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Bayesian semiparametric mixed-effects joint
models for analysis of longitudinal-competing

risks data with skew distribution

TAO Lu

The joint analysis of longitudinal competing risks data
has received much attention recently. However, most joint
models for this type of data assume parametric functions
for both longitudinal and competing risks processes which
has its limitation for practical use. Motivated by studying
the relationship between two biomarkers modified by time
in an AIDS study, we develop the semiparametric mixed-
effects joint models for longitudinal-competing risks data
analysis. The proposed models differ from existing models
in that: i) the commonly used parametric models in the joint
models are extended to semiparametric settings to account
for irregular data observed in real studies; ii) we employ
skew distributions for random errors to account for skew-
ness in data. We propose a Bayesian approach to jointly
model two processes which are connected through the share
of random effects. An example from a recent AIDS clinical
study illustrates the methodology by jointly modeling the
viral load and time to death due to AIDS or other reasons
to compare potential models with various scenarios and dif-
ferent distribution specifications. The analysis results show
a strongly negative relationship between virologic and im-
munologic biomarkers and CD4 counts reduce risks from
both AIDS and other causes. In addition, nonlinear time ef-
fects are observed on the viral load at the population level
while individual variation is large. These findings may help
us to design a better treatment strategy for AIDS patients.

KEYWORDS AND PHRASES: Bayesian inference longitudinal
data, Competing risks, Longitudinal data, Competing risks,
Partially linear mixed-effects models, Proportional hazard
models, Skew distribution, Survival data.

1. INTRODUCTION

In evaluating a patient’s success on AIDS treatment, two
biomarkers are often used: viral load and CD4 counts. Vi-
ral load measures the amount of virus in plasma while CD4
counts is a commonly used measure to assess the strength
of a patient’s immunological system. A lower viral load and
higher CD4 counts may indicate successful treatment of
AIDS. After treatment initiation, we expect reduction of

viral load and increment of CD4 counts. However, the re-
spond of CD4 counts is usually slower to that of viral load.
To model the complex relationship between the virologic and
immunologic biomarkers, it is important to take into account
the time effect that may modify the relationship. Further,
the data on measurements of these biomarkers are collected
longitudinally in AIDS studies and trajectories are quite ir-
regular. Thus, it is generally difficult to adopt a parametric
model for investigating their relationship in the longitudinal
setting. As an example, Figure 1 a) presents the viral load
data of 50 subjects from the real data that we will analyze
later. It can be seen that there is large inter-subject varia-
tion and each subject demonstrates quite irregular pattern.

The situation is further complicated by a terminal event
such as death. Because the terminal event may be related
to the individual’s measurements on biomarkers, the termi-
nal mechanism is not ignorable. Further, there are multiple
types of events that may affect the outcome. For example,
a patient’s death may be caused by HIV infection or other
reasons. These risks compete with each other for the survival
endpoint. To study the relationship between viral load and
CD4 counts which may lead to development of new treat-
ment strategies, it is crucial to evaluate time to death caused
by competing risks. Nevertheless, little work has been done
for the analysis of the important relationship between two
biomarkers in the longitudinal-competing risks data setting.

Joint modeling of longitudinal data and time-to-event
data has received much attention recently. Comparing to
separate analysis of two processes, the joint model has the
advantage of providing more efficient inferences on the time-
to-event and longitudinal biomarkers by incorporating all
information simultaneously. A common setup for the joint
model assumes a mixed-effects model for the longitudinal
process and a proportional hazard model for the time-to-
event process. The two processes are usually linked through
sharing or association of random-effects. The dependency
between the longitudinal and time-to-event processes is
therefore governed by the latent process characterized by
the random-effects. Earlier joint models for longitudinal-
survival data analysis deal with univariate time-to-event
data [1, 2, 3, 4, 5, 6]. Recently, they are extended to ac-
count for more complex cases, such as competing risks data
[7, 8,9, 10, 11], recurrent events [12, 13, 14]. [15] used accel-
erated failure time model for joint modeling of longitudinal
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Figure 1. a): viral load trajectories for 50 randomly selected subjects. b): The skewed distribution of logy viral load of 6,972
patients from MACS study.

and survival data and applied Monte Carlo EM approach
to estimate unknown parameters. Also, [16] discussed dif-
ferent approaches to estimate unknown parameters of joint
modeling of longitudinal measurements and event time data
and then applied a fully parametric approach to modeling
Schizophrenic patients data set. [17] used a linear mixed
model with skew-normal distribution for longitudinal mea-
surements and a Cox proportional hazard model for time to
event variable.

Nevertheless, in all of these studies, at least one of the
following two issues stand out: (i) majority of currently ex-
isting models assume a linear/genaralized linear mixed ef-
fects (LME/GLME) sub-model for the longitudinal process
and a proportional hazard sub-model for survival process.
The parametric formation of joint models is not sufficient
in many cases, i.e. modeling the relationship between viral
load and CD4 counts which is modified by irregular time
effect. It is thus necessary to extend to more general model
frameworks, such as semiparametric models. (ii) symmetric
distributions such as normal and t distributions are usually
assumed for random errors in these models. The symmet-
ric assumption may lack the robustness against departures
from symmetry as well as outliers [18]. Statistical analysis
with normal/t assumptions may lead to misleading results.
Particularly, skewness often appears in practice. Figure 1 b)
shows the histogram of logjy transformed viral load data
from an AIDS study. Obviously, the distribution of data is
highly skewed even after transformation.

In this paper, we develop a jointly modeling approach
to investigate the relationship between HIV viral load and
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CD4 counts in presence of skewed data. Particularly, we
employ a Bayesian approach to examine jointly a partially
linear mixed-effects model with skew distribution for HIV
viral load and a cause-specific proportional hazard model
[19] for competing risks survival data. From methodological
perspective, we relax the parametric assumptions for the
analysis of longitudinal-competing risks data under such a
general framework that handles skew distribution in longitu-
dinal endpoints. The two components of the joint models are
associated through sharing of random-effects. [20] developed
a new model for analyzing longitudinal-competing risks sur-
vival data in which a mized-effects varying-coefficient model
with skewed distribution was employed for the longitudi-
nal process and a cause-specific varying-coefficient hazard
model with random-effects was adopted for the survival pro-
cess. The linkage between longitudinal process and compet-
ing risk time-to-event process is established by the associ-
ation of random-effects between two models. In this paper,
we proposed a partially linear mized-effects model with skew
distribution for the longitudinal process and a cause-specific
proportional hazard model for the competing risks process
and the connection between two processes is through the
sharing of random effects which is computationally more
convenient. To the best of our knowledge, the incorpora-
tion of partially linear mixed-effects model in joint modeling
of longitudinal-competing risk data has never been investi-
gated.

We employ a multivariate skew-t (ST) distribution [21,
22, 23, 24, 25, 26] to develop joint models for longitudinal-
competing risk survival data with skew distribution. We de-



velop associated statistical methodologies to compare per-
formance with those based on symmetric distributions. It is
noted that ST distribution is approximate to skew-normal
(SN) distribution when its degrees of freedom approach in-
finity and the SN distribution reduces to normal distri-
bution if the skewness parameter is zero. Therefore, the
joint models built on SN and normal distributions are
just special cases of that built on the ST distribution.
For completeness, Appendix A (Web supplementary mate-
rial, http://intlpress.com/site/pub/pages/journals/items/
sii/content /vols/0010/0003/s002) briefly discusses the mul-
tivariate skew distributions.

The rest of article is organized as follows. In Section 2, we
describe the data set that motivated this research and the
joint statistical models that account for asymmetric distri-
bution in response are introduced. The Bayesian approach
that estimates the parameters in the joint model is presented
in Section 3. In Section 4, the proposed joint models and
inferential method are applied to AIDS data and analysis
results are presented. Simulation studies are conducted to
assess the performance of the proposed model in Section 5.
The article is concluded with discussion in Section 6.

2. MOTIVATING DATA AND JOINT
MODELS

2.1 Motivating data

The data that motivates this study is from a Multicenter
AIDS Cohort Study (MACS) [27], an ongoing prospective
study of the natural and treated histories of HIV-1 infec-
tion in homosexual and bisexual men conducted by multiple
sites (Baltimore, Chicago, Pittsburgh, and Los Angeles). A
total of 6,972 men at risk of HIV infection have been en-
rolled in three cohorts (first cohort n = 4,954, from 1984 to
1985; second cohort n = 668, from 1987 to 1991; third co-
hort n = 1,350, from 2001 to 2003). The study participants
had baseline and semiannual follow-up visits. There are 1598
subjects with more than three measurements on HIV viral
load and CD4 counts. Among all patients, 7.3% died from
AIDS related diseases (referred to as AIDS death) and 23%
died from other causes (referred to as other death). A log;,
transformation of viral load and standardized CD4 counts
were used in the analysis for the purpose of stabilizing vari-
ation of measurement errors.

Figure 1 a) shows that the trajectories of individual viral
load are quite irregular. Thus, the relationship between viral
load and study time can not be modeled by a parametrical
function. We adopt a semiparametrical model in which a
linear relationship between viral load and CD4 counts is
assumed and a nonparametric function is employed to model
the modification effect of time. Further, Figure 1 b) shows
that viral load is highly skewed even after transformation.
Therefore, a normality assumption is not quite realistic for
this dataset. Alternatively, we adopt an asymmetric skew-
t (ST) distribution [21, 22, 23, 24, 25, 26] rather than a
symmetric normal distribution.

2.2 ST partially linear mixed-effects model

To model the relationship between viral load and CD4
counts accounting for irregular time effects, we adopt a par-
tially linear mixed-effects model for the longitudinal process:

Yy, = Pizi + 9,(t:) + €4,
Bi = B+ ws,
9:(ti) = g(t:) + Ai(t;)

(1)

where y; = (yi1," - 7ym7~,)T and z; = (zi1," - ,Zmi)T~ Yij
and z;; are the viral load and CD4 counts for the ith sub-
ject at time t;;, respectively; t; = (i1, - ,tin,)'; € =
(i1, y&in,)T. Bi is the individual coefficient that quan-
tifies the relationship between viral load and CD4 counts
for individual ¢; 8 is the population coefficient (fixed-effects)
and w; is the random-effects variable that quantifies the de-
parture from the population for individual :. We assume w;
is normally distributed with mean 0 and variance o2 . Both
g(.) and A;(.) are unknown smoothing functions. g(.) stands
for the population smoothing curve while A;(.) represents
the random-effects. Altogether, g,(.) is the smoothing curve
for individual 7. The error term e; and random smoothing
function g,(.) are zero mean stochastic processes and are
independent from each other. w; is independent of both €;
and g,(.).

We employ a regression spline method to approximate
g(.) and A;(.) with a linear combination of spline ba-
sis functions ©,(t) = (Oo(t), - ,0,(t)T and ®,.(t) =
(bo(t), -, dr(t))T respectively:

g,(t) = 377 &i(t) = ©,(1)7€,
Ai,r<t) ~ 2221 in¢k(t) = (I’r(t)TXri

where &, = (1,---,&)7 is a p-dimensional vector of
fixed-effects, x,; = (X1i»---,Xri)! is a r-dimensional vec-
tor of random-effects; the dimensional numbers p and r
are determined by Deviance Information Criterion (DIC).
Note that gp(.) is an approximation of true population
smoothing curve g(.) based on a series of spline ba-
sis of order p. Based on the assumption of A;(.), we
treat x,, as i.i.d. realizations of a zero-mean random vec-
tor. Denote ©,; = (©,(ti1),...,Op(tin,))? and ®,; =
(®,.(ti1),- .., ®r(tin,))T. Plug (2) into (1):

(3)

Let X; = (2:,0p), Z; = (2, ®,4), ¢ = (8,€,)T and b; =
(@i, xL)T. We can write (3) as

(4)

which is a standard LME model if we assume X,; and
Z; are the fixed-effects and random-effects design matrix,
respectively; ¢ and b; are the fixed-effects and random-
effects parameter vectors, respectively; b; ~ N(0,X) and
g; ~ N(0, R;). However, in practice, the viral load vy, are

(2)

Y, = ,Bzi + Wiz; + 61’”510 + q)riXm‘ + E;

Yy =X (+2Zb+e
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most likely not normally distributed. In this case, we may
assume &; < ST, (=J(W)éeln,,021,,,6.1,,), which fol-
lows a multivariate ST distribution with degrees of free-
dom v, unknown scale parameter o2 and skewness param-
eter &, where J(v) = (v/m)'2[[((v — 1)/2)/T'(v/2)], and
1, =(1,...,1)T.

2.3 Cause-specific proportional hazard
model

In the follow-up of a study, a subject may experience mul-
tiple types of failure or could be right censored. We assume
there are K types of failure and use indicator d; to represent
each type. For example, d; = 0 indicates an independent
censoring event and d; = k indicates the kth type of failure,
where k = 1,..., K. Denote D; as the failure time, C; as the
censoring time and T; = min(D;, C;) as the observed time
for subject ¢. To model the competing risks survival process,
we consider a cause-specific hazard model.

()

where the function A (t) is the instantaneous hazard rate
from cause k at time ¢ for subject ¢, the coefficient vy, rep-
resents the effect of the covariate z; to the kth type of fail-
ure, ¢, = (Cp1,-+- ,Cpr)? is the parameter vector that links
the longitudinal and competing risks survival processes. In
particular, ¢, measures the strength of association between
viral load and each type of failure. Note that x,, is the
random effects coefficients for the spline basis in (2) and
X1i,"** , Xri collectively describe the nonlinear time effect
on the change of viral load in subject i relative to the pop-
ulation. This makes the interpretation of the parameters cj
less straightforward as ¢j is the coeflicients associated with
Xri- Intuitively, the interpretation for any cx; (i =1,--- ,r)
is that for each unit increase of subject-specific xx;, the haz-
ard ratio for the kth event is exp(ck;). The baseline haz-
ard Ao (t) is approximated by a piecewise step function, i.e.
Mok (t) = Aog,; for t in the interval between ¢y ;1 and ¢ ;
where 0 < tg1 < -+ < tg,y < 00 is the partition of time.
For future reference, we denote Ao, = (Aok,1,- -+ 5 Aok,s)- To
select the appropriate number of knots, we suggest to first
fit the data with a large number of pieces, and then com-
bine the adjacent intervals with similar baseline estimates.
For the real data application, we used a piecewise constant
baseline hazard function with five knots for the event of
HIV related death and other death, respectively, and the
time points defining the steps are taken to be 5 equally split
percentiles of the observed dropout times for the two event
types, respectively.

The corresponding survival function for the kth compet-
ing terminal event is Sy(t;) = exp [ — fg Aok (t) exp(VYrz; +
XTTick)dt]. The likelihood of the competing terminal events
is

Aik(t) = Aok (t) exp(Vrz; + xfick), k=1,....K

K
6 LX) = H{[A0k<ti>]’<di-k>5k<m},
k=1
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where the parameter vector Y = (Y1, , ¢k, cf, -,
k)T,

3. BAYESIAN INFERENCES FOR THE
JOINT MODEL

The previously discussed longitudinal process and time-
to-event process are inherently connected. The computa-
tional cost associated with the joint likelihood for the lon-
gitudinal data with skewness as well as the competing risks
survival data is usually high. Often times, the Frequentist
approach fails to converge [28]. We propose a fully Bayesian
approach for the joint models (1) and (5) which handle
longitudinal-competing risk survival data with skew distri-
bution. The Markov chain Monte Carlo (MCMC) technique
is employed to estimate all parameters simultaneously based
on the joint likelihood.

Denote 6 = {¢, Y, Ao, 0%, 2, v,0.} as the collection of
unknown population parameters in models (4) and (5). The
prior distributions for @ are as follows:

(7)
¢~ N(11,A1), 1/0% ~T(wy,ws), B~ IW(, p),
de ~ N(0,7),v ~ Exp(ro)I(v > 3), ¥ ~ N(72,A2),
Aosk ~ T'(Vk1, Yk2)

where the mutually independent Normal (N), Inverse
Wishart (IW), Gamma (I') and Exponential (Ezp) prior
distributions are chosen to facilitate computations. The hy-
perparameter matrices Aj, A; and Q are assumed to be
diagonal for implementation convenience. The exponential
prior for v is truncated to lie above 3 to make variance of
ST distribution well-defined.

Through introduction of a n; x 1 random vectors we,
based on the stochastic representation for ST distributions
(see Appendix A in detail), we formulate the longitudinal
response model (4) in association with cause-specific com-
peting risk hazard model (5) hierarchically:

(8)
yi|zia bi7 We,; Ca 02; 6ea v~ tni,u+ni (X’LC + Zibi+
Se[we, — J(v +ni) 1y, ], wio?L,,), we, ~ tn, ,(0,1,,)
I(’U)ei > 0), b,’ ~ ]\7(0721)7 tz ~ Fc(tz|T7>\O,k)

where w; = (v + wl we,)/(v + ;) tn, v (1, A) denote the
n;-variate ¢ distribution with parameters g, A and degrees
of freedom v, I(w > 0) is an indicator function and w =
Is| with ¢ ~ t,,,(0,1,,). F.(-) is the distribution function
related to the competing risks survival model (5).

In the Bayesian framework, we specify the models for
the observed data and the prior distributions for the un-
known model parameters. Subsequently, based on the pos-
terior distributions, we make statistical inference for the
unknown parameters. Denote f(-), f(:|-) and =(-) as a
generic density function, a conditional density function and
a prior density function, respectively. If we assume that
¢, Y, Aok, 0%, 8, 1,0, are independent of each other, then



7(0) = 7({)m(X)m( Mok )m(0?)m(Z)w(v)m(de). As a result,
the joint posterior density of 6 is
© )
f(9|D) S8 {H f f(yi‘zi’ bi, we,;; ¢, 027 Je, V)f(wei |w€i
> 0) £ (bs) Fu(t:| X, Aoy )dbi } 7 (6)

Generally, the integrals in (9) are of high dimension and
do not have closed form. It is often not accurate to approx-
imate the integrals numerically. Therefore, it is prohibitive
to directly calculate the posterior distribution of 8 based on
the observed data. Alternatively, the MCMC procedure is
powerful for drawing samples from posterior distributions,
based on (9), by employing Metropolis-Hastings (M-H) al-
gorithm along with the the Gibbs sampler.

4. APPLICATION TO MACS DATA

4.1 Model specification

We have briefly described the dataset that motivated this
research in Section (2.1). As discussed earlier, the relation-
ship between viral load and CD4 counts is modified by time
effects (Figure 1, a). In addition, the viral load in logo scale
is highly skewed (Figure 1, b). Therefore, It is critical to con-
sider the skew distribution, such as ST, in the semiparamet-
ric mixed-effects model. From biological point of view, the
longitudinal process and competing risk time-to-event pro-
cess are inherently connected. Ignoring either one may lead
to severe bias on parameter estimation. The proposed joint
models take into consideration all of these factors. Thus, we
believe it will outperform other potential models. Toward
this end, we firstly compare three statistical models with
different specification of random errors for the longitudinal
response model.

e Model N: A joint model with the independent mul-
tivariate normal distribution of random errors for re-
sponse model (4).

e Model ST: A joint model with the independent mul-
tivariate ST distribution of random errors for response
model (4).

e Model SN: A joint model with the independent mul-
tivariate SN distribution of random errors for response
model (4)

By comparing Models N through SN, we test if the skewed
distribution assumed for error terms works better than that
of symmetric distribution. Furthermore, we examine follow-
ing scenarios: 1) to investigate how association between lon-
gitudinal and competing risk processes contributes to mod-
eling results, we fit a model (Model S) by setting the coef-
ficients ¢, in the cause-specific hazard model (5) to 0 which
indicates no association between two processes; 2) we ex-
amine a model (Model R) in which the competing risk
mechanism is not taken into account. That is, we fit a joint
model in which the cause-specific hazard model (5) is only

applied to the first survival outcome while treating other
types of risk as independent censoring. By comparing this
reduced model with the complete model that adopts com-
peting risk hazard model, we want to find out how other
types of risk treated as independent censoring influences
modeling results.

In terms of MACS data, we are interested in two cause-
specific time-to-events: HIV death and other death. Thus,
the competing risk hazard models for the two risks are:

(10) Ai1(t) = A1 (t) exp(¥1 2 + x1;¢1),
Aia(t) = Aoz (t) exp(va2i + x7;¢2)

To approximate the nonlinear time effects in model (4),
we use the cubic B-spline basis functions for ¢g(¢) and A;(%).
The smoothing parameters p and r are determined by DIC
and the location of knots is selected at the quantiles of the
data [29]. For MACS dataset, the optimal smoothing pa-
rameters are set at 3 for p and r. To stabilize the variance
and reach quick convergence, we use the log;g transformed
viral load and standardized CD4 counts.

We take weakly informative prior distribution for the pa-
rameters in the joint models: (i) fixed-effects are taken to be
independent normal distributions N (0, 100) for each compo-
nent of the population parameter vectors ¢ and Y. (ii) for
inverse of the scale parameters o2, we assume a limiting non-
informative gamma prior distribution, I'(0.01,0.01) so that
the distribution has mean 1 and variance 100. (iii) the de-
gree of freedom parameters v follows truncated exponential
distribution with vy = 0.5. (iv) for the skewness parameters
de, we choose independent normal distribution N (0, 100).
(v) inverse Wishart distributions IW (€2, p) is taken as pri-
ors for the variance-covariance matrice of the random-effects
3, with covariance matrices Q = diag(0.01,0.01,0.01,0.01)
and p = 4, respectively. (vi) for each of piecewise baseline
hazard Aok ;, gamma distributions I'(0.1,0.1) are employed.

The proposed method is implemented with WinBUGS
software (Lunn et al., 2000). The MCMC scheme iterates
between the Gibbs sampler and the Metropolis-Hastings al-
gorithm for drawing samples from posterior distributions
of parameters in the joint models. Based on MCMC sam-
ples, we are able to draw statistical inference for interested
parameters. Specifically, we are interested in the posterior
means and quantiles. Convergence of MCMC algorithm is
assessed by standard tools in WinBUGS software such as
trace plots and Gelman-Rubin diagnostics [30]. We run mul-
tiple chains. After convergency, we keep sampling for cer-
tain period and extract samples every few iterations. The
collected samples are then used to make inferences for the
posterior distribution of interested parameters.

When convergence is achieved, for each of three chains,
after an initial number of 50,000 burn-in iterations, every
50th MCMC sample is retained from the next 50,000. Thus
we obtain 3,000 samples of targeted posterior distributions
of the unknown parameters for statistical inference.
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Figure 2. Diagnostics of model fitting for the three models. Top panel: fitted versus observed values of logy viral load;
bottom panel: Q-Q plots for residuals in three models.

In Winbugs, the Metropolis-Hastings algorithm is based
on a symmetric normal proposal distribution, whose stan-
dard deviation is tuned over the first 4000 iterations in order
to get an acceptance rate of between 20% and 40%. All sum-
mary statistics for the model will ignore information from
this adapting phase.

4.2 Model comparison

Figure 2 shows the diagnostic plots to assess the
goodness-of-fit of the three models. It can be seen that Mod-
els ST and SN which assume asymmetric distribution for
random errors provide a better fit to observed data, com-
pared with the normal model. The examination of Q-Q plots
of residuals also confirms that there are fewer outliers from
Models ST/SN than normal model. Thus, Models ST/SN
fits the data better than Model N.

Table 1 presents the population posterior means, stan-
dard deviation and 95% credible interval for the parameters
in three models. For parameter estimates of the response
model, 8 has a significantly negative posterior mean in all
three models, implying that there is negative relationship
between HIV viral load and CD4 counts at the population
level. This finding is consistent with biological mechanism
since CD4 cells are one of the primary targets for HIV in-
fection. In addition, we find that the absolute values of es-
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timates for 8 based on Model N is larger than that from
Model ST/SN, suggesting an overestimated association be-
tween the two biomarkers by the model assuming normal
distribution for random errors. The estimates of two param-
eters that quantify the effect of CD4 cells on survival of two
competing risks (¢ for HIV-related death and 1)y for other
death) are all negative for three models, indicating a reduced
risk of experiencing two kinds of death due to more CD4
cells. It is noted that there is more beneficial effect of CD4
cells based on Models ST/SN as the parameter estimates of
1)1 and 1p9 are more negative than those in Model N. The es-
timates of many parameters that associate the longitudinal
and survival processes (c11, €12, €13, Ca1, Caz, Co3) are signifi-
cantly different from zero in all models, indicating a strong
correlation between the two processes. Table 2 presents ad-
ditional parameter estimates of the models. For the scale
parameter o2, the posterior mean value (0.63) in Model N is
much larger than that of any other corresponding posterior
means in Models SN (0.11) and ST (0.14). This result is not
surprising because Model N does not account for skewness in
data. The estimates of skewness parameters (d.) are signifi-
cantly negative in both Models ST and SN, which confirms
the left-skewed viral load data. Based on above discussion,
we can see that accounting for significant skewness, when
the data exhibit skewness, provides a better model fit to the



Table 1. The estimated posterior mean (PM) for parameters in the joint model, and the corresponding standard deviation
(SD) and lower limit (Lcr) and upper limit (Ucr) of 95% equal-tail credible interval (Cl)

Model B & & & Y1 Y2 c11 c12 c13 c21 C22 c23
N PM -0.51 4.19 -1.36 4.34 -1.52 -1.9 -1.81 -1.54 0.11 -2.48 1.95 -0.18
Ler -0.67 4.05 -1.79 2.89 -2.41 -2.67 -2.43 -2.71 -1.47 -2.94 1.08 -0.43
Ucr -0.34 4.44 -0.86 5.81 -0.65 -1.13 -1.17 -0.38 1.69 -2.02 2.91 -0.01

SD 0.07 0.07 0.24 0.75 0.46 0.39 0.33 0.6 0.79 0.25 0.49 0.11

ST PM -0.33 4.02 -0.79 3.23 -1.83 -2.39 -1.97 -1.25 0.13 -2.72 1.84 0.12
Ler -0.56 3.88 -1.17 1.81 -2.79 -3.49 -2.55 -2.2 -0.77 -3.29 1.07 -0.04

Ucr -0.11 4.1 -0.37 4.68 -0.86 -1.56 -1.31 -0.72 1.02 -2.11 2.69 0.3

SD 0.1 0.06 0.2 0.74 0.48 0.5 0.3 0.49 0.44 0.29 0.38 0.08

SN PM -0.31 3.99 -0.5 3.5 -1.97 -2.47 -1.23 -1.37 0.2 -2.33 1.35 0.2
Ler -0.45 3.94 -1.03 1.81 -2.77 -3.43 -1.95 -2.52 -0.15 -2.94 0.44 0.02

Ucr -0.22 4.06 -0.02 5.73 -1.21 -1.72 -0.56 -0.19 0.58 -1.78 2.28 0.39

SD 0.06 0.03 0.25 1.0 0.39 0.44 0.36 0.57 0.17 0.28 0.42 0.1

SN2 PM -0.35 4.02 -0.63 3.62 -1.93 -2.58 -1.34 -0.94 0.26 -2.3 1.82 0.3
Ler -0.51 3.89 -1.05 1.81 -2.8 -3.82 -1.75 -1.74 0.04 -2.79 0.99 0.06

Ucr -0.2 4.14 -0.11 5.43 -0.97 -1.39 -0.91 -0.12 0.48 -1.81 2.65 0.55

SD 0.08 0.06 0.21 0.89 0.48 0.62 0.22 0.39 0.11 0.25 0.41 0.12

Table 2. The estimated posterior mean (PM) for parameters

of scale, skewness, degree of freedom and the corresponding

standard deviation (SD), lower limit (Lcr) and upper limit

(Ucr) of 95% equal-tail credible interval (Cl) as well as DIC
and EPD values for MACS study

Model o? de v DIC EPD
N PM  0.63 - — 6124 1.44
Ucr  0.67 — —
SD  0.02 - -
ST PM 0.14 -0.69 3.11 4302 0.53
Ucr 019 -0.48 3.18
SD 0.03 0.12 0.03
SN PM 0.11 -1.25 - 3727  0.36
Ucr 015 -1.18 -
SD  0.02 0.03 —
SN2 PM 0.12 -1.14 - 3711 0.35
Ucr 0.15 -1.03 -
SD  0.02 0.07 -

data and gives more accurate estimates to the parameters.

To further investigate whether Model SN provides better
fit to the data than either Model ST or Model N, Deviance
Information Criterion (DIC) by [31] are obtained and found
to be 6124, 4302 and 3727 for Models N, ST and SN, re-
spectively. Model SN has the smallest DIC, confirming that
Model SN is superior to Models ST and N in fitting the

data. Further, we adopt an alternative model comparison
technique: expected predictive deviance (EPD) which is de-

fined as EPD = F {Z” (Yrep,ij — yobs,ij)z} where the pre-

dictive value yrep,i;j is a replicate of the observed yops,45 and
the expectation is taken over the posterior distribution of
the model parameters 6 [32]. The best model comes with
the least EPD. We find that EPDs are 1.44, 0.53 and 0.36
for Models N, ST and SN, respectively. Thus, based on these
values, Model SN is relatively better than Models ST and
N. These findings are consistent with those displayed in the
goodness-of-fit in Figure 2, indicating that Model SN out-
performs both Models ST and N. In summary, our results
suggest that it is substantial to assume an SN distribution
for the response model in order to achieve reliable results,
in particular if the data exhibit skewness.

4.3 Results based on Model SN

We report the analysis results and interpretation based on
Model SN. Using SN distribution for random errors, we in-
vestigate a few alternative models that adopt different struc-
tures for the joint models. Firstly, we test whether the com-
peting risks sub-model has any additive effect on improving
model fitting to the longitudinal response data. To do so, the
coefficients ¢y in the cause-specific hazard model (5) are set
to 0 by which we separate the two processes. We find that
the DIC for the separate model (Model S) increased to 3,920
from 3,727 in Model SN and EPD is also larger in Model S
(0.47). Secondly, to investigate whether accounting for com-
peting risks is superior to the univariate time-to-event data
analysis in terms of model fitting, we substitute the cause-
specific hazard model (5) by a univariate hazard model in
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Figure 3. a) The population estimating curve of g(t) for longitudinal model (1) based on the best selected Model SN. The
estimates (solid line) along with the 95% pointwise credible interval (dotted line) are presented. b) lllustration of three
represented individual estimating curve (dashed lines) of g;(t) based on Model SN. Population curves (solid lines) are shown
for comparison.

which HIV-related death is treated as the only type of fail-
ure and other death is treated as independent censoring.
We find that the reduce model (Model R) has a larger DIC
(3,782) as well as EPD (0.41) than Model SN. As a result,
Model SN that accounts for competing risks mechanism by
adopting the cause-specific hazard model (5) is superior to
alternative models that do not consider this fact.

We have seen the negative relationship (estimates of )
between HIV viral load and CD4 counts in Table 1. How-
ever, the relationship is modified by the time effect for which
we assume a nonparametric function g(¢) in model (1). The
population estimating curve of g(t) against time along with
95% credible interval is presented in Figure 3 (a). We ob-
serve that the time effect decreases monotonically at a faster
pace after year 10. At the individual level, we observe quite
different features than the population. Figure 3 b) presents
a few patterns for the estimating curves from three rep-
resentative patients. The population estimating curves are
also shown for comparison. In contrast to the population
curve of g(t), the individual estimates of g,(t) demonstrate
large variation. For example, subject 140 has a steeper de-
scending curve than the population curve. On the contrary,
subject 298 shows an increasing trend instead of the de-
creasing curve observed at the population level. It seems
that for this subject, HIV viral load will accumulate more
as the treatment continues, holding the CD4 counts at the
same level. There are also subjects, such as 63, who show
relatively constant curves, implying minimal time effect on
HIV viral load. In terms of the effect of CD4 counts on sur-
vival of each risk, we find it is more effective on reducing the
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risk of other death than that of HIV-related death based on
comparison of the estimates for ¥; and 19 in Model SN of
Table 1.

5. SIMULATION

We carry out a simulation study to evaluate the perfor-
mance of the proposed joint models. The design of simulated
data is similar to the joint models used for the real data.
Specifically, we adopt the mixed-effects model (4) to gen-
erate longitudinal outcomes. The measurement time t;; are
same to those in the real data. The CD4 counts z;; are taken
from real data for each individual. Similar to the real data,
we simulate two competing risks according to the cause-
specific proportional hazard model (10). To generate event
time data, we use constant baseline hazard of 0.1 and 0.2
for two risks, respectively. An exponential distribution with
mean equal to 0.1 is used to generate censoring time. We
set the true values of model parameters as those obtained
from real data analysis for Model SN which are listed in Ta-
bles 1 and 2. To save computing time, we simulate data for
300 subjects in the simulation study. One advantage of the
proposed joint model is the capability of handling skewness
exhibited in data. To simulate data with skewness, we gener-
ate the random errors for model (4) as follows: firstly, data
are sampled from a Gamma distribution I'(3,1); secondly,
the samples are subtracted by 3 which yields skewed data
with mean 0 and variance 3. Under the settings described
above, we simulate 200 data sets.

For each simulated data set, we adopted similar models
and MCMC sampling schema that were used for the real



Table 3. Simulation results based on 200 simulated data set. The true values, bias (%), coverage rate (%) of 95% credible
interval and standard deviation (SD) are presented for each parameter

Model N Model ST Model SN
Parameter True value Bias Coverage SD Bias Coverage SD Bias Coverage SD
B8 -0.31 7.59 90.5 0.24 2.34 93.5 0.05 1.36 95.0 0.02
&1 3.99 -5.99 89.5 1.37 -1.10 94.0 0.42 -0.88 94.5 0.41
& -0.5 -5.10 92.0 0.36 -2.38 98.0 0.22 -1.93 98.0 0.16
&3 3.5 -3.80 91.5 1.02 -2.03 96.5 0.64 -1.67 99.0 0.53
Py -1.97 -8.12 91.0 0.96 -3.09 94.5 0.56 -1.72 96.0 0.29
2 -2.47 -3.72 90.5 1.32 -0.46 99.0 0.36 -0.35 98.5 0.67
c11 -1.23 -4.66 92.0 0.53 -1.59 99.0 0.28 -0.96 96.0 0.18
c12 -1.37 12.78 93.0 0.61 8.54 94.5 0.19 5.81 95.5 0.13
ci3 0.2 14.62 96.0 0.92 6.51 93.5 0.09 4.08 96.5 0.03
c21 -2.33 17.10 89.0 1.42 7.36 98.0 1.10 4.82 96.0 0.78
C22 1.35 14.08 94.5 1.19 5.25 98.5 0.56 3.97 97.5 0.37
Ca3 0.2 13.29 92.5 0.15 6.28 93.5 0.02 4.30 95.5 0.07

data analysis. Vague priors with large variances are used in
the Bayesian inference. We fit each of Models ST, SN and N
to each simulated data set and compare their performance.
Table 3 presents the simulation results. As can be seen, both
Models ST (bias ranges from -3.09% to 8.54%) and SN (bias
ranges from -1.93% to 5.81%) are performing well with es-
timates close to true values. However, Model N produces
larger bias (ranges from -8.12% to 17.1%). In summary, the
simulation results show that it is important to account for
skewness present in the data.

6. DISCUSSION

Motivated by the study of relationship between two
biomarkers in an AIDS study, we developed a Bayesian
approach for joint models of longitudinal-competing risks
data with skewness. A partially linear mixed-effects model
was employed to model the longitudinal process that char-
acterizes the relationship between two biomarkers which is
modified by irregular time effects. A cause-specific semipara-
metric proportional hazard model with random-effects was
proposed to examine the association of time-to-event com-
peting risks. The two components of joint models were con-
nected through the sharing of random-effects between lon-
gitudinal and survival processes. We applied the proposed
Bayesian modeling approach to simultaneously estimate all
parameters in the joint models. The modeling results for
the MACS data show that there is strongly negative rela-
tionship between virologic and immunologic biomarkers at
the population level. The time effects on the longitudinal
endpoint show a curvature at the population level while the
large variation is seen at the individual level. When skewness
is present in data, it is critical to adopt an appropriate sta-
tistical method for drawing robust conclusions. To the best
of our knowledge, there are very few studies on longitudinal-
competing risks data with skewness. Our results show that
skew distributions are more suitable than symmetric distri-
butions.

In Bayesian analysis, it is critical to perform sensitiv-
ity analysis to see if the posterior estimates change sig-
nificantly when priors are different. Toward this end, we
carried out sensitivity analysis by employing a few sets of
different values for the hyper-parameters in (7) and re-run
the MCMC sampling scheme. We observe that the conclu-
sions are similar to those presented in the article. Thus, we
are confident that the obtained results are robust against
hyper-parameter values. In model (1), we adopted the re-
gression spline basis to represent the unknown smoothing
function. There are a lot of alternative ways for approxi-
mating the unknown function, such as local polynomial ker-
nel and smoothing splines. It is interesting to compare the
modeling results based on various nonparametric methods.

In the MACS study, data are collected from four cen-
ters. As one referee pointed out, there might exist center
variation. Toward this end, we model the center heterogene-
ity via the addition of a frailty term, a center-level random
effect with a multiplicative effect on the hazard function.
We find that the parameter estimating results are essen-
tially unchanged, regardless of small numerical fluctuation.
Therefore, the center effect does not affect the conclusions.

As another referee pointed out, the CD4 counts usually
contain substantial measurement error in practice. To ac-
count for measurement error in covariate, we consider an
LME model for the CD4 covariate process:

(11) 24

(o1 + a1;) + (a2 + a2:)ti; + (o3 + aSi)t?j + €5

where zj; = (o + a1;) + (a2 + agi)ts; + (a3 + agi)tfj is
the true CD4 counts, a = (o, @z, a3)? is the population
(fixed-effects) parameter vector, a = (ai;,az;,as;)’ is an
individual-specific random-effects parameter vector which is
assumed to follow normal distribution centered at zero with
3., being the the unrestricted covariance matrix for random-
effects. We then substitute the true CD4 counts into Models
(4) and (10). The parameter estimation results are listed in
Tables 1 and 2 under Model SN2. We find that the rela-
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tionship between viral load and CD4 counts were slightly
underestimated (8: -0.35 vs. -0.31) by Model SN in which
CD4 measurement errors were not accounted for.

It might be meaningful to extend the normal distribu-
tion assumption to skewed-t (ST) or skewed normal (SN)
distribution for the random-effects. In fact, [33] have stud-
ied NLME models where both model errors and random-
effects were assumed to have skew normal distribution. It
was found, in comparison of random-effects with normal
and random-effects with SN, that the modeling results were
very similar and not significantly different. Along with this
finding, the random-effects are assumed to have a normal
distribution in the joint models considered in this paper.

Alternative to the cause-specific model, we could adopt
a mixture sub-model [34], in which the probability for each
failure type is modeled with the logistic model.

Received 10 June 2015

REFERENCES

[1] FaucerT C. L., THOMAs D. C. Simultaneously modelling cen-
sored survival data and repeatedly measured covariates: a Gibbs
sampling approach. Statistics in Medicine. 1996;15(15):1663—
1685.

[2] WULFSOHN M. S., TsIATIS A. A. A joint model for survival and
longitudinal data measured with error. Biometrics. 1997;53:330—
339. MR1450186

[3] HENDERSON R., DiGGLE P., DoBsON A. Joint modelling of
longitudinal measurements and event time data. Biostatistics.
2000;1(4):465-480.

[4] BRowN E. R., IBRAHIM J. G. Bayesian approaches to joint cure-
rate and longitudinal models with applications to cancer vaccine
trials. Biometrics. 2003;59(3):686-693.

[5] ALBERT P. S., Suin J. H. On estimating the relationship between
longitudinal measurements and time-to-event data using a simple
two-stage procedure. Biometrics. 2010;66:983-987. MR2758235

[6] RizopouLos D. Dynamic Predictions and Prospective Accuracy
in Joint Models for Longitudinal and Time-to-Event Data. Bio-
metrics. 2011;67(3):819-829.

[7] ELasHorr R. M., L1 G., L1 N. A joint model for longitudinal
measurements and survival data in the presence of multiple failure
types. Biometrics. 2008 December;64:762-771. MR2526626

[8] Hu W., L1 G., L1 N. A Bayesian approach to joint analysis of
longitudinal measurements and competing risks failure time data.
Statistics in Medicine. 2009;28:1601-19.

[9] Yu B., GHosH P. Joint modeling for cognitive trajectory and risk

of dementia in the presence of death. Biometrics. 2010;66(1):294—

300.

Huang X., L1 G., ErLasHOFF R. M., PaAN J. A general joint

model for longitudinal measurements and competing risks survival

data with heterogeneous random effects. Lifetime Data Analysis.
2011;17:80-100.

Li N., Enasnorr R. M., L1 G., TsEnG C. H. Joint analysis of

bivariate longitudinal ordinal outcomes and competing risks sur-

vival times with nonparametric distributions for random effects.

Statistics in Medicine. 2012;31:1707-1721.

Huanag C. Y., WANG M. C. Joint modeling and estimation for

recurrent event processes and failure time data. Journal of the

American Statistical Association. 2004;99(468):1153-1165.

Han J., StATE E. H., PEA E. A. Parametric latent class joint

model for a longitudinal biomarker and recurrent events. Statistics

in Medicine. 2007;26:5285-5302. MR2415667

KM S., ZENG D., CHAMBLESS L., L1 Y. Joint models of longitu-

dinal data and recurrent events with informative terminal event.

Statistics in Biosciences. 2012;4:262—281.

(10]

(11]

(12]

(13]

(14]

450 T. Lu

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

[24]

[25]

[26]

27]

28]

29]
(30]

(31]

(32]

33]

(34]

Tseng Y. K., Hsien F., WANG J. L. Joint modelling of
accelerated failure time and longitudinal data. Biometrika.
2005;92(3):587-603. MR2202648

DicGcLE P. J., Sousa I., CHETWYND A. G. Joint modelling of
repeated measurements and time-to-event outcomes: the fourth
Armitage lecture. Statistics in Medicine. 2008;27:2981-2998.
BAGHFALAKI T.; GANJALI M. A Bayesian approach for joint mod-
eling of skew-normal lonigtudianl measurement and time to event
data. Revstat. 2015;13(2):169-191.

VERBEKE G., LESAFFRE E. A linear mixed-effects model with het-
erogeneity in random-effects population. Journal of the American
Statistical Association. 1996;91:217-221.

PRENTICE R., KALBFLEISCH J., PETERSON A., FLOURNOY N.,
FAREWELL V., BRESLOW N. The analysis of failure times in the
presence of competing risks. Biometrics. 1978;34:541-554.

Lu T., Wane M., Liv G., Dong G. H., QiaN F. Mixed-
effects varying-coefficient model with skewed distribution coupled
with cause-specific varying-coefficient hazard model with random-
effects for longitudinal-competing risks data analysis. Journal of
Biopharmaceutical Statistics. 2016;26:519-533.

SAHU S., DEY D., BRANCO M. A new class of multivariate skew
distributions with applications to Bayesian regression models. The
Canadian Journal of Statistics. 2003;31:129-150.

AzzALINI A., CAPITANIO A. Distributions generated by per-
turbation of symmetry with emphasis on a multivariate skew
t-distribution. Journal of Royal Statistical Society, Series B.
2003;65:367—-389. MR1983753

ARELLANO-VALLE R., GENTON M. On fundamental skew distri-
butions. Journal of Multivariate Analysis. 2005;96:93-116.
AzzALINT A.; GENTON M. Robust likelihood methods based on the
skew-t and related distributions. International Statistical Review.
2008;76:106-129.

JARA A., QUINTANA F., MARTIN E. Linear mixed models with
skew-elliptical distributions: a Bayesian approach. Computational
Statistics and Data Analysis. 2008;52:5033—-5045.

Ho H., LIN T. Robust linear mixed models using the skew-t distri-
bution with application to schizophrenia data. Biometrical Jour-
nal. 2010;52:449-469.

KasLow R., Ostrow D., DETELS R., PHAIR J., PoLK B., RI-
NALDO C. The Multicenter AIDS Cohort Study: rationale, organi-
zation, and selected characteristics of the participants. American
Journal of Epidemiology. 1987;126:310-318.

Wu L. A joint model for nonlinear mixed-effects models with cen-
soring and covariates measured with error. Journal of the Ameri-
can Statistical Association. 2002;97:955-964.

EuBank R. Nonparametric Regression and Spline Smoothing.
New York: Dekker; 1999. MR1680784

GELMAN A., RUBIN D. Inference from iterative simulation using
multiple sequences. Statistical Science. 1992;7:457-511.
SPIEGELHALTER D., BEST N., CARLIN B., VAN DER LINDE A.
Bayesian measures of model complexity and fit. Journal of the
Royal Statistical Society, Series B. 2002;64:583-639.

GELMAN A., CARLIN J., STERN H., RUBIN D. Bayesian Data Anal-
ysis. London: Chapman and Hall; 2003.

HuANG Y., DAGNE G. A Bayesian approach to joint mixed-effects
models with a skew-normal distribution and measurement errors
in covariates. Biometrics. 2011;67:260—269.

NG S., McLACHLAN G. An EM-based semi-parametric mixture
model approach to the regression analysis of competing-risk data.
Statistics in Medicine. 2003;22:1011-1097.

Tao Lu

Department of Mathematics and Statistics
University of Nevada

Reno, NV

USA

E-mail address: stat.lul1@gmail.com


http://www.ams.org/mathscinet-getitem?mr=1450186
http://www.ams.org/mathscinet-getitem?mr=2758235
http://www.ams.org/mathscinet-getitem?mr=2526626
http://www.ams.org/mathscinet-getitem?mr=2415667
http://www.ams.org/mathscinet-getitem?mr=2202648
http://www.ams.org/mathscinet-getitem?mr=1983753
http://www.ams.org/mathscinet-getitem?mr=1680784
mailto:stat.lu11@gmail.com

	Introduction
	Motivating data and joint models
	Motivating data
	ST partially linear mixed-effects model
	Cause-specific proportional hazard model

	Bayesian inferences for the joint model
	Application to MACS data
	Model specification
	Model comparison
	Results based on Model SN

	Simulation
	Discussion
	References
	Author's addresses

