish that our SAEM approach
provides a much better fit to the dataset.

Figure 4 presents graphical summaries (confidence bands)
for the fixed effects parameters β0, . . . , β2, and the nuisance
parameter σ. The solid lines represent the 2.5th, 50th and,
97.5th percentiles across various quantiles, obtained from
the estimated standard errors defined in Subsection 4.2. The
figures reveal that the effect of gender and age become more
prominent with increasing conditional quantiles. In addi-
tion, although age exhibits a positive influence on the choles-
terol level across all quantiles, the confidence band for gen-
der includes 0 across all quantiles, and hence its effect is non-
significant. The estimated nuisance parameter σ is symmet-
ric about p = 0.5, taking its maximum value at that point
and decreasing for the extreme quantiles. Figure B.3 (Sup-
plementary Material) plots the fitted regression lines for the
quantiles 0.10, 0.25, 0.50 (the mean), 0.75 and 0.90 by gen-
der. From this figure, it is clear how the extreme quantiles
capture the full data variability and detect some atypical ob-
servations. The intercept of the quantile functions look very
similar for both panels due to the non-significant gender.

6.2 Orthodontic distance growth data

A second application was developed using a data set
form a longitudinal orthodontic study [32, 31] performed

Figure 5. Point estimates (center solid line) and 95%
confidence intervals for model parameters across various

quantiles from fitting the QR-LMM using the qrLMM package
to the orthodontic growth distance data. The interpolated

curves are spline-smoothed.

at the University of North Carolina Dental School. Here, re-
searchers measured the distance between the pituitary and
the pterygomaxillary fissure (two points that are easily iden-
tified on x-ray exposures of the side of the head) for 27 chil-
dren (16 boys and 11 girls) every two years from age 8 until
age 14. Similar to Application 1, we fit the following LMM
to the data:

Yij = β0 + β1genderi + β2tij + b0i + b1itij + εij ,(23)

where Yij is the distance between the pituitary and the
pterygomaxillary fissure (in mm) at the jth time for the ith
child, tij is the child’s age at time j taking values 8, 10, 12,
and 14 years, gender is a dichotomous variable (0=female,
1=male) for child i and εij the random measurement error
term. Initial exploratory plots for 10 random children in the
left panel of Figure B.4 (Supplementary Material) suggest
an increasing distance with respect to age. The individual
profiles by gender (right panel) show differences between
distances for boys and girls (distance for boys greater than
those for girls), and hence we could expect a significant gen-
der effect. Once again, after fitting the QR-LMM over the
grid p = {0.05, 0.10, . . . , 0.95}, the point estimates and asso-
ciated 95% confidence bands for model parameters are pre-
sented in Figure 5. From the figure, we infer that the effect
of gender and age are significant across all quantiles, with
their effect increasing for higher conditional quantiles. Effect
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of Age is always positive across all quantiles, with a higher
effect at the two extremes. σ behaves the same as in Ap-
plication 1. Figure B.5 (Supplementary Material) plots the
fitted regression lines for the quantiles 0.10, 0.25, 0.50, 0.75
and 0.90, overlayed with the individual profiles (gray solid
lines), by gender. These fits capture the variability of the
individual profiles, and also differ by gender due to its sig-
nificance in the model. The R package also produces graph-
ical summaries of point estimates and confidence intervals
(95% by default) across various quantiles, as presented in
Figures 4 and 5. Trace plots showing convergence of these
estimates are presented in Figure B.6 (Supplementary Ma-
terial). For example, for the 75th quantile, we can confirm
that the convergence parameters for the SAEM algorithm
(M = 10, c = 0.25 and W = 300) has been set adequately
leading to a quick convergence in distribution within the
first 75 iterations, and then converging almost surely to a
local maxima in a total of 300 iterations. Sample output
from the qrLMM package is provided in Appendix C of the
Supplementary Material.

7. CONCLUSIONS

In this paper, we developed likelihood-based inference for
QR-LMM, where the likelihood function is based on the
ALD. The ALD presents a convenient framework for the im-
plementation of the SAEM algorithm leading to the exact
ML estimation of the parameters. The methodology is illus-
trated via application to two longitudinal clinical datasets.
We believe this paper is the first attempt for exact ML
estimation in the context of QR-LMMs, and provide im-
provement over the methods proposed by Geraci and his
co-authors [13, 11]. The methods developed here are readily
implementable via the R package qrLMM(). Our proposition
is parametric. Although nonparametric considerations [24]
are available for the standard linear QR problem, adapting
those to the LMM framework can lead to non-trivial com-
putational bottlenecks. This is possibly a research direction
to pursue.

Certainly, other distributions can be used as alternatives
to the ALD. Recently, [37] presented a generalized class of
skew density for QR that provides competing solutions to
the ALD-based formulation. However, their exploration is
limited to the simple linear QR framework. Also, due to
the lack of a relevant stochastic representation, the corre-
sponding EM-type implementation can lead to difficulties.
Recently, [8] presented an R package for a linear QR us-
ing a new family of skew distributions that includes the
ones formulated in [37] as special cases. This family in-
cludes the skewed version of Normal, Student-t, Laplace,
Contaminated Normal and Slash distribution, all with the
zero quantile property for the error term, and with a conve-
nient stochastic representation. Undoubtedly, incorporating
this skewed class into our LMM proposition can enhance
flexibility, and potentially improve our inference. Further-
more, for QR-LMM, its robustness against outliers can be

seriously affected in presence of skewness and thick-tails.
Not long ago, [22] proposed a parametric remedy using scale
mixtures of skew-normal distributions in the random effects.
We conjecture that this methodology can be transferred to
the QR-LMM framework, and should yield satisfactory re-
sults at the expense of additional complexity in implemen-
tation. An in-depth investigation of these propositions are
beyond the scope of the present paper, and will be consid-
ered elsewhere.
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