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Bayesian forecasting of Value-at-Risk based on
variant smooth transition heteroskedastic models
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To allow for a higher degree of flexibility in model pa-
rameters, we propose a general and time-varying nonlin-
ear smooth transition (ST) heteroskedastic model with a
second-order logistic function of varying speed in the mean
and variance. This paper evaluates the performance of
Value-at-Risk (VaR) measures in a class of risk models,
specifically focusing on three distinct ST functions with
GARCH structures: first- and second-order logistic func-
tions, and the exponential function. The likelihood function
is non-differentiable in terms of the threshold values and
delay parameter. We employ Bayesian Markov chain Monte
Carlo sampling methods to update the estimates and quan-
tile forecasts. The proposed methods are illustrated using
simulated data and an empirical study. We estimate VaR
forecasts for the proposed models alongside some compet-
ing asymmetric models with skew and fat-tailed error prob-
ability distributions, including realized volatility models. To
evaluate the accuracy of VaR estimates, we implement two
loss functions and three backtests. The results show that
at the 1% level the ST model with a second-order logistic
function and skew Student’s t error is a worthy choice, when
compared to a range of existing alternatives.
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time series model, Second-order logistic function, Markov
chain Monte Carlo methods, Value-at-Risk, Volatility fore-
casting, Realized volatility models.

1. INTRODUCTION

Financial risk management is widely used in financial in-
stitutions in order to control risk exposures, such as credit
risk, operation risk, and volatility. The Basel Capital Ac-
cord of 1996 played a significant role as it permitted banks
to use their “appropriate model” to compute their regula-
tory capital requirements. Since then, Value-at-risk (VaR)
has been one of the extensively used measures of market risk,
which is designed to forecast the worst expected loss over
a given time interval under normal market conditions, at a
given confidence level α (Jorion 1997). The Basel II Accord,
initially published in June 2004, is intended to create inter-
national standards for banking regulators to better control
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risk exposures. In theory, Basel II set up risk and capital
management requirements designed to ensure that Autho-
rized Deposit-taking Institutions (ADIs) have the ability to
maintain solvency.

There are many VaR estimation methods in the literature
that can be classified into three categories. They include
non-parametric methods, for example, historical simulation
(HS) (using past or in-sample quantiles); semi-parametric
methods, for example, the extreme value theory, the dy-
namic quantile regression CAViaR model (Engle & Man-
ganelli, 2004), and the threshold CAViaR model (Gerlach,
Chen, & Chan, 2011, Chen et al., 2012); and parametric
statistical approaches that fully specify model dynamics
and distribution assumptions, for example, the autoregres-
sive conditional heteroskedasticity (ARCH) model proposed
by Engle (1982) and its generalized version by Bollerslev
(1986), popularly known as the GARCH model. It is well
known that the GARCH model cannot capture the asym-
metric response of volatility, which is a phenomenon discov-
ered by Black (1976), Rabemananjara and Zaköıan (1993)
and Zaköıan (1994), among others.

Chan and Tong (1986) introduce a smooth transition
(ST) autoregressive model to allow for model parameter
changes through a smooth transition, which has gained pop-
ularity via Granger and Teräsvirta (1993) and Teräsvirta
(1994). Their first-order logistic function gives a contin-
uous value between zero and one. Jansen and Teräsvirta
(1996) appear to be the first to discuss the second-order
logistic function in ST models. Van Dijk, Teräsvirta, and
Franses (2002) investigate the second-order logistic func-
tion with a slight difference in format from that of Jansen
and Teräsvirta (1996), but these two papers only focus on
a transition in describing the mean equation. Most finan-
cial time series exhibit asymmetric behavior in the mean
and in the volatility as well. While the smooth transi-
tion GARCH models have extensively examined conditional
volatility, their use in modeling conditional variance is lim-
ited to a two-regime study undertaken by Anderson, Nam,
and Vahid (1999).

In this paper we propose to implement a specification of
the second-order logistic function in van Dijk, Teräsvirta,
and Franses (2002), a more general and time-varying ST-
GARCH model, to allow for an ST function with varying
speed in the mean and variance. The literature has described
the second-order logistic function, but it is not often used
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in practice due to the difficulty in parameter estimation.
The problem of estimating second-order ST-GARCH mod-
els has become quite a challenge. Specifically, the likelihood
function is non-differentiable in regards to the threshold val-
ues and delay parameter. Our paper examines whether such
double asymmetry might be better modeled by an ST func-
tion in both the mean and volatility equations for VaR fore-
casting and volatility estimation. Based on Markov chain
Monte Carlo (MCMC) methods, we employ a Bayesian ap-
proach and allow a simultaneous inference for all unknown
parameters, while the parameter constraints simply and
properly form part of the prior distribution, and the prob-
lems with estimating threshold limits and delay lags disap-
pear. To our knowledge, this study is the first in the liter-
ature to make Bayesian inferences and quantile forecasting
for the ST-GARCH model with a second-order logistic func-
tion.

The use of our proposed Bayesian forecasting of nonlin-
ear ST models to deal with some complex derivatives and
to calculate their corresponding VaR formulae is of practi-
cal importance and theoretical interests. Bayesian MCMC
methods offer many advantages in estimation, inference, and
forecasting, including: (i) accounting for parameter uncer-
tainty in both probabilistic and point forecasting; (ii) allow-
ing simultaneous inference for all unknown parameters; (iii)
efficient and flexible handling of complex models and non-
standard parameters; and (iv) parameter constraints simply
and properly form part of the prior distribution.

We employ three distinct ST functions with autoregres-
sive conditional heteroskedastic models for VaR forecast-
ing purposes: the first- and second-order logistic functions,
and the exponential functions. Gerlach and Chen (2008) in-
corporate the first-order ST functions into GARCH models
to allow for smooth nonlinearity in the mean and asym-
metry of the volatility. Chen et al. (2010) employ an ex-
ponential function to capture size asymmetry in the mean
and volatility. Compared to existing models, our proposed
model conveys that observations in the extremes can have a
dissimilar effect and an ST function with varying speed in
the mean and variance. Moreover, the ST-GARCH model,
with the second-order logistic function, can be viewed as
three regimes interpreted as follows: the first regime relates
to extremely low negative shocks (“bad news”), the middle
regime represents low absolute returns (“tranquil periods”),
and finally, the third regime relates to high positive shocks
(“good news”).

As discussed in Andersen et al. (2001), the theory of
quadratic variation indicates that, under suitable condi-
tions, realized volatility is an unbiased and highly efficient
estimator of return volatility. We also deal with the inclu-
sion of realized measures of volatility in a GARCHmodelling
set-up. The realized GARCH (RV) model of Hansen, Huang
and Shek (2012) provides an excellent framework for the
joint modelling of returns and realized measures of volatil-
ity.

This paper focuses on parametric models and Monte
Carlo simulation to forecast VaR. We consider popular vari-
ants and extensions of the GARCH model family as follows:
RiskMetrics; GARCH; asymmetric GJR-GARCH (Glosten,
Jaganathan, Runkle 1993); ST-GARCH with three distinct
ST functions; and threshold nonlinear GARCH (TGARCH;
Chen and So 2006). Each model includes a specification for
the volatility dynamics, and most consider three specifica-
tions for the conditional asset return distribution: Gaussian,
Student’s t, and the skew Student’s t of Hansen (1994).
This paper extensively examines the VaR forecast perfor-
mance over 12 risk models and two HS methods during
two out-of-sample periods: the two-year post-global finan-
cial crisis period and the three-year global financial crisis
period. To shed light on the advantage of Bayesian updat-
ing forecasting, this study examines a sample of ten Euro-
pean stock markets, seven Asian stock markets, one North
American market, and one South American market, for a
total of 19 stock markets over the post-global financial cri-
sis period. We focus on Japan and U.S. stock markets for
the three-year global financial crisis period, including the
RV model.

When forecasting VaR thresholds, our aim is to find the
optimal combination of volatility dynamics and error dis-
tribution in relation to the observed violation rates and
two loss functions in Lopez (1999 a, b) for both out-of-
sample periods. We further consider three backtesting meth-
ods for evaluating and testing the accuracy of VaR models.
We also investigate the accuracy of volatility forecasts for
all models under two volatility proxies with two loss func-
tions.

This paper is organized as follows. Section 2 illustrates
the ST models with different ST functions. Section 3 demon-
strates the Bayesian set-up and details of parameter in-
ferences. Section 4 describes the process of VaR forecast-
ing. Section 5 presents a simulation study of a double ST-
GARCHmodel with the second-order logistic function show-
ing the estimation performance. We further extend this
class of ST-GARCH models to incorporate a different ef-
fect (smooth transition function) for the mean and variance.
Section 6 lists empirical results, focusing on the forecasts of
VaR and volatility and furthermore showing the forecast ac-
curacy for all models under two volatility proxies. Section 7
provides concluding remarks.

2. THE SMOOTH TRANSITION
HETEROSKEDASTIC MODEL

We consider a general double ST GARCH model to
capture mean and volatility asymmetry in financial mar-
kets. We use a ST function that ensures the mean and
volatility parameters are smooth functions of past news or
volatility. We then extend our model to different ST func-
tions with varying speed in the mean and volatility in Sec-
tion 3.
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Suppose that {yt} is the observation data. We present
the ST-GARCH model as below:

yt = μ
(1)
t + F (zt−d; γ, c)μ

(2)
t + at(1)

at =
√

htεt, εt
i.i.d.∼ D(0, 1),

ht = h
(1)
t + F (zt−d; γ, c)h

(2)
t

μ
(l)
t = φ

(l)
0 +

p∑
i=1

φ
(l)
i yt−i

h
(l)
t = α

(l)
0 +

g∑
i=1

α
(l)
i a2t−i +

q∑
i=1

β
(l)
i ht−i, l = 1, 2,

where μ
(l)
t and h

(l)
t are the respective conditional mean and

volatility at regime l; zt is the threshold variable; d is the
delay lag; and D(0, 1) is an error distribution with mean
0 and variance 1. The representation of the proposed ST
GARCH model in (1) highlights the model’s basic charac-
teristic, which is that at any given point in time t, yt is
determined as a weighted average of two AR models and ht

is determined as a weighted average of two GARCH mod-
els, where the weights assigned to the two models depend
on the value taken by the transition function F (zt−d; γ, c).
The parameter γ determines the smoothness of the change
in the value of the F (zt−d; γ, c) function and the smoothness
of the transition from one regime to the other.

We consider three types of ST functions in this work.
Different choices for the transition function lead to different
types of regime-switching behaviour. A popular choice for
F (zt−d; γ, c) is the first-order logistic function:

F (zt−d; γ, c) =
1

1 + exp
{

−γ(zt−d−c)
sz

} ,(2)

where sz is the sample standard deviation of zt. This type
of regime-switching can be convenient for modelling, for
example, asymmetry in stock markets, to distinguish bad
news and good news. The first-order logistic function is an
odd function and captures sign asymmetry; in other words,
the asymmetric responses to positive and negative values
of zt−d − c. Teräsvirta and Anderson (1992) and Teräsvirta
(1994) apply the STAR model with a first-order logistic ST
function to financial data, finding evidence of sign asymme-
try in the mean.

We next consider a specification of the second-order lo-
gistic function in van Dijk, Teräsvirta, and Franses (2002).

F (zt−d; γ, c) =(3)

1

1 + exp
{

−γ(zt−d−c1)(zt−d−c2)
sz

} , c1 < c2,

where now c = (c1; c2)
′, as proposed by Jansen and

Teräsvirta (1996). Figure 1 shows some examples for the
second-order ST function for various values of the smooth-
ness parameter γ when c1 = −1.5 and c2 = 1.5. We observe

that smaller values of γ cause smoother, slower transitions,
while γ ≥ 10 is effectively a sharp or abrupt transition.
When γ = 20, the transition function starts at 1, then de-
creases to zero during the range of (c1, c2), and then in-
creases back to one again.

When γ → 0, both logistic functions are equal to a con-
stant (equal to 0.5) and the ST-GARCH model reduces to
a linear GARCH model. If we impose the restriction that
γ in the transition function is infinitely large and c1 �= c2,
then our model becomes the three-regime threshold GARCH
model of Chen, Gerlach, and Lin (2010). Hence, the ST-
GARCH model with the particular transition function nests
a restricted three-regime GARCH model, with a restriction
for the outer regimes to be identical. For the third-type func-
tion, we consider the exponential function:

F (zt−d; γ, c) = 1− exp

{
−γ(zt−d − c)2

sz

}
.(4)

The behavior of yt depends on the size of the deviation
from zt. The exponential ST (EST) is an even function,
which captures size asymmetry, or asymmetric responses to
the magnitude of zt−d−c. See Granger and Teräsvirta (1993)
and Teräsvirta (1994) for applications of STAR with the
EST model. Chen et al. (2010) apply ST-GARCH with the
EST function to daily stock markets, finding evidence of
size asymmetry in mean and volatility, while the favorite
transition variable is the intra-day range. A limitation of
the exponential function (4) is that for either γ → 0 or
γ → ∞, the function collapses to a constant (equal to 0
and 1, respectively). Hence, the model becomes linear in
both cases and the exponential STAR model does not nest
a self-exciting TAR model as a special case (see van Dijk,
Teräsvirta, and Franses 2002 for details).

For the ST-GARCH(1,1) model in (1), we impose the

restrictions that three coefficients α
(1)
0 , α

(1)
1 , and β

(1)
1 are

positive, and also that α
(1)
0 + α

(2)
0 > 0, α

(1)
1 + α

(2)
1 > 0,

and β
(1)
1 + β

(2)
1 > 0, to ensure that the conditional variance

is always positive. For extensions to incorporate longer lag-
lengths, the non-negativeness of the conditional variance is:

α
(1)
0 > 0, α

(1)
i > 0, β

(1)
i > 0(5)

g∑
i=1

(
α
(1)
i + α

(2)
i

)
> 0

q∑
j=1

(
β
(1)
j + β

(2)
j

)
> 0.

The ST-GARCH(1,1) model in (1) will be covariance-

stationary if 0 < α
(1)
1 + 0.5α

(2)
1 + β

(1)
1 + 0.5β

(2)
1 < 1, but

this condition is sufficient, rather than necessary, for sta-
tionarity (Anderson, Nam, and Vahid 1999). For extensions
to incorporate longer lag-lengths, the covariance-stationary
restriction is:

g∑
i=1

(
α
(1)
i + 0.5α

(2)
i

)
+

q∑
j=1

(
β
(1)
j + 0.5β

(2)
j

)
< 1.(6)
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Figure 1. Plots of the second-order ST function for c1=-1.5 and c2=1.5.

It is useful to note that the parameter space still can ac-
commodate some explosive lower regime (Gerlach and Chen
2008) with restrictions as follows:

α
(1)
0 < b1, β

(1)
i < b2,

g∑
i=1

α
(1)
i +

q∑
j=1

β
(1)
j < b3,(7)

where b1, b2, and b3 are user-specified. In this study, we let
b2, b3 ≥ 1 to allow explosive behavior.

3. BAYESIAN INFERENCE

In this section we use the Bayesian approach to carry out
our parameter estimations. As observations in the extremes
may have different effects, we further extend this class of
models in (1) to incorporate different speeds of smooth tran-
sition functions for the mean and variance, i.e. Fi(zt−d; γi, c)
in (3), i = 1, 2 where γ1 and γ2 are the smooth parameters
in the mean and variance, respectively. Based on the em-
pirical evidence, the empirical density function has a higher
peak and longer tails than the normal density. This phe-
nomenon is common for daily stock returns. We consider
D(0, 1) = t∗ν to be a standardized Student’s t distribu-
tion with ν degrees of freedom, which captures the condi-
tional leptokurtosis observed in financial return data. Let

θ = (φ1,φ2,α1,α2, c,γ, ν, d)
′, where φj = (φ

(j)
0 , . . .,φ

(j)
p )′,

αj = (α
(j)
0 , . . . , α

(j)
g , β

(j)
1 , . . . , β

(j)
q )′. Note that c = (c1, c2)

′

and γ = (γ1, γ2)
′ if the ST function belongs to the second-

order ST-GARCH models, otherwise, c = c and γ1 = γ2. We
allow for a higher degree of flexibility in model parameters
for this model. The notation y1,n denotes (y1, . . . , yn).

The conditional likelihood function for the double ST
model is thus:

p(ys+1,n | θ) =
n∏

t=s+1

{
1√
ht

pε

(
yt − μt√

ht

)}
,

where pε is the density function for εt, the term 1/
√
ht is

the Jacobin of the transformation, n is the sample size, s =
max{p, g, q, d0} with maximum delay d0, ht = Var(yt|Ft−1),
and μt = E(yt|Ft−1), with Ft−1 being the information set.
The proposed model contains the lagged AR(1) (i.e. p = 1)
effect in each regime, which allows one to recognize whether
the return series exhibits asymmetry mean reversion or mar-
ket efficiency. Generally, a GARCH model with g = q = 1
is sufficient to capture volatility clustering in most finan-
cial applications (cf. Bollerslev, Chou, and Kroner 1992).
In summary, we assume p = g = q = 1. One can use the
deviance information criterion (DIC) of Spiegelhalter et al.
(2002) to determine the best lag for the proposed model.

The conditional likelihood function becomes:

p(ys+1,n | θ) =
n∏

t=s+1

{
ζ

1√
ht

[
1 +

(yt − μt)
2

(ν − 2)ht

]− ν+1
2

}
,

where ζ =
Γ(ν+1

2 )

Γ(ν2 )
√
(ν − 2)π

.

Aside from fat tails, empirical distributions of asset returns
may also be skewed. To handle this additional characteris-
tic of asset returns, the Student’s t distribution has been
modified to become a skew Student’s t distribution. There
are many versions of skew Student’s t distribution, but we
adopt the approach of Hansen (1994), which has zero mean
and unit variance. The probability density function of skew
Student’s t defined by Hansen (1994) is as follows:

pε(εt|ν, η) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

bc

[
1 + 1

ν−2

(
bεt+a
1−η

)2
]− ν+1

2

if εt < −a
b

bc

[
1 + 1

ν−2

(
bεt+a
1+η

)2
]− ν+1

2

if εt ≥ −a
b

,
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where degrees of freedom ν and skewness parameter η satisfy
2 < ν < ∞ and −1 < η < 1, respectively. We define the
constants a, b, and c as:

a = 4ηc
(

ν−2
ν−1

)
, b2 = 1 + 3η2 − a2, c =

Γ
(
ν+1
2

)
Γ(ν2 )

√
π(ν−2)

.

This distribution already has zero mean and unit vari-
ance. We use the notation St(ν, η). The standardized Stu-
dent’s t distribution is a special case of this skew Student’s
t distribution, when η = 0. Our parameter space thus be-
comes θ∗ = (φ1,φ2,α1,α2, c,γ, ν, η, d)

′.

3.1 Prior specification

Bayesian inference requires specifying a prior dis-
tribution for the unknown parameters, combined with
the likelihood function. We assume the parameters
(φ1,φ2,α1,α2, c,γ, ν, d), are a priori independent. An es-
timation of the smoothing parameter and its identification
as it tends to zero have proven a challenge for both classi-
cal and Bayesian approaches, because the likelihood func-
tion is not integrable for this parameter in an ST-GARCH
model. To alleviate this identifiability problem as the speed
of the transition parameter tends to zero, we adopt a spe-
cific prior formulation for the mean in Equation (1), based
on George and McCulloch (1993) and extended by Gerlach
and Chen (2008). Note that Gerlach and Chen (2008) only
handle the ST-GARCH model with the first-order logistic

function. We define the latent variable δ
(i)
j , which deter-

mines the prior distribution of φ
(i)
j , via a mixture of two

normals:

φ
(i)
j |δ(i)j ∼ (1−δ

(i)
j )N(0, k2τ

(i)
j

2
)+δ

(i)
j N(0, τ

(i)
j

2
), j = 1, . . . , p

δ
(i)
j |γ =

{
1, if i = 1 or γ > ξ
0, if i = 2 and γ ≤ ξ,

(8)

where i = 1, 2 denotes the regime, and j = 1, . . . , p denotes
the lag order of the AR mean terms in φj . Here, ξ is a
specified threshold, and γ ≤ ξ indicates that F(zt−d; γ, c) →
0.5; that is, an AR-GARCH model. As suggested in Gerlach
and Chen (2008), we choose k to be a small positive value,

so that if γ ≤ ξ and δ
(2)
j = 0, then the posterior value for

the parameters φ
(2)
j will be weighted by the prior value to-

wards 0.
A constrained uniform prior is taken for p(α), the con-

straint defined by the indicator I(S), where S defines the
constraints in Equations (5), (6), and (7). For γ, we choose
the log-normal distribution, γ ∼ LN(μγ , σ

2
γ). The prior for

the delay lag, d, is a discrete, uniform variable:

Pr(d) =
1

d0
,

where d = 1, . . . , d0. For ν degrees of freedom, we define
ρ = ν−1 and set it to I(ρ ∈ [0, 0.25]) (see Chen, Chiang,
and So, 2003, for more details). For the skew parameter, we

set a flat prior over η ∈ (−1, 1). Finally, we choose the flat
priors for the threshold parameters in three ST functions,
described as follows.

The first-order and the exponential ST function:
When we consider a double ST model with one threshold
value, a flat prior on the threshold limit c is Unif(lb, ub),
where (lb, ub) are chosen as suitable percentiles of z to allow
a reasonable sample size in each regime for inference.

The second-order ST function: Two threshold values
in the second-order ST function are much more complicated
and need to be constrained in two ways: the first ensures that
c1 < c2 as required, while the second ensures that a sufficient
sample size exists in each regime for estimation. For this
second constraint, a set of ranges can be set, as relevant
percentiles of the sample size n, to ensure that at least 100h
(0 < h < 1) percent of the observations are contained in
each regime, as suggested by Chen, Gerlach, and Lin (2010)
and Chen, Gerlach, and Liu (2011). The general priors for
c1 and c2 are:

c1 ∼ Unif(lb1, ub1);

c2|c1 ∼ Unif(lb2, ub2),

where lb1 and ub1 are the ℘h1 and ℘1−h1−h2 percentiles of
zt, respectively. For example, if h1 = h2 = 0.1, then c1 ∈
(℘0.1, ℘0.8). Furthermore, we set ub2 = ℘(1−h2) and lb2 =
c1 + c∗, where c∗ is a selected number that ensures c1 +
c∗ ≤ c2 and at least 100h2% of observations are in the range
(c1, c2).

3.2 Posteriors

The posteriors are proportional to the product of the like-
lihood function and the priors, or in other words:

p(θl | ys+1,n,θ �=l) ∝ p(ys+1,n | θ) · p(θl | θ �=l),

where θl is a parameter group, p(θl) is its prior density, and
θ �=l is the vector of all model parameters, except for θl. We
obtain the delay parameter d by sampling from the condi-
tional multinomial distribution with posterior probabilities
as follows:

Pr(d = j | ys+1,n,θ �=d) =(9)

p(ys+1,n | d = j,θ �=d)∑d0

j=1 p(y
s+1,n | d = j,θ �=d)

, j = 1, . . . , d0.

Since the posterior distributions for parameters
(φj ,αj , c, γ, ν, η), with j = 1, 2, are not standard forms,
we turn to the MCMC method. For our parameters
(φj , c, γ, ν, η), and j = 1, 2, we estimate the parameters
by exercising the Metropolis-Hasting (MH) algorithm. For
the GARCH parameter αj , we apply a random walk MH
algorithm before burn-in period and use the independent
kernel MH (IK-MH) algorithm after the burn-in period,
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since IK-MH would speed up the convergence (see Gerlach
and Chen, 2008, for more details). For details on the
MCMC sampling scheme, random walk MH, and the
IK-MH algorithm, please refer to Chen and So (2006).

4. FORECASTING OF VAR AND
VOLATILITY

Understanding volatility is vital for financial time series
analysis and predicting it is crucial for many functions in
financial markets, such as VaR estimation, options pricing,
asset allocation, and many other applications.

Assuming the long position, the VaR forecast satisfies:

Pr(yn+1 ≤ −VaRn+1 | Fn) = α,

where Fn is the information available up to n. A one-step-
ahead VaR is the α% quantile level of the conditional dis-
tribution yn+1|Fn ∼ D(μn+1, hn+1), where hn+1 is given by
one of the parametric models, and D is the relevant error
distribution. We estimate this predictive distribution via the
MCMC simulation. The quantile VaR is then given by:

VaR
[j]
n+1 = −

[
μ
[j]
n+1 +D−1

α (θ[j])

√
h
[j]
n+1

]
,(10)

where D−1 is the inverse CDF for the distribution D. For
standardized Student’s t errors;

D−1
α =

tα(ν
[j])√

ν[j]/(ν[j] − 2)
,

where tα(ν
[j]) is the αth quantile of a Student’s t distribu-

tion with ν[j] degrees of freedom, and ν[j] is the jth itera-
tion of ν. Hence,

√
ν[j]/(ν[j] − 2) is an adjustment term for

a standardized Student’s t with ν[j] degrees of freedom.
The final forecasted one-step-ahead VaR is the Monte

Carlo posterior mean estimate:

VaRn+1 =
1

N −M

N∑
j=M+1

VaR
[j]
n+1,(11)

where N is the number of MCMC iterations, and M is the
size of the burn-in sample. Alternatively, one can compute
VaRn+1 as the α-percentile of the MCMC sample of yn+1

(see Takahashi, Watanabe, Omori 2016). Based on our ex-
perience, the performances of these two methods show no
difference.

4.1 VaR forecasting evaluation

In this section we provide the criteria for comparing and
testing the VaR forecast models. The Basel Committee on
Banking Supervision (established in 1996) proposed evalu-
ating the worst expected loss over 250 trading days at the
1% level as a form of backtesting, so that at least one year
of actual returns is compared with VaR forecasts.

The common guides for comparing the performance are
the number of violations (I(yt < −VaRt)) and the violation
rate (VRate):

VRate =
1

m

n+m∑
t=n+1

I (yt < −VaRt),

where n is the in-sample period size, and m is the fore-
cast size. Naturally, a VRate close to nominal α is desir-
able. Furthermore, under the Basel Accord, models that
over-estimate risk (VRate < α) are preferable to those that
under-estimate risk levels.

We are greatly interested in the magnitude of the VaR ex-
ceedance rather than simply whether or not an exceedance
occurred. A backtest can be based on a function of the ob-
served profit or loss and the corresponding model VaR. This
would result in the construction of a general loss function,
L(VaRt, yt), which could be evaluated using past data on
profits and losses and the reported VaR series. Lopez (1999
a,b) suggests this approach to backtesting as an alternative
to the approach that focuses exclusively on the hit series. We
consider two loss functions below that measure the difference
between the observed loss and the VaR in cases where the
loss exceeds the reported VaR measure.

Ψ1(VaRt, yt) =

{
1 + (yt − (−VaRt))

2
if yt < −VaRt

0 if yt ≥ −VaRt
,

(12)

Ψ2(VaRt, yt) =

⎧⎨
⎩ 1 +

∣∣∣∣yt − (−VaRt)

∣∣∣∣ if yt < −VaRt

0 if yt ≥ −VaRt

.

(13)

When an exception takes place, the risk model is penalized.
Hence, we prefer to have a lower average loss value (between
two models), defined as the average of these penalty scores:

Ψi =
1

m

n+m∑
t=n+1

Ψi(VaRt, yt), i = 1, 2.

4.2 Backtesting methods

We further consider three backtesting methods for eval-
uating and testing the accuracy of VaR models: the uncon-
ditional coverage (UC) test of Kupiec (1995) - a likelihood
ratio test that the true violation rate equals α; the condi-
tional coverage (CC) test of Christoffersen (1998) - a joint
test, combining a likelihood ratio test for the independence
of violations and the UC test; and the dynamic quantile
(DQ) test of Engle and Manganelli (2004). We present the
details of the processes below.

The UC test of Kupiec (1995): As stated in Christof-
fersen (1998), the UC test looks at the unconditional proba-
bility of a violation that must be equal to the coverage rate
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α, with the LRT being:

LRuc = 2 · log
[
α̂X(1− α̂)m−X

αX(1− α)m−X

]
∼ χ2

1,

where X = number of violations, m = forecast period size,
and α̂ = X/m.

The CC test of Christoffersen (1998): The CC test is a
joint test that combines a likelihood ratio test for indepen-
dence of violations and the UC test, where the independence
hypothesis stands for VaR violations observed at two differ-
ent dates being independently distributed.

LRind = 2 · log
(
L1

L0

)
; LRind ∼ χ2

1.

We define Tij as the number of days when condition j oc-
curred under present status, and assuming that condition i
occurred on the previous day, we get:

i, j =

{
1, if violation occurs
0, if no violation occurs,

L1 =

1∏
i=0

(1− πi1)
Ti0πTi1

i1 ,

L0 = (1− π)
∑1

i=0 Ti0π
∑1

i=0 Ti1 ,

πi1 =
Ti1

(Ti0 + Ti1)
, and π =

(T01 + T11)

m
,

with m being the forecast period size. Thus, the joint CC
test is a chi-square test, in which LRcc = LRuc + LRind,
when LRcc ∼ χ2

2.

The DQ test of Engle and Manganelli (2004): The DQ
test is based on a linear regression model of the hits variable
on a set of explanatory variables, including a constant, the
lagged values of the hit variable, and any function of the past
information set suspected of being informative. H0: Ht =
I(yt < −VaRt)− α is independent of W . The test statistic
is:

DQ(q) =
H ′W

(
W ′W

)−1
W ′H

α(1− α)
,

where W is lagged ‘hits’, lagged VaR forecasts, or other
relevant regressors over time which is discussed in detail by
Engle and Manganelli(2004). Under the H0, DQ(q) ∼ χ2

q.
The DQ test is recognized to be more powerful than the CC
test.

4.3 Volatility proxies

Though volatility is unobservable, we consider the fol-
lowing two proxy variables. They are range-based proxies,
using mean square error (MSE) and mean absolute devia-
tion (MAD) as loss functions. The first range-based proxy
is like that of Parkinson (1980), and the second is based

on Alizadeh, Brandt, and Diebold (2002) and employed by
Lin, Chen, and Gerlach (2012). The formulae for the two
volatility proxies are the following.

1. σ̂1,t = Rt/
√
4 ln(2); (Parkinson, 1980).

2. σ̂2,t = exp[ln(Rt) − 0.43 + 0.292/2]; (Alizadeh, Brandt,
and Diebold, 2002),

where Rt = (maxPt−minPt)×100, Pt is the log price index
at time t. Note that σ̂i,t, i = 1, 2 are known as the unbiased

estimators of
√
ht. We consider the two loss functions:

MSE =
1

m

n+m∑
t=n+1

(ei,t)
2,

MAD =
1

m

n+m∑
t=n+1

∣∣ei,t∣∣,
where ei,t = σ̂i,t −

√
ht, i = 1, 2.

When comparing the models, it is favorable to have smaller
error values under these two criteria.

5. SIMULATION STUDY

We perform simulation studies for the Bayesian estima-
tion to examine the effectiveness of the MCMC sampling
scheme. Considering finite sample properties and consisten-
cies of the MCMC estimators, 500 replications are gener-
ated, with sample size n = 2000. We take the second-order
ST-GARCH model with a skew Student’s t distribution as
follows:

(14)

yt = (0.1 + 0.4yt−1) + F1(zt−1)(0.1− 0.25yt−1) + at,

at =
√

htεt, εt
i.i.d.∼ SK(7,−0.4)

ht = (0.15 + 0.2a2t−1 + 0.7ht−1) +

F2(zt−1)(−0.1− 0.1a2t−1 − 0.2ht−1),

Fi(zt−1) =
1

1 + exp
{

−γi(zt−1−(−0.35))(zt−1−0.3)
sz

} ,

where (γ1, γ2) = (4, 10) and (10, 20), zt is the daily returns
of the S&P500 index, and sz is its sample standard devi-
ation. Since under the proposed model, it would be dif-
ficult to generate a series of zt, we use S&P500 returns
instead. Orders p, g, and q are all set to 1. We choose
two combinations of the smoothness parameters in (14).
The choice (γ1, γ2) = (10, 20) reflects more extreme γi, be-
cause γi ≥ 10 is effectively a sharp transition. Actually, the
second-order ST functions’ shapes of γ, which are equal to
10 or 20 and illustrated in Figure 1, are indistinguishable
from one other. We choose the maximum delay, d0, to be
3. The initial values for each parameter are φ1 = (0, 0),
φ2 = (0, 0), α1 = α2 = (0.01, 0.1, 0.1), ν = 100, γ = 30,
and (c1, c2) = (0, 0.1).
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Figure 2. Three prior densities for γi.

Based on Figure 1, F (.) turns into a sharp or abrupt
transition when γ > 10. Therefore, we consider only choices
of (μγ , σγ) that ensure the prior density becomes small
for γ > 20. We establish two set-ups of prior information
for γi, i = 1, 2, LN(μγ , σγ) = (1.61, 0.77) and (1.61, 0.58)
in which the densities are in Figure 2. We set the hyper-
parameters to (ξ, k) = (0.5, 0.001) in the mixture spec-
ification (8), with τi = 0.35, c1 ∼Unif(℘0.2, ℘0.7), and
c2|c1 ∼Unif(c1+c∗, ℘0.8). Hence, c∗ is chosen, which leads to
at least 10% of observations in-between. We also set b1 = s2y,
b2 = 1, and b3 = 1.1 in (7), allowing for possible explosive-
ness in the variance equation. Note that these settings are
suggested by Gerlach and Chen (2008).

We extensively examine trace plots and the autocorre-
lation function (ACF) plots to confirm convergence and to
infer adequate coverage. We observe the trace plots for pa-
rameters that converge immediately. The ACF plots cut off
fairly quickly, which means that the MCMC mixing is fast
and the autocorrelation is low. Those plots are not shown
to save space.

We use a burn-in sample of M = 10,000 and a total
sample of N = 30,000 iterations, but utilize only every 2nd
iteration in the sample period for inference. It takes less
than 3 minutes of CPU time for one simulated dataset us-
ing author-written FORTRAN code to complete 30,000 it-
erations with a sample size of 2000.

Table 1 displays the summary statistics from 500 repli-
cations for each parameter with two prior choices. The
columns are the true values, the averages of 500 posterior
mean, median estimates, and standard deviations. Table 2
lists the averages of posterior mean, median, standard de-
viation, and 95% credible interval for 500 replications for
the second set of parameters based on the third choice of
(μγ , σγ) = (2.30, 0.77). The last row in both tables are the
average, median, and standard deviation among 500 poste-

rior modes of the parameter d, which is the delay lag. They
100% correctly indicate d=1 for each 500 replications.

We assume the same prior density for γ1 and γ2 -
that is, we do not have any restriction about the mag-
nitudes of γ1 and γ2. The estimates of (γ1,γ2) = (4, 10)
are (5.04, 10.03) and (4.95, 8.68) based on priors 1 and 2,
which are sound. The average standard deviations for prior
2 are slightly smaller versus those of prior 1. Table 2 lists
the posterior means of the second combination (γ1,γ2) to
be (9.76, 17.34). Again, the shape of the second-order ST
function of γ2 = 17.34 is not distinguishable from that
of the true value of γ2 = 20. These simulation results in-
dicate that the posterior estimates obtained by the pro-
posed sampling scheme are reliable. Non-Bayesian methods
are unable to accomplish this desired purpose for estima-
tion.

6. EMPIRICAL STUDY

To examine the performance of the models under highly
varied market conditions, this study examines two distinct
forecasting periods. The first complete dataset is divided
into two: an in-sample period from January 1, 2004 to Oc-
tober 31, 2011, and 500 out-of-sample forecast days, from
November 1, 2011 to late October or mid-November 2013.
Small differences in end-dates across markets did occur due
to different market trading days. This time frame covers the
period after the effects of the global financial crisis hit the
markets. The study includes 10 European stock markets, 7
Asian stock markets, 1 North American market, and 1 South
American market, making 19 stock markets in all. We utilize
three regions for the daily closing prices of stock markets,
including (i) Americas: the S&P500 (U.S.) and the Bovespa
Index (Brazil); (ii) Asia: KOSPI (South Korea), HANG
SENG Index (Hong Kong), Nikkei 225 (Japan), CNX 500
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Table 1. Simulation results for the second-order ST-GARCH model in (14) based on n = 2000 and obtained from 500
replications

True Mean Med Std Mean Med Std
Prior 1 Prior 2

φ
(1)
0 -0.10 -0.0992 -0.0991 0.0345 -0.1012 -0.1009 0.0347

φ
(1)
1 0.30 0.3072 0.3048 0.0833 0.3019 0.2997 0.0834

φ
(2)
0 0.10 0.0980 0.0966 0.0412 0.1026 0.1021 0.0412

φ
(2)
1 -0.25 -0.2605 -0.2579 0.0993 -0.2467 -0.2472 0.0991

α
(1)
0 0.15 0.1629 0.1672 0.0295 0.1632 0.1651 0.0289

α
(1)
1 0.20 0.2080 0.2034 0.0762 0.2170 0.2153 0.0768

β
(1)
1 0.70 0.6503 0.6524 0.1141 0.6651 0.6678 0.1116

α
(2)
0 -0.10 -0.1084 -0.1110 0.0330 -0.1089 -0.1106 0.0320

α
(2)
1 -0.10 -0.1083 -0.1001 0.0845 -0.1140 -0.1109 0.0858

β
(2)
1 -0.20 -0.1819 -0.1859 0.1394 -0.1905 -0.1933 0.1349
ν 7.00 7.1252 6.9782 1.0762 7.0909 6.9636 1.0733
η -0.40 -0.4016 -0.4018 0.0292 -0.3963 -0.3966 0.0291
γ1 4.00 5.0494 4.3081 3.1122 4.9478 4.4164 2.3318
γ2 10.00 10.0281 9.0847 4.5053 8.6667 8.1056 3.1059
c1 -0.35 -0.3356 -0.3326 0.1077 -0.3333 -0.3303 0.1076
c2 0.30 0.2886 0.2866 0.1075 0.2849 0.2815 0.1068
d∗ 1.00 1 1 0 1 1 0

∗: Average of posterior modes and median of posterior modes for d.

Table 2. Simulation results for the second-order ST-GARCH model in (14) based on n = 2000 and obtained from 500
replications

Parameters True Mean Med Std 2.5% 97.5%

φ
(1)
0 0.1 -0.1048 -0.1057 0.0342 -0.1751 -0.0399

φ
(1)
1 0.4 0.3143 0.3120 0.0894 0.1372 0.4878

φ
(2)
0 0.1 0.1049 0.1081 0.0390 0.0304 0.1884

φ
(2)
1 -0.25 -0.2679 -0.2634 0.1006 -0.4619 -0.0670

α
(1)
0 0.15 0.1712 0.1726 0.0257 0.1152 0.2174

α
(1)
1 0.2 0.2239 0.2221 0.0903 0.0768 0.3959

β
(1)
1 0.7 0.6663 0.6784 0.1255 0.4075 0.8714

α
(2)
0 -0.1 -0.1183 -0.1197 0.0287 -0.1709 -0.0612

α
(2)
1 -0.1 -0.1182 -0.1112 0.0961 -0.3004 0.0507

β
(2)
1 -0.2 -0.1843 -0.2054 0.1510 -0.4440 0.1482

ν 7 7.1687 7.0050 1.1809 5.4498 10.1743
η -0.4 -0.3979 -0.3991 0.0299 -0.4526 -0.3412
γ1 10 9.7613 9.1084 3.8261 4.5725 18.0951
γ2 20 17.3461 16.9047 4.9817 9.1169 29.4396
c1 -0.35 -0.3217 -0.3193 0.0629 -0.4563 -0.2098
c2 0.3 0.2681 0.2662 0.0602 0.1581 0.3885
d∗ 1 1 1 0 1 1

∗: Average of posterior modes and median of posterior modes for d.
Prior 3 (LN(2.3, 0.77)) is adopted for the (γ1,γ2).

(India), SHANGHAI SE A SHARE (China), TAIEX (Tai-
wan), and SET Index (Thailand); and (iii) Europe: FTSE
100 (U.K.), DAX 30 (Germany), CAC 40 (France), AEX
Index (Netherlands), PSI 20 (Portugal), MIB Index (Italy),
ISEQ (Ireland), Athex Composite Index (Greece), RTS In-
dex (Russia), and IBEX 35 (Spain).

To examine how the models perform during the recent
financial crisis period (2007–2009) and to evaluate how the
crisis affects risk management, we take on a second time
span: a learning period from January 4, 2000 to December
31, 2006 and a second validation or out-of-sample forecast
evaluation window: January 3, 2007 to December 30, 2009.
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Table 3. Summary statistics of market returns:a in-sample period from January 1, 2004 to October 31, 2011

Mean Min Max Std Skewness Kurtosis JB testb Q(5)c Q2(5)c

Americas
Brazil 0.050 -12.100 13.680 1.9463 -0.081 8.263 < 0.001 0.024 < 0.001
U.S. 0.006 -9.470 10.960 1.3848 -0.312 13.161 < 0.001 < 0.001 < 0.001

Europe
France -0.005 -9.472 10.590 1.4814 0.065 10.559 < 0.001 < 0.001 < 0.001
Germany 0.022 -7.433 10.800 1.4383 0.052 10.354 < 0.001 0.025 < 0.001
Greece -0.053 -10.210 13.430 1.7603 0.047 7.956 < 0.001 0.036 < 0.001
Ireland -0.030 -13.960 9.733 1.6616 -0.575 9.966 < 0.001 0.536 < 0.001
Italy -0.026 -8.598 10.880 1.5155 -0.043 10.172 < 0.001 0.001 < 0.001
Netherlands -0.005 -9.590 10.030 1.4455 -0.174 11.957 < 0.001 < 0.001 < 0.001
Portugal -0.007 -10.380 10.200 1.2099 -0.114 13.874 < 0.001 0.134 < 0.001
Russia 0.052 -21.200 20.200 2.3665 -0.454 14.085 < 0.001 < 0.001 < 0.001
Spain 0.007 -9.586 13.480 1.5068 0.150 11.685 < 0.001 0.001 < 0.001
U.K. 0.011 -9.266 9.384 1.2913 -0.150 11.307 < 0.001 < 0.001 < 0.001

Asia
China 0.026 -9.261 9.033 1.8159 -0.294 5.920 < 0.001 0.078 < 0.001
Hong Kong 0.024 -13.580 13.410 1.7202 0.044 11.652 < 0.001 0.184 < 0.001
India 0.052 -12.880 15.030 1.7253 -0.488 11.131 < 0.001 < 0.001 < 0.001
Japan -0.009 -12.110 13.230 1.6112 -0.569 12.236 < 0.001 0.230 < 0.001
South Korea 0.044 -11.170 11.280 1.5320 -0.578 9.212 < 0.001 0.233 < 0.001
Taiwan 0.013 -6.912 6.525 1.397 -0.432 5.996 < 0.001 0.0216 < 0.001
Thailand 0.012 -16.060 10.580 1.4913 -0.928 15.513 < 0.001 0.221 < 0.001

a The summary statistics results exclude the out-of-sample forecasting period.
b Jarque-Bera normality test
c Q(5) and Q2(10) are the p-values of Ljung-Box test for autocorrelation in the level of returns and the squared returns up to the
5th lag.

We mainly focus on S&P500 and Nikkei 225 for this financial
turmoil period.

All data are obtained from Datastream International.
The returns are the difference of the logarithm of the daily
price index:

yt = [ln(Pt)− ln(Pt−1)]× 100,

where Pt is the closing index on day t. Table 3 shows sum-
mary statistics for the 19 markets during the in-sample pe-
riod from January 1, 2004 to October 31, 2011. The statis-
tics include stock-index return means, extreme values, stan-
dard deviations, skewness, kurtosis, the Jarque-Bera nor-
mality (JB) test, and the Ljung-Box Q(5) values for both
returns and squared returns. As per the characteristics of
financial data, the daily return has heavy tails and is neg-
atively skewed (exceptions are for Hong Kong, Germany,
France, Greece, and Spain). The normality test exhibits a
clear rejection for each market by the Jarque-Bera normality
test under a 1% significant level. Furthermore, high volatil-
ity is clearly evident during the global financial crisis period
(around late-2008 to 2009).

The DT-GARCH model proposed by Chen and So (2006)
is a special case of the first-order ST-GARCH model when
the smoothness parameter γ goes to infinity. We state the
DT-GARCH(1,1) model as follows:

yt =

{
φ
(1)
0 + φ

(1)
1 yt−1 + at yt−d < c

φ
(2)
0 + φ

(2)
1 yt−1 + at yt−d ≥ c

,

at =
√

htεt, εt
i.i.d.∼ t∗ν ,

(15)

ht =

{
α
(1)
0 + α

(1)
1 a2t−1 + β

(1)
1 ht−1 yt−d < c

α
(2)
0 + α

(2)
1 a2t−1 + β

(2)
1 ht−1 yt−d ≥ c

,

where εt has a student’s t distribution with degrees of free-
dom υ, standardized to have unit variance; d is the delay
lag and c is the threshold value. We estimate the param-

eters in the DT-GARCH model, φ
(j)
0 , φ

(j)
1 , α

(j)
0 , α

(j)
1 , β

(j)
1 ,

(where j = 1, 2,) c, d, and ν, by the Bayesian method. When
ht = α0 + α1a

2
t−1 + γI(at−1 < 0)a2t−1 + β1ht−1 in Equation

(15), then this model becomes a special case: GJR-GARCH
model. We will employ both models for VaR forecasting
later.

We report Bayesian estimates for the U.S. market during
the in-sample period based on the five nonlinear GARCH
models: first-order logistic function with Student’s t er-
ror (1ST-GARCH), second-order logistic function with Stu-
dent’s t and skew Student’s t errors (2ST-GARCH and
2STsk-GARCH), the exponential function with Student’s
t error (EST-GARCH), and the DT-GARCH model with
Student’s t errors. The priors’ settings for ST-GARCH are
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Table 4. Bayesian estimation of parameters for 1ST, 2ST, 2STsk, EST-GARCH specifications, and DT-GARCH for the
S&P500 index

1ST-GARCH 2ST-GARCH 2STsk-GARCH EST-GARCH DT-GARCH
Med Std Med Std Med Std Med Std Med Std

φ
(1)
0 0.533 0.302 0.029 0.055 -0.036 0.079 0.027 0.028 0.033 0.035

φ
(1)
1 -0.177 0.162 -0.008 0.069 -0.150 0.103 -0.008 0.042 -0.084 0.040

φ
(2)
0 -0.908 0.605 0.088 0.091 0.104 0.109 0.102 0.156 0.034 0.074

φ
(2)
1 0.274 0.313 -0.087 0.102 0.099 0.132 -0.098 0.075 -0.033 0.064

α
(1)
0 0.206 0.006 0.185 0.010 0.030 0.025 0.006 0.005 0.007 0.008

α
(1)
1 0.345 0.013 0.273 0.008 0.128 0.039 0.006 0.006 0.133 0.018

β
(1)
1 0.354 0.007 0.331 0.012 0.681 0.057 0.885 0.018 0.947 0.019

α
(2)
0 0.188 0.023 0.196 0.016 0.004 0.039 0.312 0.092 0.008 0.007

α
(2)
1 0.167 0.017 0.133 0.016 -0.059 0.048 0.105 0.022 0.005 0.006

β
(2)
1 0.286 0.011 0.273 0.007 0.266 0.065 0.014 0.037 0.883 0.018
ν 4.081 0.112 4.174 0.231 6.955 1.298 6.784 1.194 7.220 1.309
η -0.149 0.029
γ 0.247 0.103 6.714 1.657 0.238 0.041 - -
γ1 5.562 3.424
γ2 4.545 2.867
c 0.054 0.377 - - 0.672 0.052 0.325 0.269
c1 - - -0.326 0.186 0.183 0.131 - - - -
c2 - - 0.568 0.123 0.518 0.094 - - - -
d∗ 1 1 2 1 1

* denotes the posterior mode for d.

the same as in the simulation study, and the estimation is
based on a total of 30,000 MCMC iterations, discarding the
first 10,000 iterations as a burn-in period.

Table 4 presents the estimated posterior median and stan-
dard deviation of parameters. To save space, we do not re-
port 95% credible intervals here. The majority of coefficients
in mean equations are insignificant, which are indicated by
the 95% credible intervals. Allowing AR(1) in the condi-
tional mean helps account for possible asymmetric autocor-
relations in the returns. The delay lag d is not always fixed
and swings from 1 to 3, based on learning periods. In order to
show further justification about the same effect or the same
smooth transition function in the mean and variance, we
allow Model “2STsk-GARCH” to incorporate different ST
functions in the mean and variance with skew Student’s t er-
rors. The estimated skew parameter and degrees of freedom
are respectively −0.149 and 6.955, indicating the skew Stu-
dent’s t assumption is appropriate. However, the estimates
of γ1 and γ2 are 5.562 and 4.545, respectively. It seems that
the effects in the mean and variance are indistinguishable
during the in-sample period. In order to further examine
about whether we should include different effects in mean
and variance, we plan to use these five models for VaR fore-
casting.

In the out-of-sample period, we employ a rolling window
approach to produce a one-step-ahead forecasting of hn+1,
1% VaR, and 5% VaR under the following 2 HS methods
and 12 risk models. The HS methods encompass the
short-term HS with an observation window of 25 days

(HS-ST) and the long-term HS with an observation window
of 100 days (HS-LT). The risk models include the five
asymmetric models employed for Table 4. In addition, there
are RiskMetrics (RM), AR-GARCH, and AR-GJR-GARCH
with three error distributions. For the global financial crisis
period, we utilize RV models with three error distributions
for the U.S. and Japan stock markets.

Post-global financial crisis period (2011–2013)

Tables 5 and 6 report the empirical results for the 19
markets: The ratio of VRate to α under the 1% and 5%
confidence levels based on a forecast period of 500 trad-
ing days. The ratio VRate/α = 1 indicates a good VaR
method/model. We summarize our results as follows.

1) The Greek government-debt crisis started in 2009 and
was still ongoing as of the out-of-sample period from
2011 to 2013. Our results reveal that most of Europe’s
markets had a hard time trying to avoid any of the
negative effects from the Greek government-debt crisis.
All models and methods massively underestimate this
risk, especially for Greece, Italy, and Portugal markets,
at the 1% level. The range of VRate for the Greece stock
market varies from [1.2, 5.2] at the 1% level, which is
far away from the 1%. The worst performance for most
of the risk models occurs in the Greece market.

2) We use HS methods due to their popularity and ease of
implementation. As expected, the performance is poor
since most of the markets are unstable. Nevertheless,
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Table 5. Post-global financial crisis period: VaR prediction performance using 2 HS methods and 12 risk models and 500
forecasted stock returns under α = 1%. VRate/α are given

Markets HS-ST HS-LT RM G-n G-t G-sk GJRn GJRt GJRsk 1ST 2ST 2STsk EST DT
GARCH GARCH GARCH GARCH GARCH

Americas (5.1) (1.5) (1.7) (1.5) (1.0) (0.8) (1.3) (0.7) (0.4) (0.6) (0.8) (0.7) (0.9) (0.8)
Brazil 5.0 1.6 1.4 0.8 0.8 0.6 0.8 0.2 0.2 0.4 0.8 0.6 0.4 0.4
U.S. 5.2 1.4 2.0 2.2 1.2 1.0 1.8 1.2 0.6 0.8 0.8 0.8 1.4 1.2

Europe (4.20) (1.68) (1.88) (1.81) (1.49) (1.28) (1.92) (1.66) (1.44) (1.56) (1.44) (1.42) (1.66) (1.62)
France 3.2 1.4 1.6 1.6 1.2 1.2 1.6 1.6 1.4 1.4 1.4 1.6 1.2 1.4
Germany 4.0 1.6 2.0 1.6 1.2 1.4 2.0 1.6 1.4 1.2 1.4 1.6 1.6 1.8
Greece 5.2 1.2 1.8 2.2 1.8 1.6 2.4 2.2 2.0 2.0 1.8 1.8 2.0 2.0
Ireland 4.8 1.6 1.4 1.6 1.4 1.2 1.6 1.6 1.2 1.2 1.2 1.4 1.4 1.6
Italy 3.6 1.6 2.2 2.5 2.3 1.4 2.4 2.0 2.0 2.2 2.0 1.8 2.4 2.0
Netherlands 4.6 1.8 2.2 2.0 1.6 1.4 1.8 1.6 1.6 1.8 1.2 1.2 1.8 1.6
Portugal 4.2 2.0 2.0 2.2 2.0 1.8 2.2 1.6 1.4 1.8 2.0 1.8 1.8 1.8
Russia 4.0 1.8 2.2 1.6 1.2 0.8 1.0 0.8 0.6 1.0 1.2 1.0 1.2 0.6
Spain 4.0 2.0 1.8 1.6 1.2 1.2 2.4 2.0 1.8 1.6 1.2 1.2 1.8 2.0
UK 4.4 1.8 1.6 1.2 1.0 0.8 1.8 1.6 1.0 1.4 1.0 0.8 1.4 1.4

Asia (4.89) (2.00) (1.74) (1.36) (1.01) (0.60) (1.03) (0.86) (0.66) (0.86) (0.97) (0.66) (1.06) (0.86)
China 4.8 1.4 2.4 2.3 1.5 0.4 1.4 1.0 0.4 0.6 0.8 0.4 1.0 1.0
Hong Kong 4.0 1.8 2.0 1.8 1.8 1.4 1.4 1.4 1.4 1.4 1.6 1.6 1.6 1.4
India 4.4 3.0 1.6 1.0 0.8 0.2 1.2 0.8 0.4 0.6 1.0 0.4 1.0 0.6
Japan 4.6 2.6 1.4 1.4 1.0 0.8 1.4 1.2 1.0 1.0 1.2 1.0 1.6 1.2
South Korea 5.6 1.6 2.2 0.8 0.6 0.4 0.2 0.2 0.0 0.4 0.6 0.2 0.6 0.2
Taiwan 4.6 1.2 1.8 1.2 0.6 0.4 0.4 0.4 0.4 0.6 0.6 0.2 0.6 0.6
Thailand 6.2 2.4 0.8 1.0 0.8 0.6 1.2 1.0 1.0 1.4 1.0 0.8 1.0 1.0

Note that the values in (.) are the average VRate/α for each method/model in each region.

Table 6. Post-global financial crisis period: VaR prediction performance using 2 HS methods and 12 risk models and 500
forecasted stock returns under α = 5%. VRate/α are given

Markets HS-ST HS-LT RM G-n G-t G-sk GJRn GJRt GJRsk 1ST 2ST 2STsk EST DT
GARCH GARCH GARCH GARCH GARCH

Americas (1.74) (1.08) (1.06) (0.98) (1.09) (0.96) (0.96) (1.00) (0.88) (0.94) (1.00) (0.84) (1.04) (0.90)
Brazil 1.80 1.16 1.12 1.00 1.06 0.96 0.88 0.88 0.84 0.88 0.92 0.88 0.96 0.80
U.S. 1.68 1.00 1.00 0.96 1.12 0.96 1.04 1.12 0.92 1.00 1.08 0.80 1.12 1.00

Europe (1.59) (0.95) (1.07) (1.07) (1.13) (1.05) (1.05) (1.10) (1.00) (1.16) (1.14) (1.05) (1.26) (1.10)
France 1.60 0.88 1.00 1.12 1.20 1.00 1.08 1.08 1.00 1.20 1.24 1.16 1.20 1.20
Germany 1.68 0.92 0.92 1.08 1.08 1.00 1.04 1.04 1.00 1.20 1.16 1.08 1.20 1.24
Greece 1.68 1.12 1.16 1.08 1.16 1.28 1.24 1.28 1.28 1.36 1.12 1.24 1.64 1.12
Ireland 1.60 1.12 0.92 0.88 0.96 0.96 0.92 0.96 0.92 1.00 1.00 1.00 1.08 1.04
Italy 1.52 0.80 1.04 1.20 1.26 1.04 1.12 1.16 1.04 1.20 1.24 1.08 1.56 1.12
Netherlands 1.60 0.80 1.12 0.84 1.12 0.96 1.00 1.00 0.96 1.16 1.08 0.96 1.24 1.12
Portugal 1.64 1.08 1.12 1.24 1.16 1.24 1.16 1.28 1.16 1.24 1.24 1.08 1.24 1.08
Russia 1.40 1.00 1.16 0.96 1.00 0.80 0.76 0.84 0.76 0.80 1.00 0.80 0.84 0.84
Spain 1.72 1.00 1.04 1.12 1.12 1.12 1.12 1.24 1.04 1.12 1.12 0.96 1.28 1.12
UK 1.44 0.80 1.20 1.20 1.24 1.12 1.04 1.12 0.88 1.28 1.20 1.16 1.28 1.16

Asia (1.66) (1.10) (1.06) (0.95) (1.11) (0.88) (0.83) (0.95) (0.82) (0.93) (1.01) (0.87) (0.97) (0.97)
China 1.64 0.96 1.16 0.96 1.26 0.72 0.76 0.96 0.72 0.76 0.84 0.64 0.76 0.76
Hong Kong 1.56 1.04 1.04 0.96 1.04 0.92 0.88 0.92 0.88 0.96 1.12 0.96 0.96 0.84
India 1.48 1.16 1.08 1.08 1.24 0.92 0.84 0.84 0.76 0.84 1.04 0.80 0.84 0.96
Japan 1.52 1.24 0.92 0.92 0.92 0.88 1.04 1.04 0.92 0.92 0.96 0.88 1.08 1.12
South Korea 1.80 0.84 1.16 1.12 1.20 1.00 0.92 1.04 0.92 1.08 1.16 1.04 1.16 1.08
Taiwan 1.72 0.92 1.04 0.92 1.12 0.76 0.76 0.88 0.72 0.92 0.96 0.76 1.04 1.04
Thailand 1.92 1.52 1.04 0.68 1.00 0.96 0.64 1.00 0.84 1.00 0.96 1.00 0.96 0.96

Note that the values in (.) are the average VRate/α for each method/model in each region.
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Table 7. Post-global financial crisis period: Evaluating VaR prediction performance using the 19 markets with 500
out-of-sample forecasting

Mean Med Ave loss∗ Min Max

1%
HS-ST 4.55 4.60 1.131 3.20 6.20
HS-LT 1.78 1.60 1.008 1.20 3.00
RM 1.81 1.80 0.955 0.80 2.40
G-n 1.61 1.60 0.796 0.75 2.50
G-t 1.26 1.20 0.634 0.60 2.25
G-sk 0.98 1.00 0.475 0.20 1.80
GJRn 1.53 1.60 0.796 0.20 2.40
GJRt 1.26 1.40 0.635 0.20 2.20
GJRsk 1.04 1.00 0.476 0.00 2.00
1ST-GARCH 1.20 1.20 0.581 0.40 2.20
2ST-GARCH 1.20 1.20 0.581 0.60 2.00
2STsk-GARCH 1.06 1.00 0.475 0.20 1.80
EST-GARCH 1.36 1.40 0.688 0.40 2.40
DT-GARCH 1.25 1.40 0.635 0.20 2.00

5%
HS-ST 8.16 8.20 5.104 7.00 9.60
HS-LT 5.09 5.00 2.111 4.00 7.60
RM 5.33 5.20 3.687 4.60 6.00
G-n 5.08 5.00 2.371 3.40 6.20
G-t 5.59 5.60 3.953 4.60 6.25
G-sk 4.89 4.80 1.318 3.60 6.40
GJRn 5.08 5.00 2.370 3.20 6.20
GJRt 5.18 5.20 2.635 4.20 6.40
GJRsk 4.62 4.60 1.054 3.60 6.40
1ST-GARCH 5.22 5.00 2.374 3.80 6.80
2ST-GARCH 5.38 5.40 3.162 4.20 6.20
2STsk-GARCH 4.81 4.80 1.844 3.20 6.20
EST-GARCH 5.64 5.60 3.436 3.80 8.20
DT-GARCH 5.16 5.40 3.161 3.80 6.20
The values in boldface indicate the best two favored models.
Ave loss:

Ψ(VRte) =

{
α+ (VRate− α)2 if VRate > α
0 if VRate ≤ α

,

the HS-LT method is relatively better than other mod-
els for the Greece market at the 1% level.

3) The 2ST-GARCH model with Student’s t error outper-
forms among all other models for the Ireland and Spain
markets. We note that the banking crisis in Ireland in
November 2010 further dented confidence in an already
uncertain global financial market. It is estimated that
Ireland owed over $130 billion each to banks in Ger-
many and the UK. The wide exposure of the Euro crisis
to the rest of the European market would likely weaken
market confidence in that region in the near future. Un-
der these circumstances, the 2ST-GARCH model is a
comparatively better choice for these markets during
the post-global financial crisis period at the 1% level.

4) Except for the Hong Kong market, three models -
GARCH, GJR-GARCH, and 2ST-GARCH with skew
Student’s t errors - stand out as performing the best
across Russia, UK, Asia, and Americas markets at the

1% level. These three models also work well across the
markets of Europe, Asia, and Americas regions at the
5% level.

Figure 3 displays boxplots for VaR prediction perfor-
mance over the 19 markets and 2 HS methods and 12 risk
models at 1% and 5% levels. The figure illustrates that mod-
els with Gaussian errors and HS methods underestimate the
1% risk level in all or most markets. Among these models,
the top three are G-sk, GJRsk, and 2STsk-GARCH mod-
els, in which the means of VRate are closest to nominal at
the 1% level. These three best models have skew Student’s
t errors; clearly, fat tails with additional skew characteristic
are required in this forecasting time period. The results are
different from α = 1% to 5% level. There are several models
whose violation rates are equal to or less than one at the 5%
level.

Table 7 confirms these results. The values in boldface

Bayesian forecasting of VaR based on ST-GARCH models 463



Figure 3. The boxplots for VaR prediction performance over the 19 markets and 2 HS methods and 12 risk models at the 1%
and 5% levels.

are two favored models. Based on the idea of Lopez (1999

a, b), we construct the following loss function in Table 7

to evaluate the performance of risk models (methods) that

penalize those violation rates exceeding the α level by using

the squared difference.

Ψ(VRate) =

{
α+ (VRate− α)2 if VRate > α
0 if VRate ≤ α

.(16)

Three models, GARCH, GJR-GARCH, and 2ST-GARCH

models with skew Student’s t, perform the best at both 1%
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Table 8. Post-global financial crisis period: Evaluating VaR estimates based on Lopez’s loss functions using the 19 markets
with 500 out-of-sample forecasting

Mean Med Std Min Max(1) Mean Med Std Min Max(2)

Quadratic Loss Absolute Loss

1%

HS-ST 8.63 7.94 3.03 5.75 18.25 7.49 7.48 1.13 6.06 11.17

HS-LT 3.05 2.57 1.73 1.55 9.25 3.24 2.56 2.08 1.78 11.04

RM 3.04 2.89 1.11 1.70 5.60 2.84 2.97 0.67 1.56 3.98

G-n 2.87 2.42 1.69 1.10 8.11 2.56 2.69 0.94 1.25 4.73

G-t 2.15 1.83 1.44 0.71 6.57 1.93 1.78 0.80 0.81 3.77

G-sk 1.73 1.39 1.41 0.33 6.21 1.53 1.60 0.82 0.36 3.44

GJRn 2.88 2.12 2.22 0.25 9.39 2.50 2.33 1.26 0.30 5.49

GJRt 3.38 1.84 6.17 0.21 28.13 2.11 2.03 1.43 0.24 6.66

GJRsk 1.90 1.36 1.87 0.00 7.25 1.61 1.52 1.07 0.00 4.25

1ST-GARCH 2.34 1.72 2.00 0.43 8.02 1.99 2.00 1.18 0.48 4.68

2ST-GARCH 2.21 1.52 1.64 0.68 7.20 1.94 1.67 0.90 0.79 3.93

2STsk-GARCH 1.83 1.36 1.55 0.23 6.75 1.63 1.56 0.94 0.27 3.71

EST-GARCH 2.65 2.00 2.30 0.46 9.64 2.25 1.98 1.20 0.53 5.08

DT-GARCH 2.32 1.72 1.92 0.42 7.67 1.98 1.92 1.04 0.49 4.47

Mean Med Std Min Max(1) Mean Med Std Min Max(3)

Quadratic Loss Absolute Loss

5%

HS-ST 16.54 14.95 6.06 10.56 36.91 15.47 14.11 6.76 11.11 41.91

HS-LT 9.97 8.78 4.04 5.64 20.07 8.65 8.32 1.79 6.06 12.44

RM 10.08 8.93 3.39 6.69 21.08 8.92 8.53 1.40 6.88 13.07

G-n 10.00 8.12 4.16 6.24 23.25 8.63 8.35 1.83 5.81 12.79

G-t 10.93 9.11 4.23 7.27 24.68 9.42 8.89 1.68 7.35 13.53

G-sk 9.30 7.77 4.31 4.95 24.18 8.15 7.80 1.94 5.49 13.97

GJRn 9.23 6.95 4.87 4.62 25.24 7.98 7.39 2.19 5.20 14.04

GJRt 10.00 8.78 4.95 5.15 26.31 8.65 8.04 2.13 5.79 14.57

GJRsk 8.86 7.74 4.86 4.40 25.60 7.65 6.96 2.18 4.90 14.27

1ST-GARCH 10.70 8.46 5.77 5.84 29.92 8.94 8.58 2.59 5.95 16.06

2ST-GARCH 10.79 9.03 4.40 6.76 24.57 9.25 8.78 1.81 7.31 13.33

2STsk-GARCH 9.28 7.46 4.42 4.92 24.28 8.06 8.10 2.01 5.47 13.74

EST-GARCH 11.69 9.09 6.49 6.43 32.97 9.73 9.20 3.06 6.24 18.29

DT-GARCH 10.37 8.53 4.86 5.81 26.04 8.74 8.04 2.00 6.02 13.50
NOTE: The values in boldface indicate the best two models.
(1): All extreme quadratic losses occurred in the Greece market, except for “HS-LT” method.
(2): All extreme absolute losses occurred in the Greece market, except for “HS-LT” and RiskMetrics.
(3): All extreme absolute losses occurred in the Greece market, except for two “HS” methods.

and 5% levels, yielding the three lowest average loss values
based on (16).

To evaluate the efficiency of risk measurement, Table 8
presents the results of Lopez’s loss functions. The best model
concerning smallest mean and median loss is highlighted in
bold. Two models with skew Student’s t errors, GJRsk, and
2STsk-GARCH models, are the best two over quadratic loss
and absolute loss at the 1% level. It is clear that the choice
of error distribution is highly important during this period.
The best two models turn out to be 2STsk-GARCH, GJR-n,
and GJR-sk at the 5% level. The family of GJR models is a
good choice when we only consider risk at the 5% level.

Table 9 briefly describes the number of rejections for
each model, over the 19 markets, at the 5% significance

level for each of the three tests considered: the UC, CC,
and the DQ tests. Four lags are used, as stated in Engle
and Manganelli (2004) for the DQ test. The DQ statistic
is evidently the most powerful test and rejects the most
models in the most markets. The “Total” states are the
number of markets rejected by any backtests under each
model. Using the HS-ST method, all markets fail under
the three backtests. At α = 1% level, the HS-ST method,
the HS-LT method, and the RM model are rejected in
most of the markets, mainly by the DQ test. The 1ST-
GARCH model and the DT-GARCH model have fewer re-
jections among tests in all the markets. At α = 5% level,
there are 10 models with only 0 or 1 rejections across mar-
kets.
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Table 9. Post-global financial crisis period: Counts of model rejections for three backtests across the 19 markets at the 5%
significant level

1% 5%

Model UC CC DQ4 Total UC CC DQ4 Total

HS-ST 19 19 19 19 19 19 19 19
HS-LT 5 3 12 13 1 2 7 7
RM 9 2 14 15 0 2 4 4
G-n 5 0 7 9 0 0 0 0
G-t 3 1 4 6 1 1 0 1
G-sk 2 0 4 6 0 0 0 0
GJRn 4 2 3 5 0 0 0 0
GJRt 6 3 5 7 1 0 0 1
GJRsk 5 0 4 6 0 0 0 0
1ST-GARCH 2 0 3 4 0 0 0 0
2ST-GARCH 2 0 6 7 0 0 1 1
2STsk-GARCH 2 0 4 6 0 0 1 1
EST-GARCH 3 2 4 5 2 2 3 3
DT-GARCH 4 0 2 4 0 0 0 0

Global financial crisis period (2007–2009)

We next consider the recent financial crisis period (2007–
2009) as an out-of-sample forecast evaluation window. We
also investigate the realized GARCH models proposed by
Hansen, Huang and Shek (2012), where the daily returns
and realized measure of volatility calculated using the in-
traday returns are jointly modelled. The realized measure
of volatility calculated using the intraday returns may be
subject to the bias caused by microstructure noise and non-
trading hours. The realized GARCH model can adjust the
bias in the realized measure.

As a realized measure of volatility, we use the realized
kernel calculated by taking account of the bias caused by
microstructure noise (Barndorff-Nielsen et al., 2008). The
realized kernel of the S&P500 index is downloaded from the
Oxford-Man Institute Realized Library (Heber et al., 2009)
and that of the Nikkei 225 index is calculated using one-
minute returns of the Nikkei 225 index obtained from the
Nikkei NEEDS-tick data (Ubukata and Watanabe, 2014).
We describe the realized GARCH model with three error
distributions, given by the following three equations:

yt = σtζt, ζt
iid∼ D(0, 1)(17)

lnσ2
t = ω + β lnσ2

t−1 + γ lnxt−1(18)

lnxt = ξ + ϕ lnσ2
t−1 + τ(ζt) + ut,(19)

where yt is the return, and xt is the realized kernel. In Equa-
tion (19), we utilize τ(ζt) = τ1ζt + τ2(ζ

2
t − 1) to generate an

asymmetric response in volatility to return shocks. Here,

ζt
iid∼ D(0, 1), D(0, 1) indicates a distribution that has mean

0 and variance 1, ut
iid∼ N(0, σ2

u), and σ2
t = var(yt|Ft−1) with

Ft = σ(yt, xt, yt−1, xt−1, . . .).
Equation (19) is called a measurement equation, which

relates the realized measure of volatility to the true volatil-

ity. If the realized measure were an unbiased estimator of
the true volatility, then ξ and ϕ would be 0 and 1, respec-
tively. Realized volatility, however, has a bias caused by mi-
crostructure noise and non-trading hours. Since we use the
realized kernel, the bias caused by microstructure noise may
be negligible. New York Stock Exchange and Tokyo Stock
Exchange are open only for 6.5 hours and 5 hours, respec-
tively, within a normal trading day, and our realized kernels
are calculated using the intraday returns only when the mar-
ket is open. Thus, we should expect ξ < 0 or ϕ < 1.

We use three error distributions for the i.i.d. disturbances
in each RV-type model in Equation (17). The choice D(0,1)
is a standard Gaussian and labelled as RV-n. The Student’s
t (RV-t) and skew Student’s t (RV-sk) distributions need to
be standardized to have unit variance. We take the classical
estimator, employing the “rugarch” package in R software,
for modelling and forecasting RV models in (17)–(19) (see
Ghalanos 2014). To save space, we do not provide the pa-
rameter estimation for the RV models here, which are avail-
able from the authors upon request. However, we do observe
that the estimated ξ is significantly negative and ϕ is signifi-
cantly less than one for both U.S. and Japan stock markets.
The estimate of τ1 is significantly negative for both stock
markets, indicating a negative correlation between today’s
return and tomorrow’s volatility.

We construct the results of VRate/α and three backtests
in Table 10. In the global financial crisis forecast period,
however, all models significantly underestimate risk levels
at the 1% and 5% quantiles and no model could be recom-
mended as being accurate. All VRate/α values are greater
than 1. For the Japan market, the violation rates of G-n,
GJR-sk, 2ST-GARCH, and 2STsk-GARCH reach a mini-
mum value (equal to 1.5) at the 1% level. For the U.S. mar-
ket, RV-sk has a minimum VRate at the 1% level. Clearly,
during the financial turmoil period, a skew error distribution
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Table 10. Evaluating VaR prediction performance over the time period from January 2007 to December 2009 at the 1% and
5% levels

Method/Model Japan U.S.
1% VRate/α UC CC DQ 1% VRate/α UC CC DQ

1%
HS-ST 4.17 5.33
HS-LT 2.50 3.17
MR 2.18 2.80
G-n 1.77

√ √
3.34

G-t 1.64
√ √

1.87
√

G-sk 1.50
√ √

1.60
√ √

GJRn 1.91
√

3.20
GJRt 1.64

√ √ √
1.87

√

GJRsk 1.50
√ √ √

1.47
√ √ √

1ST-GARCH 2.18
√

2.80
2ST-GARCH 1.50

√ √
2.67

2STsk-GARCH 1.50
√ √

2.00
EST-GARCH 3.68

√ √
3.74

√

DT 1.77
√ √ √

2.54
RV-n 2.86 2.94
RV-t 2.73 2.40
RV-sk 2.46 1.34

√ √ √

5% VRate/α UC CC DQ 5% VRate/α UC CC DQ
5%
HS-ST 1.73 1.90

√

HS-LT 1.17
√

1.40
√

MR 1.58 1.44
G-n 1.64 1.55
G-t 1.64 1.60
G-sk 1.50 1.47
GJRn 1.45 1.52
GJRt 1.50

√
1.50

GJRsk 1.39 1.42
1ST-GARCH 1.58 1.44

√

2ST-GARCH 1.66 1.60
2STsk-GARCH 1.56 1.50
EST-GARCH 2.02 2.00
DT 1.53 1.60
RV-n 2.18 1.63
RV-t 2.21 1.60
RV-sk 1.99 1.39

“
√
” indicates that we fail to reject H0 at the 5% significance level.

with fat tails is very important to capture risk dynamics and
level, at the 1% level, under a 1-day horizon. Most backtests
for both markets are rejected at the 5% level. The measure-
ments in Table 11 are based on Lopez’s loss functions. It
turns out that GJR-sk is the best model for the Japan mar-
ket, while RV-sk and GJR-sk have the best performance for
the U.S. market during financial turmoil periods.

Table 12 provides summary statistics of standard devia-
tion (

√
ht) forecasts based on two proxies and two loss func-

tions across markets. As the loss functions are judged un-
der MSE and MAD, we prefer the model with the smallest
value. The performances of standard deviation forecasts and
VaR are in contrast to one another. Apparently, the Risk-
Metrics model is suitable in regards to the lowest MSE and

MAE values (GJRsk ranks in the top 2 in some cases), but
the VaR forecasts for RiskMetrics is not the best among the
risk models. VaR estimates depend much more on the choice
of distribution than volatility estimates do. However, when
comparing the performance of the 2ST-GARCH model and
the rest of the models, the differences do not seem too large.
We conclude that the 2ST-GARCH model is not excellent,
but is still acceptable in volatility forecasting.

7. CONCLUSION

This study evaluates the performances of VaR forecasts
across a range of competing parametric heteroskedastic
models and non-parametric methods. We employ three vari-
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Table 11. Evaluating VaR estimates based on Lopez’s loss functions over the time period from January 2007 to December
2009 at the 1% and 5% levels

Quadratic Loss Absolute Loss
NK225 SP500 NK225 SP500

1%
HS-ST 14.19 12.41 8.41 9.79
HS-LT 16.82 7.69 6.75 5.75
MR 8.53 4.85 4.94 4.42
G-n 6.54 5.60 3.99 5.13
G-t 5.94 3.44 3.68 3.08
G-sk 5.17 2.84 3.33 2.56
GJRn 4.84 5.04 3.65 4.70
GJRt 4.04 3.20 3.09 2.92
GJRsk 3.47 2.48 2.73 2.26
1ST-GARCH 4.31 4.56 3.49 4.14
2ST-GARCH 5.75 4.21 3.57 3.98
2STsk-GARCH 5.14 3.16 3.33 3.03
EST-GARCH 5.88 6.71 3.17 6.30
DT 6.35 4.28 5.45 4.05
RV-n 7.34 5.94 5.68 4.72
RV-t 8.47 4.55 7.26 3.73
RV-sk 7.39 2.81 6.54 2.26

Quadratic Loss Absolute Loss
NK225 SP500 NK225 SP500

5%
HS-ST 28.93 23.82 16.82 18.14
HS-LT 55.01 24.82 16.73 14.06
MR 26.32 17.11 15.13 13.61
G-n 24.12 19.25 15.66 14.89
G-t 25.72 19.77 15.98 15.34
G-sk 23.39 17.60 14.52 14.01
GJRn 20.15 17.17 13.86 13.90
GJRt 21.19 17.00 14.31 13.82
GJRsk 19.24 14.90 13.05 12.60
1ST-GARCH 22.27 18.63 15.03 13.81
2ST-GARCH 26.43 19.69 16.47 15.50
2STsk-GARCH 24.20 17.53 15.14 14.28
EST-GARCH 24.82 25.71 15.40 19.51
DT 24.49 19.30 17.12 15.13
RV-n 31.80 18.46 20.88 14.29
RV-t 34.45 18.08 23.46 14.05
RV-sk 30.67 15.43 21.27 11.99

ant ST functions in order to capture the asymmetry in
nonlinear, double threshold GARCH models. For a com-
parison, we also consider two popular asymmetric fami-
lies: GJR-GARCH and DT-GARCHs models. We apply
Bayesian MCMCmethods on all heteroskedastic models (ex-
cept the RV model) for estimation, inference, and forecasts.
A simulation study shows that model parameters are well
estimated for the 2ST-GARCH model with a different effect
(smooth transition function) for the mean and variance and
skew Student’s t errors.

We evaluate two out-of-sample periods in light of the
recent global financial crisis. For the post-global financial
crisis period, our results suggest that Eurozone countries
found it hard to avoid contagion from the Greek debt cri-

sis. Except for Russia and UK markets, all models under-
estimate the extreme risk. In general, GARCH, GJR, and
2ST-GARCH with skew Student’s t errors perform best at
the 1% level based on Lopez’s loss functions. The results
show that the 2ST-GARCH model with skew Student’s t
errors is very apt for Russia, UK, Asia, and Americas mar-
kets at the 1% level during the post-global financial crisis
period, when compared to a range of existing alternatives.
Both DT-GARCH and EST-GARCH models have a favor-
able out-of-sample volatility forecasting performance. Based
on the empirical application, we conclude that higher mo-
ments (skewness and kurtosis) need to be explicitly modeled
in order to obtain better VaR predictions.

For the global financial crisis period, all risk models un-
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Table 12. Evaluation of volatility forecasting based on two proxies and two loss functions

MSE MAD
Proxy 1 Mean Med Std Mean Med Std
RM 0.397 0.257 0.394 0.491 0.417 0.235
G-n 0.416 0.284 0.428 0.525 0.474 0.241
G-t 0.413 0.283 0.430 0.522 0.467 0.242
G-sk 0.405 0.277 0.427 0.514 0.453 0.242
GJRn 0.403 0.268 0.446 0.507 0.449 0.249
GJRt 0.404 0.279 0.448 0.507 0.463 0.249
GJRsk 0.400 0.272 0.448 0.504 0.459 0.249
1ST-GARCH 0.427 0.317 0.480 0.525 0.482 0.256
2ST-GARCH 0.413 0.282 0.425 0.521 0.457 0.239
2STsk-GARCH 0.418 0.288 0.420 0.524 0.456 0.237
EST-GARCH 0.400 0.285 0.427 0.510 0.457 0.240
DT-GARCH 0.413 0.297 0.465 0.516 0.471 0.254

Proxy 2 Mean Med Std Mean Med Std
RM 0.375 0.228 0.393 0.460 0.388 0.238
G-n 0.386 0.247 0.433 0.486 0.425 0.247
G-t 0.383 0.240 0.436 0.483 0.418 0.248
G-sk 0.377 0.236 0.432 0.476 0.400 0.248
GJRn 0.374 0.230 0.451 0.469 0.415 0.255
GJRt 0.375 0.234 0.454 0.469 0.416 0.255
GJRsk 0.372 0.232 0.453 0.466 0.411 0.256
1ST-GARCH 0.402 0.268 0.486 0.488 0.437 0.263
2ST-GARCH 0.384 0.244 0.432 0.483 0.416 0.245
2STsk-GARCH 0.389 0.256 0.426 0.486 0.417 0.243
EST-GARCH 0.384 0.239 0.436 0.479 0.431 0.247
DT-GARCH 0.382 0.248 0.471 0.475 0.423 0.261

derestimate the risk levels. We find that volatility asymme-
try is most important for capturing risk, with skew errors
also prominent, especially at the 1% level during the global
financial period. In further works, we shall also focus on ex-
pected shortfalls - that is, the expected number on the worst
side, under a given percentage, that is more sensitive than
VaR.

The use of our proposed Bayesian forecasting of nonlinear
ST models to deal with some complex derivatives and to cal-
culate their corresponding VaR formulae is of practical im-
portance and theoretical interests. The Bayesian approach
provides risk traders with the flexibility of adjusting their
VaR models according to their subjective opinions. The find-
ings of this research contribute to a better understanding of
the performance of Bayesian forecasting of VaR based on
various nonlinear ST models and hence could help securi-
ties traders or commercial banks concerning valuating their
risky portfolios.
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