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Bayesian analysis of censored linear regression
models with scale mixtures of skew-normal

distributions
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In many studies, limited or censored data are collected.
This occurs, in several practical situations, for reasons such
as limitations of measuring equipment or from experimen-
tal design. Hence, the exact true value is recorded only if
it falls within an interval range, so, the responses can be
either left, interval or right censored. Linear (and nonlin-
ear) regression models are routinely used to analyze these
types of data. Most of these models are based on the nor-
mality assumption for the error terms. However, such anal-
yses might not provide robust inference when the normal-
ity assumption (or symmetry) is questionable. In this arti-
cle, we develop a Bayesian framework for censored linear
regression models by replacing the Gaussian assumption
for the random errors with the asymmetric class of scale
mixtures of skew-normal (SMSN) distributions. The SMSN
is an attractive class of asymmetrical heavy-tailed densi-
ties that includes the skew-normal, skew-t, skew-slash, the
skew-contaminated normal and the entire family of scale
mixtures of normal distributions as special cases. Using a
Bayesian paradigm, an efficient Markov chain Monte Carlo
(MCMC) algorithm is introduced to carry out posterior in-
ference. The likelihood function is utilized to compute not
only some Bayesian model selection measures, but also to
develop Bayesian case-deletion influence diagnostics based
on the g-divergence measures. The proposed Bayesian meth-
ods are implemented in the R package BayesCR, proposed
by us. The newly developed procedures are illustrated with
applications using real and simulated data.

KEYWORDS AND PHRASES: Bayesian modeling, Censored
regression models, MCMC, Scale mixtures of skew-normal
distributions.

1. INTRODUCTION

Regression models with normal observational errors are
usually applied to model symmetrical data. However, it is
well known that several phenomena are not always in agree-
ment with the assumptions of the normal model. A good
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alternative is to consider a more flexible distribution for
the errors, such as the Student-t. This is done in Ferndndez
and Steel (1999), where some inferential procedures are dis-
cussed. Ibacache-Pulgar and Paula (2011) propose local in-
fluence measures in the Student-t partially linear regression
model. Other existing methods for robust estimation are
based on the class of scale mixtures of normal (SMN) distri-
butions presented by Andrews and Mallows (1974). These
distributions have heavier tails than the normal one, so they
seem to be a reasonable choice for robust inference. They in-
clude as special cases many symmetric distributions, such as
the normal, Pearson type VII, Student-t, slash and contam-
inated normal. For an interesting review, including appli-
cations in mixed models, see Meza, Osorio and De la Cruz
(2012). Another important wide class of distributions is the
scale mixtures of skew—normal distributions (SMSN), devel-
oped by Branco and Dey (2001). This class of distributions
deals with heavy tails and skewness simultaneously, and con-
tains the entire family of SMN distributions as special cases.

In this work, we are interested in fitting regression models
when the responses are possibly censored. Censoring occurs
in several practical situations, for reasons such as limita-
tions of measuring equipment or from experimental design.
Roughly speaking, a censored observation contains only par-
tial information about an event of interest. For example, the
needle of a scale that does not provide a reading over 200
kg will show 200 kg for all the objects that weigh more than
the limit. Another interesting example is the following, ex-
tracted from Breen (1996): on a school examination, the
pass mark is 40%. A certificate, containing the status of the
student (passed or not passed) is given to all of them, but
only the students who meet the pass mark have reported
their scores. Suppose one wants to study the relation be-
tween the scores and some other explanatory variables, like
social class, gender and parental education. In this case, the
scores are the responses and are left-censored because, if y;
denotes the score of student ¢ and he or she did not meet
the limit, we only know that y; < 39. The case of cen-
sored responses with normal observational errors, denoted
by N-CR, has been studied extensively in the literature, see
for example, Nelson (1977), Stapleton and Young (1984),
Chib (1992), Thompson and Nelson (2003), Park, Genton
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and Ghosh (2007) and Vaida and Liu (2009), to mention a
few. Arellano-Valle et al. (2012) and Massuia et al. (2015)
proposed extensions of the N-CR model by considering that
the error term follows a Student-t distribution. Symmetric
extensions of the N-CR model can be obtained by assum-
ing that the distribution of the perturbations belongs to
the scale mixture of normal (SMN) distributions family, as
in Garay et al. (2015a). These papers provide extensions
of the normal censored model for statistical modeling of
censored datasets involving observed variables with heav-
ier tails than the normal distribution. The work of Massuia
et al. (2015) examines the performance of the model through
case-deletion and local influence techniques.

Here we suggest using a flexible class of SMSN distri-
butions, extending the mentioned works of Arellano-Valle
et al. (2012), Massuia et al. (2015) and Garay et al. (2015a),
where the error component distribution is assumed to follow
a SMSN distribution. It is important to note that the skew—
normal and skewed versions of some other traditional sym-
metric distributions are SMSN members: the skew—t (ST),
the skew-slash (SSL) and the skew contaminated normal
(SCN), for example. These distributions have heavier tails
than the skew—normal (and the normal) one, and thus they
seem to be more reasonable choices for robust inference.
In this paper, we propose a robust parametric approach to
the censored linear regression models based on the SMSN
distributions, denoted by SMSN-CR, from a Bayesian per-
spective. In addition, we suggest an efficient Gibbs-type al-
gorithm for posterior Bayesian inference and discuss some
Bayesian diagnostic measures based on the g-divergence, as
proposed by Peng and Dey (1995) and Lachos, Castro and
Dey (2013), to detect influential observations, which are an
essential part of the analysis when using this kind of model,
showing the drawbacks of the normal one and justifying the
usefulness of the more flexible class of the SMSN distribu-
tions. These Bayesian diagnostic measures can be easily im-
plemented directly from the MCMC output.

The rest of the paper is organized as follows. In Section
2, after briefly outlining some basic notations and conven-
tions, we introduce the SMSN class of distributions. The
SMSN censored linear regression model is presented in Sec-
tion 3. We present a Gibbs-type algorithm for Bayesian es-
timation, specifying prior distributions for the parameters
of interest, in Section 4. The model selection and influence
diagnostics issue is considered in Section 5. The proposed
method is illustrated in Section 6, by analyzing a dataset of
housewife wages, and in Section 7, by analyzing simulated
datasets. Section 8 concludes with a short discussion of is-
sues raised by our study and some possible directions for
future research.

2. PRELIMINARIES

2.1 Notations and definitions

In this paper X ~ N(u;0?) denotes a normal random
variable with mean y and variance o2 and ¢ ( - ; u,0%) de-
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notes its probability density function (pdf). ¢(-) and ®(-)
denote, respectively, the pdf and the cumulative distribu-
tion function (cdf) of the standard normal distribution.
X ~ Gamma(a,b) denotes a random variable with Gamma
distribution having mean a/b and variance a/b?, with a > 0
and b > 0. We use the traditional convention of denoting
a random variable (or a random vector) by an upper-case
letter and its realization by the corresponding lower-case let-
ter. Random vectors and matrices are denoted by boldface
letters. X T is the transpose of X. X 1Y indicates that the
random variables X and Y are independent. For the random
vectors X and Y, we use m(x) to denote the pdf of X and
m(x|y) to denote the conditional pdf of X|Y = y, which,
although being an abuse of notation, greatly simplifies the
exposition.

2.2 Scale mixtures of skew-normal (SMSN)
distributions

To define the linear regression model with censored re-
sponses under the SMSN class, we start with the definition
of this family of distributions, its hierarchical formulation,
and then we introduce some further properties. This class
of distributions was proposed by Branco and Dey (2001)
and contains the entire family of SMN distributions (An-
drews and Mallows, 1974; Lange and Sinsheimer, 1993), and
skewed versions of classic symmetric distributions such as
the skew-Student-t and the skew-slash, among others. Be-
fore we define the SMSN class, we present the fundamental
concept of skew-normal (SN) distribution, given in Azzalini
(1985).

Definition 1. A random variable Z has a skew-normal dis-
tribution with location parameter u, scale parameter o* and
skewness parameter \, denoted by Z ~ SN (u, 02, \), if its
pdf is given by

(1)

1) =200t (A1)

a

The relation between the SMSN class and the SN distri-
bution is given in the next definition.

Definition 2. We say that a random wvariable Y has
a SMSN distribution with location parameter p, scale
parameter o> and skewness parameter X, denoted by
SMSN(u,0%,\; H), if it has the following stochastic repre-
sentation:

(2)

where Z ~ SN (0,02, X\), k() is a positive function and U
is a positive random variable with cdf H( - ;v) indexed by a
scalar or vector parameter v.

Y =pu+w(U)%2, ULZ,

The random variable U is known as the scale factor and
its cdf H( -;v) is called the mizing distribution function.
Note that, when A = 0, the SMSN family reduces to the



symmetric class of SMN distributions. Using the represen-
tation in Equation (2), we observe that:

Y|U =u~ SN(p, k(u)o?, \).

Thus, integrating out U from the joint pdf of Y and U will
lead to the following marginal density of Y:

B =2 [ stanntee () ar)

Also, Y has the following hierarchical representation:

(4) YIT=t,U=u~N(u+At, slu)r),
(5) T\U =u~TN(0,k(u) ; (0,00)),
with A =08, 7= (1-0%)0?,6 = m, and TN(u, 02 ; A)

denoting the pdf of a truncated normal distribution in
the set A, that is, the distribution of X|X € A, where
X ~ N(u,0?). This representation can be used as a data
augmented framework to obtain MCMC or EM type algo-
rithms to carry out Bayesian or maximum likelihood infer-
ence, respectively, and was successfully used with that pur-
pose by Basso et al. (2010) (in the context of mixtures of
SMSN distributions) and by Cancho et al. (2011) (in the
context of nonlinear regression models), among many oth-
ers.

Using (4) and (5), we obtain another way to write the

pdf of Y
- / / FCylt, ) F(tlu) £ (u) dt du

—2/ / 6y s i+ AL, k(u)7)

o(t; 0,k(u)) dt dH (u).

(6)

To introduce the following results and concepts, some
new notation is now in order: N, (u,3X) denotes the
m—variate normal distribution with mean vector p and
covariance matrix X and ®,,(-; p,X) is the correspond-
ing cdf. Ty, (5 p, 3, v) represents the cdf of the m—variate
Student-t distribution with mean vector p, scale matrix X
and v degrees of freedom. The special notation T (+; v) is
used for the univariate case with mean zero and scale 1.

The following Lemma is useful to compute the model
comparison criteria, which will be seen in Section 5.

Lemma 1. Let Y ~ SMSN(u,0% \; H). Then, the cdf of Y
can be written in the following ways:

y):2/w/m¢(t)

X <I>( 1/2 V1I+A—
® Fo)= [ 2 (y*; p 5 () ) dH (),

) dt dH(u) and

where
(9) ¥ =407, p'=(uo’,
o o%k(u) —dok(u)'/?
¥ (u) = < oo (u)l/? 1 and
B A
VIFAZ
Proof. See Appendix A. O

Following Basso et al. (2010), in this paper we consider
k(u) = 1/u in Definition 2, since this choice leads to in-
teresting mathematical properties. Besides, our study fo-
cuses on some particular cases of SMSN distributions. For
each specific SMSN distribution, we compute the quantities
km = E[U™™/2] and its cdf, which are useful for the model
definition and evaluating the likelihood of the SMSN-CR
models. We consider the following distributions:

o The skew-normal distribution: in this case we consider,
in Definition 2, P (U = 1) = 1, which implies k,, = 1.
The pdf of Y is defined in (1) and, using Equation (8)
of Lemma 1, the cdf of Y is given by:

(10) Fly) =205 (y' 1", 3),
where y* = (y,0) " and p* and X are as in (9).

e The skew—t distribution: this case arises when we con-

sider U ~ Gamma(v/2,v/2), leading to:

y my2 L((v —m)/2)
k= (v/2) T

If Y has this distribution, we use the notation Y ~
ST (u, a2, \; 1/). The pdf of Y is

20(4) dy)*\ " >
2 \: — 2 1
flylp, 0%, Asv) NON.Z G
v+1
T xdy) -2 w1,
( S e )
yeR,
where d(y) = (y — p)/o. A particular case of the skew-

t distribution is the skew—Cauchy distribution, when
v = 1. Also, when v — oo, we get the skew-normal
distribution as the limiting case. Using Equation (8) of
Lemma 1, we obtain the following expression for the cdf
of Y:
(12) F(y):2T2(y*7 /J,*,E,l/),

where y* = (y,0)" and p* and ¥ are as in (9). Results
(11) and (12) are proved in Appendix B.
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o The skew-slash distribution: in this case U ~
Beta(v,1), with pdf h(ulv) = vu¥~1, 0 < u < 1, with
v >0, so

km, v>m/2.

v
v —m/2’

For a random variable Y with skew-slash distribution,
we use the notation Y ~ SSL(u,02,\;v). The pdf of
Y is given by:

1
Fylp.o® Av) = 2V/ u’ " (y; pou o)
0

X & (ulﬂw) du, yeR.
o

The cdf of the skew-slash distribution does not have
a closed form expression. However, using Equation (8)
of Lemma 1, we can write it in terms of the follow-
ing integral, which can be approximated by numerical
methods,

F(y) = / 2vPq (y(u)*;u*,E)u”*l du,
0
where y(u)*, p* and X are as in (9).

3. THE SMSN CENSORED LINEAR
REGRESSION MODEL

The linear regression model under SMSN distributions is
defined as

(13)

where B8 = (B4, ... ,ﬁp)T is a vector of regression param-
eters. For subject i, Y; is a response variable and x; =
(i1, - ,xip)T is a vector of explanatory variables. We as-
sume that

(14) & ~SMSN (-ﬁklA,GQ,A;H>, i=1,...,n,
Y

are independent random variables. The value of the location
parameter of €; is chosen in order to obtain E[e;] = 0, as
in the normal model, see Lemma 1 in Basso et al. (2010).
Thus, if the moments exist, we have:

Y; =x; B+ e, i=1,2,...,n,

Y; ~ SMSN(x] B+ bA,0% X\ H),
ElY]] =x; B, and Var]Vj] = koo® — b?A%, i=1,...,n,

where b = —\/gkl.

Estimation and diagnostic analysis for linear and non-
linear models under SMSN distributions have been widely
discussed in the literature from a Bayesian and frequen-
tist perspective see, for example, Cancho, Lachos and Or-
tega (2010), Zeller, Lachos and Vilca-Labra (2011), Garay,
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Lachos and Abanto-Valle (2011) and Labra et al. (2012),
among others. In this work we are interested in the situa-
tion in which the response variable cannot be fully observed
for all subjects, i.e. when Y; in model defined in (13)—(14)
is censored. Assuming left-censoring, Y; is a latent variable,
and we observe the variable V; defined as

C; if
Vi= { Y, if
for some known threshold point ¢;, 1 =1,2,...,n.

The censored linear regression model under the SMSN
distributions, hereafter the SMSN-CR model, is defined by
T

combining (13)—(15). Thus, let 8 = (BT, a2\, 1/)
(v1,v2,...,v,) the vector of parameters and the vector of

observations of V = (V1, V5, ..., V,,), respectively. The log-
likelihood function is given by

Y; <c¢;

(15) }/z > Ci,

and v =

(16) §
((]0) = log {FSMSN (C_:T'Bﬂ 1o,y (vs)

i=1

+ Zlog [fSMSN(Ui|Xz—'r/87 027 Ay V)] ]I(ci,oo)(vi)v

i=1

where fsuyrsn(-) denotes the SMSN(x/ 3,02 \,v) pdf,
Fsyrsn(+) denotes the SMSN(0,1,A,v) cdf, 1,(-) is the
usual indicator function of set A, that is, I, (z) = 1ifx € A
and Ta(x) =0if ¢ A.

In our theoretical development, we will use a left censor-
ing pattern. Because the response Y; is defined over the real
line, extensions to right censored data are immediate. The
right censored problem can be represented by a left censored
problem by transforming the response Y; and censoring level
c; to =Y; and —¢;, respectively.

4. BAYESIAN INFERENCE FOR THE
SMSN-CR MODEL

In this section we develop the Gibbs sampling algorithm
to carry out Bayesian inference for the SMSN-CR model. To
do so, as stated in Section 3, the hierarchical representation
given in (4)—(5) plays a key role. Following Cancho et al.
(2011), we consider a reparameterization of the SMSN class
of distributions based on the representation mentioned be-
fore in order to simplify the mathematical development of
the algorithm.

Let w = (B87,A,7,v) " be the vector of parameters in fo-
cus, which has a one-to-one correspondence with the original

=
vector of parameters 8 = (,BT7 o2\, 1/) , since

[ A o2
A=c /\2—+land ’T—AQ—_H.

Thus, we can obtain 62 and A from A and 7 using 02 =

7+ A? and A = A//7. Therefore, the Gibbs sampler can



be used to draw samples from the posterior distribution of
w or @, indistinctly.

4.1 Prior distributions

In the Bayesian context, distributional prior specifica-
tions are needed for posterior inference. Thus, following
Cancho et al. (2011), we assume that 8 ~ N, (uo,20),
where po and g (positive definite) are known. Also, us-
ing the reparameterization mentioned in the beginning of
this section, we assume that A ~ N(ua,0%) and 7 ~
IGamma(a,, b, ), the inverse gamma distribution, where pa,
0%, a, and b, are known. These choices are made to ensure
conjugacy.

Regarding v, the parameter that indexes the mixing dis-
tribution H(+;v), we use the suggestion given in Cabral, La-
chos and Madruga (2012), i.e., v ~ Texp (y; A) and v~
Unif (a,b), where a and b are known hyperparameters.
Texp (7 ; A) denotes the exponential distribution with rate
parameter v > 0 truncated on the interval A, and Unif (a, b)
denotes the uniform distribution on the interval (a,b). In
order to guarantee the existence of the first two moments,
we set A = (2,00) and A = (1, 00) for the St-CR model and
for the SSL-CR model, respectively.

We also assume independence between the parameters,
so the joint prior distribution of the parameter vector w is:

m(w) = (B) 7 (A)m (1) m (V] A).

Note that, although our prior assumption of indepen-
dence may not be realistic for some sets of parameters,
it leads to posterior distributions with good mathematical
properties, like conjugacy, leading to easy implementation
of the Gibbs sampler. Moreover, if this assumption is not
true, it will be corrected by the posterior distribution and
will not undermine the inference process.

4.2 MCMC estimation

In the Bayesian framework, estimators are obtained as
characteristics associated with the posterior distribution,
like expectations, modes, etc. Due to its complex form, it
is clear that it is prohibitive to approximate its moments
using techniques like numerical integration. Nowadays, it is
well known that an efficient way to approximate these inte-
grals is through the generation of samples from the posterior
distribution via an MCMC-type algorithm (Gamerman and
Lopes, 2006).

In our case, this algorithm can be developed using a data
augmentation scheme, which consists of assuming that the
latent variables in the model, given by the vector of cen-
sored responses Y = (Y1,Ys,...,Y,)" and by the vectors
U= (U,Us,....,U,)" and T = (Ty,T3,...,T,) — see rep-
resentation (4)—(5) — can be observed, and then by obtain-
ing the full conditional distribution for each parameter in
the model and for each latent variable, defined as the con-
ditional distribution of one variable given values of all the

remaining ones (the observed data included). Then, we draw
samples from these (full conditional) distributions.

If we consider the augmented data, the stochastic repre-
sentation of a random variable with SMSN distribution is
given by:

YilUi =u;, Ty =t; ~
T\Ui=u; ~
U;

N(XZ»T,B + At;, ui_lT),
TN(b, ui_l i (b,00)),
H('|V)7

2

fori=1,2,...,n.

The algorithm is as follows.
Step 1. For i = 1,2,...,n; if v; = ¢; sample y; (indepen-
dently) from 7(y; | vi, ti,u;, B, A, 7), which is a truncated
normal distribution

TN(X?ﬁ + Ati,ui_lf 5 (—00, ¢]).

Otherwise y; = v; .
Step 2. For ¢« = 1,2,...,n, sample t; independently from
m(t; | vi, ¥, ui, B, A, T), which is

TN(thatgi ) [ba OO))7

Step 8. Sample B from 7(8|v,y,t,u, A, 7,v), which is
N, (p*, %) with

X*T * AX*Tt*
put=x* (Zgluo—i— LA ) and

-
X*TX* -1
2*:<—+20—1> :
T
where = (f,... 0Ty = ()T X" =
(xf,...,x:)" and, for i = 1,2,....n, t§ = Jut;,

) T

Step 4. Sample A from 7(A | v,y,t,u,3,7,v), which is
N (/L*A,O'z*), with

yi = Vuiys and &7 = (Vuwi, .

1 n
= ox 'u—zA + - Zuiti(yi —x,8)| and
oA T

1 & 1)
gz*:(;zuimg) |
=1

Step 5. Sample 7 from 7 (7 | v,y,t,u,3,A,v), which is an
inverse gamma distribution

n BN T 2
IGamma (aT—l— 5 by + 5 ;uz(yl x; B — At;) )

Step 6. Sample w;, i = 1,...,n, independently from
m(wi | v, Yir ti, B, A, 7,v), which is:
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1. For the skew-t case,

A
Gamma (%4—1, vt z> ;

2

where A; = (yi —-x/ 8- Ati)Q /T + (t; — b)%;
2. For the skew-slash case,

A
TGamma <l/ +1, 5 (0, 1)) ,

a truncated gamma distribution on (0, 1);
3. For the skew-normal case, set u; =1 fori=1,2,...,n.

Step 7. For skew-slash or skew-t, we need to sample v from
its full conditional distribution.
1. For the skew-t case,

which is

(a) Sample v  from  w(y|v),

TGamma(2, v; (a,b)).

(b) Using a Metropolis-Hastings path, sample v from
its full conditional distribution

17) w(v|v,y,t,u,B, A 7,\) x

(v/2)"\" R
( 0P ) xP {"’ (5 2w “) }

W
i ]]_(2700)(1/).

X
—

£
AN

i=1

We use the following artificial Gaussian state
space model proposed by Abanto-Valle, Lachos
and Dey (2015): given an observation v~ ob-
tained at stage j — 1, generate a candidate v* from
q(-|v¥=1 ...), which is the pdf of the truncated
normal distribution

A - 1
TN [ pU-D = & 1), — ,(2,00) |,
< d,-1v d,-1v ( )

where
dlogm(v|---)
oY) d
Cpi—-1) o e an
do ?logm(v|---)
pi—-1) = aQV G

The new observation v* is accepted with probabil-
ity
. 7r(V*|...)q(y*|,/(j—1)’...)
min . . Ao
ﬁ(y(]*l)‘ cen ) q (1/(]*1)|]/>"7 .. )
where w(v*|---) denotes (17) evaluated using the
current values of v and u.

2. For the skew-slash case,
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(a) Sample v from which is

TGamma(2, v; (a,b)).
(b) Sample v from n(v | v,y,t,u, 3, A, 7,\) which is

equal to
(1, 00)) ;

5. BAYESIAN MODEL SELECTION AND
INFLUENCE DIAGNOSTICS

5.1 Model comparison criteria

m(v[v),

TGamma (n +1,y-— Zlog (u;) ;

i=1

There are several propositions for Bayesian model choice
criteria, which are useful to compare competing models fit-
ting the same data set. For a review, see Ando (2010). One
of the most used in applied works is derived from the con-
ditional predictive ordinate (CPO) statistic, which is based
on the cross validation criterion to compare the models. Let

z ={z1,...,2n} be an observed random sample from = (-|0).
For the i-th observation, i = 1,2,...,n the CPO; is written
as:

(18)

CPO; = /ﬂ'(zi\e)ﬂ(mz(_i))dﬂ _ (/ :((j'?) d0>1,

where z(_;) is the sample without the i-th observation. For
the proposed model, the CPO; does not have closed form.
However, it is easy to see, from (18), that a Monte Carlo
approximation can be obtained by using a MCMC sample
{61,...,0¢} from the posterior distribution 7(0|z) (after
burn-in and thinning). It is given by Dey, Chen and Chang

— Q
1 PO, = 5> —L—
( 997)7 C Oz Q q;l TI'(ZiIHq)
A summary statistic of the CPO;’s, is the so-called log-
arithm of the pseudo marginal likelihood (LPML)

for the model, defined by LPML = " 1og(@). Larger
i=1

values of LMPL indicate better fit.

The deviance information criterion (DIC), proposed by
Spiegelhalter et al. (2002), measures at the same time good-
ness of fit and model complexity. The deviance is defined as
D(0) = —2log (T}, 7 (z:]0)) .

In connection with a measure of model complexity, the
criterion considers a measure of the effective number of pa-
rameters in the model. It is defined by: ppic = D(8) —D(0),
where the first term is the posterior expectation of the de-
viance, given by D(8) = —2 7" | E[log7(2;|0)|z], and the
second term is the deviance evaluated at some point esti-
mate 6 of 6. The posterior mean is a natural choice for
6. Other alternatives are the posterior mode or median.
Finally, we define the DIC by DIC = 2ppic + D(0) =
2D(0) — D(6).



Again, we can see that the computation of the integral
D(0) is a complex numerical problem, and a good solu-
tion can be obtained using a MCMC sample {61,...,0¢5}
from the posterior distribution. Thus, we can obtain an
approximation of the DIC by first approximating D(8)

by the sample posterior mean of the deviations D(8) =

75 Z?Zl log (IT"_, (2:|0;)) and, after this, we compute
DIC = 2 D(6) — D(6).

Watanabe (2010) introduced another criterion for model
selection that takes into account goodness of fit and
complexity, the Watanabe-Akaike information criterion
(WAIC), and proved that it is asymptotically equiva-
lent to the Bayes cross-validation loss. First, let us de-
fine the log pointwise predictive density, given by: p(z) =
Yor log [ 7(2|0)7(0]|z) d6.

Basically, WAIC is p(z) plus a correction for the effec-
tive number of parameters to adjust for overfitting. There
are two different approaches to calculate this correction and
both can be viewed as approximations to cross-validation,
as discussed in Gelman, Hwang and Vehtari (2014). The
first of them is similar to the one used on ppic and is given
by: pwaic, = 2 p(z) + D(0). The other one is defined by
pwalc, = 3y Var [logm(z|0)|z] .

Finally, the two versions of the WAIC criterion are given
by:
(19)

WAICk =2 PWAIC, — 2 p(Z) k= 17 2.

It is important to notice that in Watanabe’s original def-
inition, the WAIC criterion was defined only as —p(z)/n
plus a correction. Here, following the suggestion of Gelman,
Hwang and Vehtari (2014), we multiplied this term by —2
so as to be on a deviance scale.

Again, computation of both versions of WAIC involves
calculation of integrals which usually raise numerical prob-
lems. Thus, one can approximate the value of WAIC using a
MCMC sample, as in the DIC case. First, the approximation

of p(z) is given by: p/(;) =>"  log ( Z " (2|0 )) and
then, considering the approximation of D(8) given before,
the approxnnatlon of first version of the WAIC is given by
WA101 =2 p( )+ 2 D(O).

The approximation of the second version of WAIC,
WAIC,, can be calculated if we consider the sample vari-
ance Vfil(:v) = ﬁ Z?:l(:cj — )% as estimate of the vari-
ance, where T = %Z?:l zj, and use the MCMC sam-
ple {601,04,...,04} to approximate the value of 7(z2;]0),
i=1,2,...,n, that is 7(20) = 5 Z _, m(2:10;).

Comparlng the two versions of the WAIC, Gelman,
Hwang and Vehtari (2014) showed that WAIC, is more rec-
ommended for practical use than WAIC,, since its series
expansion has closer resemblance to the series expansion

of leave-one-out cross-validation and gives results that are
closer to this method.

We also use the expected Akaike information criterion
(EAIC); see Brooks (2002), and the expected Bayesian in-
formation criterion (EBIC); see Carlin and Louis (2001),
to compare models. These criteria are defined by FAIC =
D(0)+29 and EBIC = D(0)+91og (n), where ¥ is the num-

ber of parameters in the model. Replacing D(8) by D(8), one
can obtain an estimate of these criteria.

Note that for all these criteria, the evaluation of the like-
lihood function 7(z|@) is a key aspect. In our case, it is given
by (16).

To evaluate model adequacy, we use a discrepancy mea-
sure based on the posterior predictive distribution. One can
use any pre-fixed statistic for this purpose if its observed
value is extreme relative to the reference distribution (the
posterior predictive distribution). If this is the case, there is
some concern with respect to the assessment of model fit to
the data. Define y; to be the observed data. Gelman et al.
(2004) use a function of the log-likelihood as a summary
statistic, given by:

(20)

= —QZlog

The Bayesian p-value/posterior predictive p-value, pro-
posed by Rubin (1984), is defined to be pp = Pr(T (ypr, ) >
T(y,0)|Y =y), where y,, denotes a simulated draw from the
posterior predictive distribution. It is the number of times
T (ypr, 0) exceeds T'(y, 0) out of L simulated draws. Accord-
ing to Gelman et al. (2004, p. 180), a model is suspect if
a discrepancy is of practical importance and its p-value is
close to 0 or 1. An extreme p-value implies that the model
cannot be expected to capture this aspect of the data. A
very small or very large p-value (< 0.05 or > 0.95, say) sig-
nals model misspecification, i.e., the observed pattern would
be unlikely to be seen in replications of the data under the
true model.

yz|9}

5.2 Influential observations

In this section we consider some Bayesian diagnostic mea-
sures of influence. Our focus is on case deletion methods,
which detect observations that have a global influence on
the inferential process.

Computation of divergence measures between posterior
distributions with and without a given subset of the data
is a useful way of quantifying influence. The ¢-divergence
measure between two densities w1 (-) and ma(+) for 0 (Csiszar,
1967) is defined by:

dy (1, 7) = /q <2EZ§) 72(6)d6,

where ¢ is a convex function such that ¢(1) = 0. Some spe-
cific divergence measures are obtained by considering dif-
ferent options for ¢(-). For example, the Kullback-Leibler
divergence is obtained when ¢(z) = —log (2); the J-distance

(21)
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divergence (a symmetric version of Kullback-Leibler diver-
gence) is obtained when ¢(z) = (z — 1)log(z) and the L;-
distance divergence is obtained when ¢(z) = |z — 1].

Let y = {y1,...,yn} be the sample and I a subset of
{1,...,n}. We define y; = {y;; i € I} and denote its com-
plement set by y_;. The g-influence of y; on the poste-
rior distribution of @ is obtained by considering m1(0) =
71(0]y(—)) and m2(0) = m(@]y) in (21). This influence mea-
sure can be written as

B Wl(OY(—I))) }

=B o (g ) v
All these measures can be approximated by using the
MCMC posterior samples. Observe that they do not de-
termine when a specific set of observations is influential or
not. A way to circumvent this drawback is to establish a
threshold point to help reach a decision. In this direction,
a proposition was made by Peng and Dey (1995) and Vidal
and Castro (2010), which is given next.

Suppose that we toss a coin one time with probability
p € [0,1] of heads. If = 1 means “heads” and z = 0
otherwise, the associated probability function is m (z|p) =
p*(1—p)t=%, with = = 0, 1. If the coin is unbiased, we have
ma(x|p) = 0.5, x = 0, 1. From (21), the g-divergence between
a (possibly) biased and an unbiased coin is given by:

q(2p) +q(2(1 - p))
5 .

(22)

dg(p) =

Note that dj (p) increases as p moves away from 0.5, is sym-
metric around p = 0.5 and achieves its minimum value at
p = 0.5, which is the point where m1(-) = m2(-) (in this
case, we also have d;(0.5) = ¢(1) = 0). Regarding the L,
distance divergence measure, if we consider p > 0.80 as
a strong bias, then we can say that observation ¢ is in-
fluential when dr,({i}) > 0.60, since dj (0.80) = 0.60.
Similarly, for the Kullback-Leibler and J—distance diver-
gences, we have dj.;(0.80) ~ 0.2231436 and d%(0.80) =~
0.4158883, respectively. Thus, if we use the Kullback-Leibler
divergence, we can consider an influential observation when
drr({i}) > 0.22 and, using the J-distance, an observation
with d;({#}) > 0.41 can be considered influential.

6. DATA ANALYSIS

In order to study the performance of our proposed model
and algorithm, we analyze a real dataset. The computational
procedures of this section, and the next section, were imple-
mented using the R software (R Development Core Team,
2016), through the package BayesCR (Garay, Massuia and
Lachos, 2015). We consider the wage rate dataset described
in Mroz (1987), where a measure of the wage of 753 mar-
ried white women, with ages between 30 and 60 years old in
1975, is evaluated. Of 753 women considered in this study,
428 worked at some point during that year.
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It is important to stress that wage rates are set equal
to zero (i.e., they are censored or simply not observed) for
wives who did not work in 1975. This assumption is usu-
ally adopted in economics; see DaVanzo and Lee (1978) and
Arellano-Valle et al. (2012). Thus, the variables are:

e y;: wage rates, defined as the average hourly earnings. If
the wage rates are set equal to zero, these wives did not
work in 1975. Therefore, these observations are consid-
ered left censored at zero;

e 1;1: wife’s age;

e 1;5: years of schooling;

e 1;3: the number of children younger than six years old
in the household;

e 1,4: the number of children between six and nineteen
years old.

Each of the vectors of explanatory variable values is given
by X;-r = (1,.731'1,1‘1'2, l‘ig,l‘m) for i = 1, 2, ey 753. This
dataset was analyzed by Arellano-Valle et al. (2012) using
a censored regression model with Student-t responses and,
more recently, by Garay et al. (2015b) and Garay et al.
(2015a) using a censored regression model with SMN re-
sponses from a Bayesian and a frequentist point of view, re-
spectively. Here, we revisit this dataset in order to evaluate
the performance of the proposed Bayesian methods consid-
ering the class SMSN-CR.

6.1 Estimation

It is important to note that for the estimation process of
parameters, we consider the prior densities discussed in Sub-
section 4.1. We generated two parallel independent MCMC
runs of size 400,000 with widely dispersed initial values for
each parameter, considering a burn-in of 100,000 iterations
and a thinning of 30.

The convergence of the MCMC chains was monitored us-
ing trace plots, autocorrelation plots, and Gelman-Rubin R
diagnostics. Table 1 reports the posterior means (Mean),
standard deviations (SD), highest posterior density (HPD)
credible intervals (95%) and Gelman-Rubin statistic (R) of
the parameters after fitting the different SMSN-CR models.
One can notice that for all the models, except the SSL-CR,
the HPD interval for 8; contains the value 0. Also, notice
that the small value of the estimate of v for the St-CR and
SSL-CR models indicates a lack of adequacy of the skew-
normal (or normal) assumption.

Table 2 compares the fit of the three asymmetric models
and the N-CR model using the model selection criteria dis-
cussed in Section 5.1. Note that the models with heavy tails
(St-CR and SSL-CR) perform significantly better than the
N-CR and SN-CR models. Moreover, it seems that adding
the extra skewness parameter also improves data fitting,
as can be seen by comparing the symmetric model N-CR
with its asymmetric version, SN-CR. In the end, the SSL-
CR model outperforms all the rest. Table 2 also shows the



Table 1. Wage rate data. Posterior mean, standard deviation
(SD), HPD (95%) interval and Gelman and Rubin potential
scale reduction statistic (R) for the parameters in the
SMSN-CR models

Model Parameters Mean  SD HPD (95%) R
N-CR b1 -2.752 1.748  (-6.133; 0.665) 1.000003
B2 -0.106 0.028 (-0.161;-0.051) 1.000007
B3 0.731 0.084 (0.569; 0.896) 0.999999
Ba -3.056 0.448 (-3.923;-2.188) 1.000000
Bs -0.215 0.153  (-0.521; 0.077) 1.000003
o2 21.325 1.5999 (18.222;24.483) 1.000010
SN-CR b1 -1.034 1.632  (-4.178;2.206) 1.000004
B2 -0.120 0.026  (-0.170;-0.070) 0.999999
B3 0.675 0.081 (0.519; 0.836) 0.999999
B4 23243 0.442  (-4.112:-2.389)  1.000005
Bs -0.259 0.146  (-0.542;0.030) 1.000001
o2 33.708 3.270 ( 27.143; 39.833) 1.000229
A 1.803 0.380 ( 1.159; 2.576) 1.000663
St-CR 51 -3.058 1.516  (-5.856; 0.083) 1.000025
B2 -0.088 0.024 (-0.133;-0.040) 1.000011
B3 0.673 0.068 ( 0.540; 0.806) 1.000012
Ba -2.809 0.387 (-3.569;-2.065) 1.000011
Bs -0.267 0.128  (-0.510;-0.011)  1.000007
o2 22.562 4.495 (13.774;31.283) 0.999999
A -1.422  0.377  (-2.141;-0.656) 1.000060
v 4.877 0.255 (1 4.656; 5.369) 1.006467
SSL-CR 51 -4.127 1.485 (-7.097; -1.349) 1.000003
B2 -0.079 0.023 (-0.124; -0.036) 1.000013
B3 0.669 0.065 (0.542; 0.796) 1.000006
B4 -2.688 0.366 (-3.406; -1.979) 0.999998
Bs -0.265 0.122 (-0.505; -0.030) 1.000003
o2 13.424 2.369 ( 8.938; 18.123) 1.000026
A -1.940 0.397 (-2.728; -1.183) 1.000036
v 1.063 0.064 (1.001; 1.191) 1.000144

Table 2. Wage rate data. Comparison between the SMSN-CR

models
Model

Criterion N-CR SN-CR St-CR SSL-CR
LPML -1489.290 -1479.075 -1441.834 -1432.518
DIC 2975.017 2955.640 2881.913 2863.778
EAIC 2975.381 2955.402 2884.199 2864.841
EBIC 3003.126 2987.770 2921.192 2901.834
WAIC, 2978.080 2958.067 2883.431 2864.796
WAIC, 2978.651 2958.144 2883.766 2865.119
PB 0.3693 0.6098 0.5293 0.5425

values of pp, the Bayesian p-value calculated with the poste-
rior sample of the parameters. These values indicate no lack
of fit at all. For the SSL-CR model (the best one), we ob-
serve, from Table 1, that a unit increase in the variable years
of schooling (X3), with the other predictors held constant,
yields a change of 0.669 in the mean of the response vari-
able (wage rate). On the other hand, a unit increase in the
variables age and number of children (that is, X3 and Xj)
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Figure 1. Wage rate data. K-L divergence for N-CR, SN-CR,
St-CR and SSL-CR models.

produces negative changes in the mean of the response vari-
able: —2.688 in the former case, —0.265 in the latter case.

6.2 Bayesian case influence diagnostics

Considering the samples of the posterior distributions
of the parameters of the four models, we computed g¢-
divergence measures, described in Section 5.2, using p=0.80.
Cases #185, #349, #394 and #408 were identified as influ-
ential under the N-CR model by the K-L divergence, for
exceeding the specified thresholds. When SN-CR model was
fitted, observation #394 was not considered influential any-
more, although it was still close to the threshold. However,
no observation was influential for the St-CR and SL-CR
models. Figure 1 depicts the index plot of the K-L diver-
gence and, as expected, the effect of influential observations
on the Bayesian estimates of the parameters are attenuated
when heavy-tailed and/or asymmetric distributions are con-
sidered. The graphs J and L distances are Appendix C, with
similar results.

In order to reveal the impact of these four observations on
the parameter estimates, we refitted the N-CR and SSL-CR
models (the ones with the worst and best model selection
criteria values in Table 2, respectively), first removing one
by one and then all four influential points. Table 3 shows the
relative changes (in percentage) of each parameter estimate,
which is defined by:

Céj([) = (9]' — 0]’([))/0]' X 100,
where éj( 1) denotes the Bayesian estimate of 0; after the set
I of observations was removed. In this table, *) indicates
parameters that were not significant in the original fitting
(since the HPD interval for these parameters contains the
value 0) and that became significant when influential obser-
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Table 3. Wage rate data. Relative changes (in %) for all
parameters in N-CR and SSL-CR models

N-CR
Set{I} B P2 Pz Pa B o’
All - {#185} 2.43 3.63 0.86 3.30 3.56) 6.68
All - {#349} 22.59 10.19 1.01 0.44 19.85 6.35
All - {#394} 8.46 3.14 4.09 2.07 5.65 4.32
All - {#408} 7.16 0.36 0.80 3.48 19.47 7.73
All - 33.15 1.02 7.36 0.46 35.53(*) 25.64
{#185, #349, #394, #408}

SSL-CR
Set{I} Br P2 B3 Pa Bs o2
All - {#185} 246 227 022 1.11 191 3.73
All - {#349} 0.37 0.06 0.19 0.62 0.59 3.09
All - {#394} 1.16 1.52 0.49 0.32 2.64 3.03
All - {#408} 2.06 1.42 0.14 0.39 1.65 4.03
All - 779 6.37 0.20 3.23 3.57 16.46

{#185, #349, #394, #408}

vations were removed. Note that the intercept 3y is heavily
impacted by these observations when compared to the other
regression coefficients. Note that all the relatives changes
are smaller in the SSL-CR model than in the N-CR model,
showing that SSL-CR is more robust, as expected. Besides
this, the parameter significance was unaltered in the SSL-
CR model fit, while 85, which was not considered significant
in the original fit of the N-CR model, became significant
when this model was adjusted without observation #185,
as well as when all influential observations were removed.
This fact shows once more the robustness of the SSL-CR
model when compared to the N-CR model.

7. SIMULATION STUDY

In order to study the performance of our proposed models
and algorithm, we present two simulation studies. The com-
putational procedures were implemented using the R soft-
ware (R Development Core Team, 2016). The first part of
this simulation study shows the consequences on the param-
eter inference when the normality assumption is inappropri-
ate. The goal of the second part is to compare the perfor-
mance of the three assymetric models, SN-CR, St-CR and
SSL-CR, when some observations are perturbed, generating
outliers.

7.1 Study |

The main focus of this simulation study is to investigate
the consequences on parameter inference when the normal-
ity assumption is inappropriate for different levels of censor-
ing. To do so we generated a left-censored variable with nor-
mal inverse Gaussian distribution (Barndorff-Nielsen, 1997)
with shape parameter 5, skewness parameter 4.9 and scale
parameter 2. The vector with location parameters is given by
X "3, where 3 is the vector (—10; 2)T and X is a 200 x 2
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matrix with a all-ones first column and a second column
generated from a uniform distribution on the interval (0, 4).

We chose several censoring proportion settings
(10%,25%,40% and 50%) and the prior specification
is fixed as in Subsection 4.1, with pg = 02, 3y = 10015,
pa = 0, 0% = 100, a, = 2.1, b, = 3, ¢ = 0.02, d = 0.49,
e =0.02 and f = 0.9. Here, 02 denotes a vector with length
2 with all components equal to zero and I, denotes the
identity matrix with dimension 2.

For each level of censoring, we simulated 150 datasets,
and for each set, we fitted the N-CR, SN-CR, St-CR and
SSL-CR models and recorded the MCMC estimates of the
parameters. Then, we computed the estimated bias and the
estimated mean squared error (MSE) for the estimates of
the regression coefficient 3 in each model. We ran 60000
iterations of the Gibbs sampler, burned-in the first 18000
and used thinning of 3, so each final chain of MCMC obser-
vations has size 14000. For the parameter §;, j = 1,2, we
define the estimated Bias and MSE as:

150

e A1)
BlaS—ﬁ (ﬁj - B)s

i=1

150

_ LS g
MSE = ;(@ B;)

where B;Z) is the Bayesian estimate of 3; for the i—th sim-
ulated data set, for j =1,2and ¢ =1,2,...,150.

Figure 2 summarizes via box-plot all the 150 pontual es-
timates for 8, and 2, comparing them with the real values
of these parameters, for all the models fitted and censoring
patterns. Figure 3 presents Bias and MSE for all the four
models fitted and the four censoring patterns.

Figures 2 and 3 show that the St-CR model presents bet-
ter performance at all levels of censoring and it is not very
different from the SSL-CR model. Comparing the symmet-
ric and the asymmetric versions of the normal model, it is
clear that the fitting performance is substantially improved
when we add the skewness parameter for all the censoring
levels, especially for the (; estimation. This also happens
when we compare normal and skew-normal models with the
heavy-tailed ones, showing that the kurtosis parameter plays
an important role in the estimation process. On the other
hand, all the models lose performance when the censoring
levels increase.

7.2 Study Il

The goal of this study is to compare the performance of
the parameter estimates for the SN-CR, St-CR and SSL-CR
models in the presence of outliers of the response variable.

We performed a simulation study based on the SN-CR
model. Specifically, we considered 8 = (81, B2) = (10,15),

z] = (1,7;), and errors &; with skew-normal distribu-
tion with scale parameter 02 = 2 and shape parameter
A= —4 17 =1,...,n. The values z;, © = 1,...,n, were

generated independently from a uniform distribution on the
interval (1,3). A sample of size n = 100 was generated
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Figure 3. Bias and MSE of parameters 31 and 2 for N-CR,
SN-CR, St-CR and SSL-CR models with different censoring
proportions.

from this model with 10% censoring. We perturbed obser-
vations #3 (y3 = 43.22178), #66 (yes = 51.17056) and
#92 (yg2 = 31.82169), which were randomly chosen among
the non-censored observations, by increasing them by A% of
their original value, for A = 10,20, 30, ..., 150. This means
that if y denotes the original observation, the perturbed ob-
servation y* is given by:

vy = 100 )Y

For each of the 15 patterns of perturbation, we fitted the
SN-CR, St-CR and SSL-CR models and computed the rel-
ative change in 3 estimates (comparing with the fit of the
non-perturbed data). Looking at the graph, of Figure 4, of
the relative change for 1 (the intercept), one can see that for
perturbations smaller than 100%, the relative changes are
not so significant (smaller than 5%) and there is no precise
pattern. But when A becomes larger than 100, the relative
change for St-CR and SSL-CR models stabilizes near 5%,
while for the SN-CR model it presents an increasing pat-
tern, reaching 10% when A = 150. For 5, one can see that
for small (A € {10,20,30}) perturbations the three models
behave in a very similar way, but, when A increases, the
SN-CR model loses performance, becoming less robust than
the St-CR and SSL-CR models in dealing with outliers.

We also recorded the LPML, DIC, WAIC, EAIC and
EBIC values. Figure 5 shows the results for the LPML and
WAIC. We observe that the SN-CR fit is as good as the
the other ones for small values of A, which is expected since
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the data were generated from a skew-normal distribution.
However, as perturbation increases, the St-CR and SSL-CR
models are preferred. Appendix D contains the graphs for
DIC, EAIC and EBIC values, with similar results.

8. CONCLUSIONS

In this paper, we proposed the class of SMSN distribu-
tions as a replacement for the conventional choice of the
normal distribution for censored linear models where com-
putational issues and outlier identification are concerned. It
generalizes the works of Barros et al. (2010), Arellano-Valle
et al. (2012) and Massuia et al. (2015), using a Bayesian
approach.

In order to explore the statistical properties of the pro-
posed models, we encoded an efficient Gibbs-type algorithm,
in the sense of Liu and Rubin (1994), and implemented it
using the R package BayesCR (Garay, Massuia and Lachos,
2015), which is available for download at the CRAN reposi-
tory. Two simulation studies were performed. The first study
revealed gain in efficiency and accuracy for parameter esti-
mates (especially for the (3 esimation) for all the censor-
ing levels when we added the skewness parameter and the
typical assumptions of normality were questionable. In the
second simulation study, we showed that the performance of
the parameter estimates for the St-CR and SSL-CR models
is better than in the N-CR and SN-CR models when the
perturbation increases.
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We also applied our method to the wage rate dataset
of Mroz (1987), to illustrate how the procedure developed
can be used to evaluate model assumptions, identify outliers
and obtain robust parameter estimates. As expected, our
proposed SMSN-CR  model showed considerable flexibility
to accommodate outliers.
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APPENDIX A. PROOF OF LEMMA 1

Proof. Let Y ~ SMSN(u,0% X ; H). Using the pdf of YV
given in Equation (6), we have that:

:/y /00/002¢(z; 1+ At k(u)r)

x ¢(t; 0,k(u))dt dH (u) dz

/ / Uy oz 5 p+ Ar(u) 2z, k(u)T) dz}

X ¢(x) dx dH (u)
- L
/ /d:c dH<(u o )
(24) —2/ / (H () 1/20\/1752 \/155296)
) dx dH (u)
(25) 72/ / ((y ,j 1/12;r>\2 )@)
) dx dH (u)

Equation (23) is obtained using the transformation x =
t/y/k(u). Equations (24) and (25) are consequences of con-
sidering the relations A = 06, 7 = 02?(1 — %) and § =
A/V1+ A2, and we obtain Equation (7).

To obtain Equation (8), we use the following result: let
Z = (X,W)T be a random vector with bivariate normal
distribution with E[X] = E[W] = 0, Var[X]| = Var[W] =
1 and correlation coefficient p. Then, the cdf of Z can be

written as
(z,w) / (s ( ) ds.

A proof of this result can be found in Parrish and
Bargmann (1981). Using expression (3), we have that ¥ ~
SMSN (u,0%,\; H) has cdf

(26)



F=2 [ [ ot

Using the transformation s = (z — pu)/(ck(u)'/?), we obtain

mul/2
_2/ / )

If we make A = —p/(y/1—p?) in

—4, we have that

Fo)=2 [ F (ﬁo) 4 ()

:2/ P(Jn(u)l/zX—i—ugy,WgO) dH (u)
0

D(Ns)ds dH (u).

(26), which implies p =

en = [ ey =)o)

Observe that the random vector (ok(u)'/2X + 1, W) has
a bivariate normal distribution with mean vector pu* and
covariance matrix X*(u), implying Equation (27). O

APPENDIX B. DEVELOPMENT OF THE
PDF AND CDF OF THE ST
DISTRIBUTION

In this Appendix, we derive the pdf and the cdf of the
skew-t distribution, given in Equations (11) and (12), re-
spectively. Before we do that, we enunciate a lemma. A proof
can be found in Prates, Costa and Lachos (2014, Lemma 1).

Lemma 2. Let X ~ N,(0,X%) and U ~ Gamma(a, 3) be
independent. Then, for any fized vector w € RP,

E [4»,, (\/ﬁw; o,z)} =1, <\/%w; 0,2,2a>.

Using the general definition of the pdf of the SMSN fam-
ily given in Equation (3), we have that the pdf of the St
distribution is given by:

)= [ oty wuiety @ (G

X %u”ml exp{—§u} du

V2@ e (v dw)

~ Vo e {5+ 5]
x @ (A d(y) Vu) du

VAW (1 (v +dm)?\

B ﬁar@/z)r( 2 ) ( i )
x Ex {tI) </\ d(y) VX ; 0,1)} ,

where d(y) = Y=# and X ~ Gamma (VTH, "erz(y)?). Using

Lemma 2, we obtain

v41
2 T(H) O AR
fly) = y 14 )
I(v/2)\/rvo v
v+1
_— 1].
XT(““” R )
Using Equation (8) of Lemma 1, the cdf of the Skew-t

distribution becomes
F(y) =2Ey [ (y(U)"; p*, 2],

where U ~ Gamma(r/2,v/2), y(u)*, p* and X are defined
in Lemma (1). Thus, by Lemma 2, we have that

F(y):2T2(( g) : u*,z,u>.

APPENDIX C. COMPLEMENTARY
RESULTS OF APPLICATION:
DIAGNOSTIC ANALYSIS
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Figure 6. Wage rate data. J-distance under the N-CR,
SN-CR, 5t-CR and SSL-CR models.
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Figure 7. Wage rate data. L-distance under the N-CR,
SN-CR, 5t-CR and SSL-CR models.
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APPENDIX D. COMPLEMENTARY
RESULTS OF THE
SIMULATION STUDY II:
PERFORMANCE OF MODEL
SELECTION CRITERIA
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Figure 8. DIC, EAIC and EBIC values for simulation study I1.
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