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Semiparametric hierarchical model with
heteroscedasticity
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Recent work on hierarchical data analysis mainly focuses
on the multilevel structure of the mean response. Little re-
search for hierarchical heteroscedasticity was done in the
literature. In this paper, we propose a class of hierarchi-
cal models with heteroscedasticity and then investigate the
semi-parametric statistical inferences. Laplace’s approxima-
tion is employed to obtain an approximated marginal like-
lihood function and splines method is used to estimate
the unknown functions. We also provide the consistency
of the estimators. Simulation studies and real data anal-
ysis show that the proposed estimation procedures work
well.
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1. INTRODUCTION

Hierarchical models are effective in modelling repeated
measurements, longitudinal data, clustered data and hier-
archical data. Applications in different scientific research
areas have led to several specific models, such as mixed-
effects models, multilevel models and covariance component
models. A great deal of theoretical results of these models
can be found in the literature and most of them focus on
the estimation of the mean functions. Though several re-
search suggested the existence of heterogeneity in practical
application [15, 9, 20, 10] and the necessity to introduce a
heteroscedasticity function connecting the intra-individual
variation with certain covariates [29], statistical inferences
for heteroscedasticity in hierarchical data are less well ad-
dressed.

Our research is motivated by an indomethacin analysis. It
is based on a pharmacokinetic research in Kwan [13] where
the plasma concentration of indomethacin after bolus in-
travenous injection was investigated to study the metabolic
disposition of indomethacin. The data came from an exper-
imental study in which participants received single doses of
indomethacin and their serial plasma concentration samples
were measured repeatedly at 11 time points subsequently.
Kwan et al. [13] used two-compartment open models to anal-
ysis the metabolic process. Davidian and Giltinan [5] carried
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out subsequent analysis and found that heterogeneous vari-
ability is evident for the indomethacin data through stu-
dentized residuals plot. To account for the heterogeneity,
Davidian and Giltinan [5] extended the classic random co-
efficient models by adding a heteroscedasticity function as
follows,

Yij = f(Xij ,βi) + σg{f(Xij ,βi),θ}εij ,

βi
iid∼ N(β,Σ), εij

iid∼ N(0, 1),

where f and g are known functions and θ is a vector of
parameters. Their analysis reveals an increase relationship
between variance and mean response.

Modelling the heterogeneity and identifying covariates
that are related to variance can fully characterize the intra-
individual variation [5] and provide a better understanding
of the research problems [16]. Studying the heteroscedas-
ticity of the model is not only of practical interest, but is
also of important theoretical significance. It is well known
that ignoring the heteroscedasticity will lead to a great loss
of efficiency of the fixed effects estimators. To improve the
performance of the estimators for the mean functions, the
heterogeneity of variance must be adequately modelled [7].
Heteroscedasticity particularly exists in data which is best
fit by a nonlinear model [1]. Hence when constructing non-
linear models for hierarchical data, nonhomogeneous intra-
individual variances should be addressed.

Several approaches were suggested to analyse the het-
eroscedasticity in hierarchical models. Davidian and Gilti-
nan [5] extended the generalized least squares (GLS) esti-
mator by pooling information across individuals to estimate
the intra-individual variability in nonlinear mixed effects
models. In another research, they introduced several estima-
tion methods for nonlinear mixed models with heterogeneity
[4], including two stage method and linearization method.
Vonesh [26] also extended several estimation procedures for
nonlinear mixed models in which the variance was related to
the mean response. Lin, et al. [16] estimated the regression
coefficients, variance components, and heterogeneity param-
eters in linear mixed models based on quasi-likelihood and
method of moments. Other researchers employed Bayesian
approaches [7, 15] and quantile regression methods [29] to
assess the heterogeneity of residual variances in mixed mod-
els and multilevel models. Cao and Lin [2] further studied
the hypothesis test for variance heterogeneity and autocor-
relation in longitudinal nonlinear models.
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However, most models mentioned above were assumed to
be parametric, which is restrictive in practical application.
Model misspecification can lead to incorrect inferences and
misleading conclusions. This problem is especially serious
when modelling the heterogeneity as there is usually less
mechanistic theories or prior information for the analysis
of variance. Thus a more robust and flexible method such
as nonparametric or semiparametric regression should be
considered.

In this article, we concentrate on the semiparametric
statistical inference of the hierarchical models with het-
eroscedasticity. The rest of this paper is organised as follows.
In Section 2 we introduce the hierarchical models with het-
eroscedasticity and in Section 3 we give the estimation pro-
cedures based on Laplace’s approximation. We also present
the large sample properties of the proposed estimators. Sec-
tion 4 gives a simulation study to evaluate the performance
of our estimation method. A real analysis based on the in-
domethacin data set is conducted in Section 5. In Section 6,
we make conclusions and provide discussion of the proposed
models and estimation method.

2. HIERARCHICAL MODELS WITH
HETEROSCEDASTICITY

Assume that we have observations {(Yij ,Xij ,Zij , Tij , Sij ,
Wi,Ki), i = 1, · · · ,m, j = 1, · · · , ni} where Yij is the re-
sponse value of the jth observation in subject i. X′

ijs and
W′

is are known p by 1 vectors of level-1 predictors and p by
r matrices of level-2 predictors in the mean functions, re-
spectively. Z′

ijs and K′
is are known q by 1 vectors of level-1

predictors and q by l matrices of level-2 predictors in the het-
eroscedasticity function, respectively. In practical applica-
tions where data are organized hierarchically, it is straight-
forward to see which explanatory variables are level-1 pre-
dictors and which ones are level-2 predictors. For example,
in medical research, patients may be grouped into clinics or
hospitals. In this case, measurements from individuals like
weight or blood pressure are considered to be level-1 predic-
tors while characteristics describing the large unit such as
the capacity of hospital are considered to be level-2 predic-
tors. Tij and Sij are covariates in the unknown functions.
For simplicity, they are considered as scalars in the rest of
the paper. The relationship of Yij and the first level predic-
tors Xij , Zij , Tij and Sij can be presented according to the
following equation:

(1) Yij = f(Xij ;βi, φ(Tij)) + g(Zij ;θi, ν(Sij))εij ,

where εi = (εi1, · · · , εini)
T , and εi’s are independent nor-

mally distributed with mean 0 and variance-covariance ma-
trix Ωi, which depends on i only through the number of
observations within a subject. βi and θi are unknown coeffi-
cients with random effects. f(·) and g(·) are known functions
characterizing the mean and the intra-individual variances
respectively. In practice, the function forms of f(·) and g(·)

are usually determined by theory or experience in specific
fields. For example, in HIV dynamics analysis, it is common
to use a biexponential function to describe the relationship
between viral load and measurement time. To account for
unexplained covariate effects in f(·) and g(·), such as time-
varying decay rates in the biexponential models for HIV
dynamics, we introduce φ(Tij) and ν(Sij) into f(·) and g(·),
which are both unknown smooth functions associated with
the fixed effects. Throughout this paper, we only consider
nonparametric inference in the fixed effects, similar as that
in Ke and Wang [12]. For the feasibility of estimation, we
should specify the model space for φ(Tij) and ν(Sij). We
assume that φ(Tij) and ν(Sij) are both square integrable
functions from the Sobolev space.

To capture the variation between individuals and the hi-
erarchical structure of the data, we further propose the fol-
lowing level-2 models

βi = Wiγ +Ui, θi = Kiη +Ri,

Ui
iid∼ N(0,Σ), Ri

iid∼ N(0,Λ),

where γ and η are fixed effects parameters. Ui and Ri are
mutually independent. (UT

i ,R
T
i ) and εij are independent.

Model (1) is flexible for analyzing hierarchical data with
heteroscedasticity. It provides insights for the cause of non-
homogeneous variability in responses as well as individual-
specific characteristics in the mean. Within the semipara-
metric framework, both the known components and unob-
served covariate effects, such as time-varying coefficients,
can be addressed adequately.

3. ESTIMATION

Our goal is to estimate γ,η, φ(Tij), ν(Sij),Ωi,Σ and Λ
by maximizing the marginal likelihood function. However,
there is usually no explicit form of the marginal likelihood
function due to the nonlinear structures of the mean level
function and heteroscedasticity function. Considerable at-
tention has been paid to this problem and several methods
have been proposed to find approximated solutions, such
as EM algorithm [28], first order linearization [22, 17] and
Laplace’s approximation [12]. Both of the EM algorithm and
the first order linearization methods are simple to imple-
ment, but have their limitations. The former one is com-
putationally intensive as it incurs large amount of calcula-
tion for Monte-Carlo integration and slow convergence for
the procedure itself. This problem is particular serious in
our proposed heteroscedastic model as it involves estimation
of parameters in the intra-individual heterogeneity which
may lead to complex inverse matrix operations. The lat-
ter method only gives reasonable approximation when the
inter-individual variation is small [24, 27], which makes it
inflexible in practical application. Hence we propose to use
the Laplace method, which provides faster speed and rea-
sonable accuracy, to obtain the approximated marginal like-
lihood function.
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For the estimation of the unknown functions φ(Tij) and
ν(Sij) in model (1), kernel smoothing [35], smoothing splines
[12], smoothing spline analysis of variance [31] and local fit-
ting [25] are commanly-used methods. In consideration of
computing speed and simplicity, we employ spline methods
in our nonparametric inferences below.

3.1 The approximated likelihood function

We first approximate φ(Tij) and ν(Sij) by two separate
systems of basis functions

Υk(Tij) = [υ0(Tij), υ1(Tij), · · · , υk−1(Tij)]
T
,

Ψd(Sij) = [ψ0(Sij), ψ1(Sij), · · · , ψd−1(Sij)]
T
,

where k and d are the numbers of basis functions. Let μk =
(μ0, · · · , μk−1)

T and ξd = (ξ0, · · · , ξd−1)
T be the vectors of

coefficients, then we have the approximations

φ(Tij) ≈ φk(Tij) =
k−1∑
j=0

μjυj(Tij) = Υk(Tij)
Tμk,(2)

ν(Sij) ≈ νd(Sij) =
d−1∑
j=0

ξjψj(Sij) = Ψd(Sij)
Tξd.

Substituting (2) into (1), we obtain the following approxi-
mate parametric hierarchical model

(3) Yij = f
(
Xij ;βi, φk(Tij)

)
+ g
(
Zij ;θi, νd(Sij)

)
εij .

Let δ =
(
γT,ηT, vec(Σ), vec(Λ), vec(Ωi),μ

T
k , ξ

T
d

)
be the

vector containing all the parameters to be estimated, where
vec(A) represents a vector of parameters in the variance-
covariance matrix A. Denote Yi = (Yi1, · · · , Yini)

T, fi =[
f
(
Xi1;βi, φk(Ti1)

)
, · · · , f

(
Xini ;βi, φk(Tini)

)]T
, Gi =

diag
{
g
(
Zi1;θi, νd(Si1)

)
, · · · , g

(
Zini ;θi, νd(Sini)

)}
, Vi =

GiΩiGi. The marginal likelihood based on Model (3) is

L(δ) =
m∏
i=1

∫
pY(Yi|βi,θi, δ) pβ(βi|γ,Σ)(4)

pθ(θi|η,Λ) dβi dθi,

where

pY(Yi|βi,θi, δ)= (2π)−
ni
2 |Vi|−

1
2

exp

{
−1

2

(
Yi − fi

)T
V−1

i

(
Yi − fi

)}
,

pβ(βi|γ,Σ)= (2π)−
p
2 |Σ|− 1

2

exp

{
−1

2
(βi −Wiγ)

TΣ−1(βi −Wiγ)

}
,

pθ(θi|η,Λ)= (2π)−
q
2 |Λ|− 1

2

exp

{
−1

2
(θi −Kiη)

TΛ−1(θi −Kiη)

}
.

Let ω = (βT
1 , · · · ,βT

m,θT
1 , · · · ,θT

m)T. N =
m∑
i=1

ni. Then the

marginal likelihood (4) can be written as a function of ω as
follows

(5) L(δ) ∝ |Σ|−m
2 |Λ|−m

2

∫
exp{−ρ(ω)} dω,

where

ρ(ω) =
1

2

m∑
i=1

{
log |Vi|+

(
Yi − fi

)T
V−1

i

(
Yi − fi

)
+(βi −Wiγ)

TΣ−1(βi −Wiγ)

+(θi −Ki η)
TΛ−1(θi −Kiη)

}
.

Denote ω0 = (β01
T, · · · ,β0m

T,θ01
T, · · · ,θ0m

T)T as the
solution to the equation ∂

∂ωρ(ω)|ω=ω0 = 0. Note that ω0 is
actually the vector of the estimated values of βi’s and θi’s,
which maximize the joint likelihood of the response and the
mixed effects coefficients. Obviously, the log-Laplace’s ap-
proximated marginal likelihood is proportional to

(6) −m

2
log |Σ| − m

2
log |Λ| − 1

2

∣∣∣ρ(2)(ω0)
∣∣∣− ρ(ω0).

where
∣∣ρ(2)(ω0)

∣∣ is the determinant of ∂
∂ω∂ωT ρ(ω)

∣∣
ω=ω0

.
The explicit expressions of the first and second derivatives
of ρ(ω) with respect to ω are shown in the Appendix.

3.2 Iterative procedures

Maximizing the log-likelihood in (6) with respect to the
fixed effects parameters leads to the following estimating
equations

m∑
i=1

−WT
i Σ

−1(β0i −Wiγ) = 0,

m∑
i=1

−KT
i Λ

−1(θ0i −Kiη) = 0,

where β0i and θ0i are the estimates of the mixed effects
coefficients βi and θi as indicated in Section 3.1. Given the
estimators of Σ and Λ, the estimators of the fixed effects
can be expressed as

γ̂ =

(
m∑
i=1

WT
i Σ̂

−1
Wi

)−1 [ m∑
i=1

WT
i Σ̂

−1
β0i

]
,(7)

η̂ =

(
m∑
i=1

KT
i Λ̂

−1
Ki

)−1 [ m∑
i=1

KT
i Λ̂

−1
θ0i

]
.

Estimation of a full variance-covariance matrix is chal-
lenging when its dimension is not small. This is common
in clinical trials or education research where the size of a
class or the number of successive records of a subject can
often be large. If the number of the replicated observations
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is not substantial enough, it is suggested to assume certain
structures for the residuals to estimate a limited numbers of
covariances [19]. Hence we assume structured matrices for
Ωi. Common structures such as variance components and
autoregressive(1) (AR(1)) are employed in the subsequent
simulation and real analysis. Details for these structured
variance-covariance matrices can be found in Jenrich and
Schluchter [11]. Compared to the fixed effects estimators,
explicit expressions can be hardly found for the variance
components. Numerical methods such as Newton-Raphson
algorithm or Nelder-Mead algorithm can be used to find ap-
proximated estimates.

As for φk(Tij) and νd(Sij), we use natural cubic splines in
our simulation study and real analysis. The number of knots
is determined by the BIC criteria and the location of knots
is selected by the percentile-based knot placing rule (Wu
and Zhang [33], Liu and Wu [18]). Estimates of the spline
coefficients can also be obtained via numerical methods.

We estimate γ,η,Σ,Λ,Ωi,μk and ξd iteratively in the
following four steps:

1. Given the current estimate of δ, update β0i’s and θ0i’s
by solving ∂

∂ωρ(ω) = 0 with ρ(ω) in (5).
2. Given the current estimates of Σ,Λ, update γ̂ and η̂

by (7).
3. Given the current estimates of γ,η,μk and ξd, update

Σ̂, Λ̂ and Ω̂i by maximizing (6) with respect to the
variance component parameters.

4. Given the current estimates of Σ,Λ and Ωi, update μ̂k

and ξ̂d by maximizing (6) with respect to the spline
coefficients.

3.3 Bootstrap standard errors and
confidence band

Asymptotic variance-covariance matrix is a popular
choice for evaluating the uncertainty of estimators, e.g. the
Heissian of likelihood function in nonlinear mixed models
and sandwich estimator for generalized mixed models. How-
ever, the sample size of our motivated example mentioned in
Section 1 is quite small and the asymptotic approaches may
fail due to substantial bias. To overcome this problem, we
follow the idea of Sherman and Le Cessie [23] to propose “all
block bootstrap” to calculate the confidence intervals of the
parametric estimators and the confidence bands of the non-
parametric functions. The bootstrap procedure is outlined
as follows

1. Match all of the covariates from each subject i
and then form the blocks (Yi,Wi,Ti,Zi,Ki,Si),
i = 1, ...,m, where Xi = (XT

i1, · · · ,XT
ini

)T. Zi, Ti

and Si are similarly defined. Draw a sample of size
m from the m blocks with replacement and denote it as
{(Y∗

1 ,W
∗
1,T

∗
1,Z

∗
1,K

∗
1,S

∗
1), ..., (Y

∗
m,W∗

m,T∗
m,Z∗

m,K∗
m,

S∗
m)}. The sampling probability is Fm = 1

m for each
block.

2. Fit the bootstrap sample by model (3).

3. Repeat steps 1 and 2 nB times. Then calculate the stan-
dard errors and pointwise confidence bands based on
these bootstrap estimates.

3.4 Asymptotic results

In this section, we investigate the consistency of the pro-
posed estimators assuming model (3), including the fixed
effects, the variance components, the coefficients of the ba-
sis functions and the nonparametric functions. Similar to the
results of Vonesh [27], the convergence rates of the paramet-
ric estimators are governed by two factors, the accuracy of
the Laplace’s approximation and the accuracy of the stan-
dard maximum likelihood estimators.

Let δ0 be the true value of δ. The true value of μk

can be interpreted as follows. Suppose we truncate the
expansion of the true (but unknown) function φ(Tij) =
∞∑
j=0

μ0jυj(Tij) at the kth term and denote μ0k as the vec-

tor of the first k coefficients. Then μ0k is the true value of
μk for the given integer k. ξ0d can be defined similarly.

Let δ̂ =
(
γ̂T, η̂T, vec ˆ(Σ), vec ˆ(Λ), vec(Ω̂i), μ̂T

k , ξ̂
T

d

)T
be the estimator of δ, where γ̂ and η̂ are obtained by

(7). vec ˆ(Σ), vec ˆ(Λ), vec(Ω̂i), μ̂k and ξ̂d are the esti-
mators which maximize the log-approximated likelihood
function in (6). Denote Θ as the parameter space of
δ. Let Li(δ) be the marginal likelihood function of δ
given Yi and L∗

i (δ) be the Laplace’s approximated like-
lihood function given Yi. li(δ) = logLi(δ), ∇li(δ) =

∂li(δ)/∂δ, ∇2li(δ) = ∂2li(δ)/∂δ∂δ
T, lm(δ) =

m∑
i=1

li(δ),

∇lm(δ) = ∂lm(δ)/∂δ, ∇2lm(δ) = ∂2lm(δ)/∂δ∂δT. l∗i (δ) =
logL∗

i (δ), ∇l∗i(δ) = ∂l∗i (δ)/∂δ, ∇2l∗i (δ) = ∂2l∗i (δ)/∂δ∂δ
T,

l∗m(δ) =
m∑
i=1

l∗i (δ), ∇l∗m(δ) = ∂l∗m(δ)/∂δ, ∇2l∗m(δ) =

∂2l∗m(δ)/∂δ∂δT. Throughout the rest of the paper,
p→ refers

to convergence in probability and
d→ means convergence in

distribution.
We first give the consistency of the parameter estimators,

including the fixed effects, the variance components and the
coefficients of the basis functions in Theorem 3.1. To es-
tablish the asymptotic properties, we propose the following
regularity conditions, which are similar as those discussed
in Vonesh [27], Liu and Wu [18], Wang and Wu [30], Casella
and Berger [3]:

(C1) The necessary conditions for demonstrating the order
of accuracy associated with the Laplace’s approxima-
tion as discussed in [32] are satisfied.

(C2) The first two partial derivatives of the score function
∇lm(δ) with respect to δ exist almost everywhere in
Θ.

(C3) There are positive numbers ζhs such that the element
in the hth row and sth column of E

[
∇li(δ)∇li(δ)

T
]

is positive and bounded by ζhs for all h = 1, · · · , a and
s = 1, · · · , a, where a is the dimension of δ.
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(C4) For each δ in the neighbourhood of δ0 there exist
functions Ii(δ) and Hi(δ) such that

∫
Ii(δ) d δ <

∞,
∫
Hi(δ) d δ < ∞. And the absolute values of

the first two partial derivatives of li(δ) are bounded
by Ii(δ) and Hi(δ) respectively for i = 1, · · · ,m.

(C5) E
[
∇li(δ)∇li(δ)

T
]
and −m−1

m∑
i=1

E
[
∇2li(δ)

]
are fi-

nite and positive definite matrices for every δ in Θ.
(C6) m−1∇2lm(δ0) is bounded.
(C7) The fifth order derivatives of f(Xij ,βi, φk(Tij)) and

g(Zij ,θi, νd(Sij)) in model (3) with respect to δ exist
and are continuous in an open neighbourhood of δ for
i = 1, · · · ,m, j = 1, · · · , ni.

(C8) There exists a constant P such that 1/Li(δ) < P for
every δ ∈ Θ, i = 1, ...,m.

In the above regularity conditions, condition (C2) ensures
that the score function has a Taylor expansion with respect
to δ. Conditions (C3)–(C5) are similar to those in Wang and
Wu [30], in which conditions (C3) and (C4) ensure the con-
vergence of the second derivative of the log-likelihood func-
tion, using the Markov law of large numbers for non-i.i.d.
observations, as discussed in [8]. Condition (C5) ensures the
stochastic boundness of the score function following the cen-
tral limit theorem for non-i.i.d. observations in Serfling [21].
Condition (C7) ensures that the Laplace’s approximation-
based score function share the same order of accuracy as
that of the Laplace-based marginal likelihood function and
condition (C8) is proposed to derive the order of accuracy
of the log-approximated likelihood functions.

Theorem 3.1. Let n = min
i
{ni}. For model (3), under

regularity conditions (C1)–(C8), we have:

δ̂ = δ0 +Op

{
max

[
m− 1

2 , n−1
]}

.

Proof. The proof can be found in the Appendix.

We further show the consistency of the estimators of the
unknown functions in Theorem 3.2. The definitions of norm
and inner product are similar as those in [18].

Theorem 3.2. With the same assumptions as in Theorem
3.1, if the following conditions are further satisfied,

(i) k/m → 0, d/m → 0 when k → ∞, d → ∞,m → ∞,

(ii) For fixed k and d, there exist finite constants C1 and
C2, such that ‖Υk‖ < C1 and ‖Ψd‖ < C2 as m → ∞,
n → ∞,

(iii) For any fixed k and d, as m → ∞, n → ∞,
E(μ̂k) → μ0k, E(ξ̂d) → ξ0d, Cov(

√
mμ̂k) →

Jk and Cov(
√
mξ̂d) → Qd, where Jk and Qd are

some semidefinite positive matrices with k−1tr(Jk)
and d−1tr(Qd) bounded,

then as k → ∞, d → ∞, m → ∞ and n → ∞, the esti-
mators of the unknown functions in (6) have the following
properties:

‖φ̂k − φ‖ p→ 0, ‖ν̂d − ν‖ p→ 0.

Proof. The proof can be found in the Appendix.

Asymptotic normality of δ̂ is summarized in the following
theorem, in which similar regularity conditions can be found
in [14].

Theorem 3.3. For model (3), in addition to the regularity
conditions of Theorem 3.1, suppose that there exists an open
subset of δ containing δ0 such that l∗i (δ) is twice continu-
ously differentiable and as m → ∞, n → ∞,

(i)
m∑
i=1

E‖∇l∗i (δ0)‖2+α = o(mα) for some α > 0,

(ii)

∥∥∥∥ m∑
i=1

E∇l∗i (δ0)

∥∥∥∥ = o(
√
m),

(iii) m−1
m∑
i=1

∇l∗i (δ0)
[
∇l∗i (δ0)

]T p→ Γ1,

(iv) m−1 sup
‖δ−δ0‖≤c

∥∥∥∥ m∑
i=1

∇2l∗i (δ)−
m∑
i=1

∇2l∗i (δ0)

∥∥∥∥ p→ 0 as c →

0, −m−1
m∑
i=1

∇2l∗i (δ0)
p→ Γ2, where Γ2 is positive def-

inite.

Then as m → ∞ and n → ∞,

√
m(δ̂ − δ0)

d→ N(0,Γ−1
2 Γ1Γ

−1
2 ).

Proof. The proof can be found in the Appendix.

4. SIMULATION STUDIES

In this section, we conduct a simulation study to evalu-
ate the performance of our proposed estimation procedures.
Data are generated from the following model which mimics
the indomethacin study in the real analysis.

yij = {exp (βi1 − βi2tij) + exp (βi3 − φ(tij)tij)}(8)

+ exp(θi1 − ν(tij)tij)εij ,

βi = γ + ui, ui
iid∼ N (0,Σ) ,

θi = η + ri, ri
iid∼ N(0, λ2),

εi = (εi1, ..., εini)
iid∼ N(0,Ω),

i = 1, ..., 20, j = 1, ..., 20,

where tij are taken as equal spaced when 0.25 ≤ t ≤ 2
and then t = 3, 4, 6, 8 when t > 2. The true values
are set as φ(t) = 0.2t−1/2, ν(t) = 0.1t−1/2 + 0.1. γ =
(log(2), 1.5, log(0.3)), η = log(0.3), λ2 = 0.05 and

Σ =

⎛
⎝ 0.03 0.01 − 0.01

0.01 0.02 − 0.01
−0.01 − 0.01 0.05

⎞
⎠ .

Both variance component and AR(1) structures of Ω are
investigated in the following two scenarios. We fit the data
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Table 1. Simulation results of the parametric estimators; scenario 1

γ1 γ2 γ3 η Σ11 Σ22 Σ33 λ2 σ2

relBias 0.0184 0.0079 0.0524 0.0131 0.3524 6.4903 2.2935 2.3822 0.7904
Heter relSD 0.0730 0.0570 0.1139 0.4637 1.3056 11.6010 4.2691 3.6344 1.300

95%CIW 0.2096 0.3395 0.5685 2.1607 0.1132 0.6796 0.4964 0.5543 0.2423
relBias 0.0696 0.0151 0.0662 - 0.1475 2.9238 1.6401 - 0.9022

Homo relSD 0.0978 0.0807 0.1954 - 0.5802 5.3494 3.2038 - 0.1087
95%CIW 0.2980 0.4927 0.8862 - 0.0775 0.4365 0.5637 - 0.0208

Heter: estimates of the true heteroscedasticity model (8), Homo: estimates of a misspecified homogeneous model.

with our proposed method assuming model (8) and compare
the results to those assuming homogeneity models. All com-
putations here are implemented in Matlab. Natural cubic
splines are used to estimate φ(t) and μ(t). To select the num-
ber of knots for the estimated functions, we calculate the
BIC values of 16 combinations with the knots of φ̂k(t) and
ν̂d(t) ranging from 1 to 4 respectively. Log-Cholesky parame-
terizations are employed to enforce the positive semidefinite
conditions for variance-covariance matrices. In both scenar-
ios, 100 Monte Carlo datasets are conducted. The perfor-
mance of the parametric estimators are assessed via the rel-
ative bias(relBias), the relative Monte Carlo standard devi-
ation (relSD) and the Monte Carlo 95% confidence interval
width (95%CIW),

relBias =

∣∣∣∣bias of estimate

true parameter

∣∣∣∣ ,
relSD =

∣∣∣∣SD of estimate

true parameter

∣∣∣∣ ,
95%CIW = 97.5% quantile− 2.5% quantile.

As for the nonparametric functions, the performance is as-
sessed with 50 equal spaced grid points in the interval
[0.25,8]. We use the average and standard deviation of mean
absolute deviation (MAD) and 95% pointwise confidence
band to evaluate their curve fitting performance. The MAD
of a function f(t) can be calculated as

MAD = n0
−1

n0∑
k=1

|f̂(tk)− f(tk)|,

where {tk, k = 1, ..., n0} are the grid points at which f(t)
are estimated.

Scenarios I Ω = diag(σ2), σ2 = 0.05.

Table 1 shows the estimation results of the fixed effects
parameters and the variance components. For Σ, we only
report the estimates of the diagonal elements. As is shown
in Table 1, our proposed estimators of the fixed effects work
well in terms of relative bias and relative standard devi-
ation. The estimates under model (8) and those under a
misspecified homogeneous model have similar bias. However
the latter ones have larger standard deviation in general,

Table 2. Simulation results of the nonparametric functions;
scenario 1

φ̂(t) ν̂(t)

av.MAD std.MAD av.MAD std.MAD

Heter 0.0447 0.0471 0.1149 0.0934
Homo 0.0949 0.0544 - -

which implies that the estimation method ignoring the het-
eroscedasticity function leads to less efficient results. It is
also found that the variance estimators tend to have larger
relative SD compared to the fixed effects estimators. This
is not surprising as the estimation of second moments is
usually more sophisticated.

The simulation results of the smooth functions is summa-
rized in Table 2. The spline method yields good estimators
with significantly small average MAD and standard errors
of MAD. We further plot out the 95% pointwise confidence
band and the average fitted curve in Figure 1 to see whether
our proposed estimators are efficient in capturing the un-
known smooth functions. The left panel of Figure 1 is φ̂(t)
in model (8) and the middle panel is ν̂(t) in model (8). The

right panel is φ̂(t) assuming homogeneity model. The dashed
lines are the estimates. The solid lines are the true func-
tions and the dotted lines are the 95% pointwise confidence
bands. Most part of the φ̂(t) and ν̂(t) from model (8) coin-
cide with the true values. The estimators of unknown func-
tions in the mean have similar performance in both model
(8) and the misspecified homogeneous model, except that

φ̂(t) have wider confidence band when the heteroscedastic-
ity function is ignored.

Scenarios II

σ2 = 0.05, ρ = 0.8, n = 20,

Ω = σ2 ×

⎛
⎜⎜⎜⎝

1 ρ ρ2 · · · ρn−1

ρ 1 ρ · · · ρn−2

...
. . .

...
ρn−1 ρn−2 · · · 1

⎞
⎟⎟⎟⎠

The simulation in scenario 2 aims to investigate the per-
formance of our estimators when observations within a sub-
ject is correlated and hence the intra variance-covariance
matrix has a more complex structure. Results are shown in
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Figure 1. Fitted curves of the unknown functions in scenario 1 of the simulation.

Table 3. Simulation results of the parametric estimators; scenario 2

γ1 γ2 γ3 η Σ11 Σ22 Σ33 λ2 σ2

relBias 0.0239 0.0087 0.0557 0.0964 0.3090 6.1617 2.1130 3.7834 2.1597 0.0442
Heter relSD 0.1214 0.0997 0.1647 0.7780 1.4766 11.1543 4.4971 17.2934 3.5185 0.1397

95%CIW 0.2920 0.3586 0.7960 3.2775 0.0745 0.6772 0.5212 0.5452 0.6999 0.4095
relBias 0.0045 0.0774 0.0586 - 0.4745 4.0728 1.9321 - 0.8476 0.0957

Homo relSD 0.0785 0.0522 0.2312 - 7.6606 13.5921 2.7406 - 0.1146 0.0935
95%CIW 0.2343 0.3162 0.9375 - 0.0990 1.0057 0.5716 - 0.0178 0.3180

Heter: estimates of the true heteroscedasticity model (8), Homo: estimates of a misspecified homogeneous model.

Table 3 and 4. The parametric estimates have small bias
similar to scenario 1. It is noted that greater standard devi-
ations of parameter estimates from both the heteroscedastic
model and homogeneous model are found in scenario 2, es-
pecially for the parameters in the variance function. It may
be explained by the more complicated structures of the intra
variance-covariance matrices. From Figure 2, we also observe
wider confidence band for φ̂(t) in the misspecified homoge-
neous model as the way the mean interacts with the variance
is more complicated (The left panel is φ̂(t) in model (8) and

the middle panel is ν̂(t) in model (8). The right panel is φ̂(t)
assuming homogeneity model. The dashed lines are the esti-
mates. The solid lines are the true functions and the dotted
lines are the 95% pointwise confidence band.).

5. REAL ANALYSIS

In this section, our proposed models and estimation pro-
cedures are applied to the indomethacin medical study dis-
cussed earlier. The dataset include plasma concentration of
6 individuals measured at 11 time points ranging from 15
minutes to 8 hours after treatment. Davidian and Giltinan

Table 4. Simulation results of the nonparametric functions;
scenario 2

φ̂(t) ν̂(t)

av.MAD std.MAD av.MAD std.MAD

Heter 0.0559 0.2248 0.1522 0.1768
Homo 0.1200 0.0683 - -

[5] used the following biexponential model with power vari-
ance function to fit the data.

Yij = f(tij ;βi) + σ2f(tij ;βi)
θεij ,

βi
iid∼ N(β,Σ),

where Yij is the plasma concentration of indomethacin at the
jth time point in the ith subject and tij is the correspond-
ing measurement time. f(tij ;βi) = eβi1 exp(−eβi2tij) +

eβi3 exp(−eβi4tij). εij
iid∼ N(0, σ2). β, θ, Σ and σ2 are the

parameters to be estimated.
It is reasonable to assume that the intra-subject varia-

tion is a function of the mean response. However, this leads

Semiparametric hierarchical model with heteroscedasticity 419



Figure 2. Fitted curves of the unknown functions in scenario 2 of the simulation.

Table 5. Parameter estimates of indomethacin data analysis

γ1 γ2 γ3 η Σ1 Σ2 Σ3 λ2 σ2

Est 0.8695 1.9034 -0.5597 0.9577 0.0295 0.3155 0.0767 0.2402 0.0062
Heter S.E. 0.1113 0.2287 0.1978 0.5411 0.0932 0.2196 0.1571 0.1486 0.2419

BIC -336.6686
Est 1.0038 2.5391 -0.4329 - 0.0769 0.4008 0.1146 - 0.0056

Homo S.E. 0.1819 0.5502 0.4194 - 0.0413 0.3690 0.2070 - 0.0045
BIC -185.8370

Heter: estimates of the true heteroscedasticity model (9), Homo: estimates of a misspecified homogeneous model.

to a very complex model with two biexponential compo-
nents, one in the mean and the other in the variance func-
tions. Such complex models may cast doubt on the relia-
bility of the estimators and the robustness of the model.
Hence we remain the biexponential form in the mean func-
tion while simply assume a monoexponential form for the
variance function. We also incorporate random effects to
account for the variations between subjects. As discussed in
the HIV dynamics research from Wu and Zhang [34], where
biexponential models are also employed, the second decay
rate often changes with time. To account for this effect, we
assume the decay rates to be time-dependent. Hence we pro-
pose the following models for analysing the indomethacin
data

Yij = f(tij ;βi, φ(tij)) + g (tij ; θi, ν(tij)) εij ,(9)

βi
iid∼ N(γ,Σ), θi

iid∼ N(η, λ2),

i = 1, ..., 6, j = 1, ..., 11,

where g (tij ; θi, ν(tij)) = exp(θi − ν(tij)tij),
f(tij ;βi, φ(tij)) = eβi1 exp(−βi2tij) + eβi3 exp(−φ(tij)tij),

εij
iid∼ N(0, σ2). φ(·) and ν(·) are unknown functions to be

estimated. γ, η, Σ, λ2 and σ2 are unknown parameters.
We assume Σ to be unstructured. Note that Model (9) is
a special form of Model (1) in the sense that the second
level design matrices Wi and Ki are all set to be identity
matrices.

We obtain estimates based on both the heteroscedasticity
model (9) and homogeneous models where g(·) in (9) equal
to 1. Standard errors are calculated via bootstrap method.
Results are summarized in Table 5, where Est refers to the
estimated values of parameters and S.E. refers to the boot-
strap standard errors. Plots of fitted curves are presented in
Figure 3. The left panel is φ̂(t) in model (9) and the middle

panel is ν̂(t) in model (9). The right panel is φ̂(t) assuming
homogeneity model.

From Table 5 we can see that both model (9) and the
homogeneous model have similar estimated values for γ in
the mean but the former model outperforms the other in
terms of the BIC value. In model (9), γ̂2 is positive, which
indicates that the plasma concentration of indomethacin de-
crease in the first stage. This decay rate is slightly higher
than the results in Davidian and Giltinan’s paper [5].
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Figure 3. Fitted curves of the unknown functions in the indomethacin data analysis.

Results from model (9) also reveal the time-varying fea-
tures of the metabolic process of indomethacin. As found
in Figure 3, the second decay rate in the mean gradually
decrease as time passes by and still remain positive at the
end. This means that the level of indomethacin in plasma
concentrate after injection decline along time with a reduc-
ing rate and this trend may probably go on after 8 hours.
The decay rate in variation have similar trend but with a
sharper drop than that in the mean. Hence we can infer that
the fluctuation of indomethacin reduces along the metabolic
process and the declining effect is much more significant at
the start.

6. CONCLUSION

To capture the heteroscedasticity in hierarchical data, we
have proposed a class of semiparametric hierarchical models
with heteroscedasticity. Laplace-based likelihood estimators
are obtained and their asymptotic properties are investi-
gated. The simulation study and the real analysis suggest
that our proposed estimating procedures work well.

The methodology considered in this paper is only for con-
tinuous data with normal distributions for the random ef-
fects and model disturbances. The assumption of normality
may be relaxed in the subsequent research. In addition, the
estimation of the hierarchical models with heteroscedasticity
is based on the condition that the structure for the variance-
covariance matrices is known in advance, which may limit
the use of the proposed methods in some practices. This
requires more studies in the future.

Hypothesis testing procedures comparing the proposed
semiparametric models with simple parametric models are
an interesting topic and will be investigated in our future
work.

APPENDIX

A.1 Derivatives of ρ(ω) in (6)

Denote the first and second derivatives of Vi with respect
to the sth element in θi as

V̇is = GiΩ
∂Gi

∂θis
+

∂Gi

∂θis
ΩGi,

V̈is′, is =
∂Gi

∂θis
Ω

∂Gi

∂θis′
+

∂Gi

∂θis′∂θis
ΩGi

+GiΩ
∂Gi

∂θis′∂θis
+

∂Gi

∂θis′
Ω
∂Gi

∂θis
,

i = 1, ...,m, s = 1, ..., q, s′ = 1, ..., q.

Then the first derivatives of ρ(ω) with respect to ω can be
written as:

ρ(1)(ω) = [AT,BT]T

Aih =
∂

∂βih

ρ(ω)

= −(Yi − fi)
TV−1

i

∂fi
∂βih

+ (βi −Wiγ)
TΣ−1Lh,

Bis =
∂

∂θis
ρ(ω)

= −1

2
(Yi − fi)

TV−1
i V̇isV

−1
i (Yi − fi)

+
1

2
tr
{
V−1

i V̇is

}
+ (θi −Kiη)

TΛ−1Ls,

h = 1, ..., p,

s = 1, ..., q,
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where Aih is the (i − 1) × p + h component of a m × p by
1 vector A and Bis is the (i − 1) × q + s component of a
m×q by 1 vector B. Lh is the hth column of a p dimensional
identity matrix and Ls is the sth column of a q dimensional
identity matrix. tr(A) denotes the trace of matrix A. The
second derivatives can be similarly expressed as

ρ(2)(ω) =

[
C D
E F

]

Cih′, ih =
∂2

∂βih′∂βih

ρ(ω)

=
∂fi

∂βih′

T

V−1
i

∂fi
∂βih

− (Yi − fi)
TV−1

i

∂2fi
∂βih′∂βih

+LT
h′Σ−1Lh,

Dih, is =
∂2

∂βih∂θis
ρ(ω)

= (Yi − fi)
TV−1

i V̇isV
−1
i

∂fi
∂βih

,

Eis, ih =
∂2

∂θis∂βih

ρ(ω)

= (Yi − fi)
TV−1

i V̇isV
−1
i

∂fi
∂βih

,

Fis′, is =
∂2

∂θis′∂θis
ρ(ω)

= (Yi − fi)
TV−1

i V̇is′V−1
i V̇isV

−1
i (Yi − fi)

−1

2
tr
(
V−1

i V̇is′V−1
i V̇is

)
−1

2
(Yi − fi)

TV−1
i V̈is′, isV

−1
i (Yi − fi)

+
1

2
tr
(
V−1

i V̈is′, is

)
+ LT

s′Λ−1Ls,

where Cih′, ih is the element in the (i − 1) × p + h′ row
and (i− 1)× p+ h column of a m× p by m× p matrix C.
Dih, is,Eis, ih,Fis′, is can be similarly defined.

A.2 Proof of Theorem 3.1

Proof. Similar to Liu and Wu [18], we investigate the large
sample properties of our proposed estimators based on the
approximate parametric models in (3). The marginal like-
lihood function of Yi can be written as an integral with
respect to the mixed coefficients ωi = (βT

i ,θ
T
i )

T

L(δ|Yi) =

∫
exp{niJi(ωi)}d ωi

=

∫
exp {−ni [−Ji(ωi)]} d ωi,

where Ji(ωi) = n−1
i [log pY(Yi|βi,θi, δ)+ log pβ(βi|γ,Σ)+

log pθ(θi|η,Λ)] and the detailed expressions of pY(·), pβ(·)
and pθ(·) can be found in Section 3.1. Applying Laplace’s
approximation we can obtain the following marginal likeli-

hood function

L(δ|Yi)

= exp{niJi(ω0i)}

⎡
⎢⎣ (2π)

p+q
2∣∣∣−niJ

(2)
i,ω0iω0i

∣∣∣ 12
⎤
⎥⎦ [1 +O

(
n−1
i

)]
,

where ω0i = (β0
T
i ,θ0

T
i )

T is a vector of estimates of the
mixed effects coefficients, satisfying ∂

∂ωi
Ji(ωi)|ωi=ω0i = 0.

J
(2)
i,ω0iω0i

= ∂2

∂ωi∂ωT
i
Ji(ωi)|ωi=ω0i

. Denote x = O(n−1
i ) and

consider l∗i (δ) as a function of x, then we have

l∗i (δ) = log [Li(δ) + x] .

By Taylor’s theorem and condition (C8), we have

l∗i (δ) = log [Li(δ)] +
1

Li(δ)
O
(
n−1
i

)
+

1

−2(Li(δ) + x∗)2
[
O
(
n−1
i

)]2
= log[Li(δ)] +O

(
n−1
i

)
.

where x∗ is on the line segment joining 0 to x. Hence

l∗m(δ) = lm(δ) +Op

(
mn−1

)
.

δ̂ satisfies ∇l∗m(δ̂) = 0. Assume δ̂ is an interior point in a
neighbourhood containing δ0 and take a first order Taylor
series expansion of ∇lm(δ̂) about δ0 then we can obtain

m−1∇lm(δ̂) = m−1∇lm(δ0) +m−1∇2lm(δ0)(δ̂ − δ0)

+Op(1)(δ̂ − δ0)
T(δ̂ − δ0)1a,

where 1a is a vector with all the elements equalling to 1
and a is the dimension of δ. Given condition (C6) and the

assumption that δ̂ is an interior point in a neighbourhood
containing δ0, we can show that m−1∇2lm(δ0)(δ̂ − δ0) +

Op(1)(δ̂ − δ0)
T(δ̂ − δ0)1a = Op(1)(δ̂ − δ0), where 1a is

defined as the same as above. Combining these results, it is
shown that

δ̂ − δ0 = m−1
[
∇lm(δ̂)−∇lm(δ0)

]
/Op(1).

Under conditions (C3) and (C4), by the Markov’s law of
large numbers for non-i.i.d. observations, the second deriva-
tive of the log-likelihood function converges to a matrix as
below

−m−1∇2lm(δ)
p→ Π.

Then together with condition (C5) and the Lindeberg con-
dition, it follows that

m− 1
2∇lm(δ)

d→ N(0,Π).
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Hence

m−1∇lm(δ) = Op(m
− 1

2 ).

Moreover, by conditions (C7), we have

m−1∇lm(δ̂) = m−1∇l∗m(δ̂) +Op

(
n−1
)
.

Hence

δ̂ − δ0 = m−1∇l∗m(δ̂) +Op

(
n−1
)
+Op(m

− 1
2 )

= Op

{
max

[
m− 1

2 , n−1
]}

.

A.3 Proof of Theorem 3.2

Proof. The proof of the consistency of ν̂d is similar to that
of φ̂k, hence we only demonstrate the consistency of φ̂k in

this section. Let φ0k =
k−1∑
j=0

μ0jυj be the truncation of the

expansion of the true unknown function φ as described in
Section 3.4. Following Liu and Wu [18], it can be shown that

E‖φ̂k − φ‖2

≤ 2{E‖φ̂k − φ0k‖2 + ‖φ0k − φ‖2}
= 2{C1E‖μ̂k − μ0k‖2 + ‖φ0k − φ‖2}
= 2{C1tr[Cov(μ̂k)] + C1‖E(μ̂k)− μ0k‖2

+ ‖φ0k − φ‖2}

= 2

{
C1

m
tr[Cov(

√
mμ̂k)] + C1‖E(μ̂k)− μ0k‖2

+ ‖φ0k − φ‖2
}

= 2

{
C1

m
{tr[Jk + o(1)]}+ C1‖E(μ̂k)− μ0k‖2

+

∞∑
j=k

μ0j
2

}

=

⎧⎨
⎩C1k

m

tr[Jk]

k
+ C1‖E(μ̂k)− μ0k‖2 +

∞∑
j=k

μ0j
2

⎫⎬
⎭

+ o

(
k

m

)
.

Under conditions (i)–(iii) as stated in Theorem 3.2, as m →
∞, n → ∞, k → ∞,

k

m

tr[Jk]

k
→ 0, ‖E(μ̂k)− μ0k‖2 → 0,

∞∑
j=k

μ0j
2 → 0.

Hence

E‖φ̂k − φ‖2 → 0,

which implies

‖φ̂k − φ‖ p→ 0.

As we have proved in Theorem 3.1, μ̂k is the consistent

estimator of μ0k, hence φ̂k converges to φ in probability in
L2 norm.

A.4 Proof of Theorem 3.3

Proof. Since
m∑
i=1

∇l∗i (δ̂) = 0, by Taylor series expansion of

m∑
i=1

∇l∗i (δ̂) about δ0, we have

m∑
i=1

∇l∗i (δ0) = −
m∑
i=1

∇2l∗i (δ
∗)(δ̂ − δ0),

where δ∗ is on the line segment joining δ0 to δ̂. It fol-
lows from assumptions (i)–(iii) in Theorem 3.3 and the Li-
apounov central limit theorem in [8] that as m → ∞,

m− 1
2

m∑
i=1

∇l∗i (δ0)
d→ N(0,Γ1).

By condition (iv) in Theorem 3.3 and the consistency of δ̂,
we further have

−m−1
m∑
i=1

∇2l∗i (δ
∗)

p→ Γ2.

Combining these results and using Slutsky’s theorem, we
have

√
m(δ̂ − δ0)

d→ N(0,Γ−1
2 Γ1Γ

−1
2 )

as m → ∞ and n → ∞.

Received 21 February 2016

REFERENCES
[1] Beal, S. L. and Sheiner, L. B. (1988). Heteroscedastic nonlinear

regression. Technometrics 30 327–338.

[2] Cao, C. Z. and Lin, J. G. (2012). Heteroscedasticity and/or
autocorrelation checks in longitudinal nonlinear models with el-
liptical and AR(1) errors. Acta. Math. Appl. Sin-E. 28 49–62.
MR2864351

[3] Casella, G. and Berger, R. L. (2001). Statistical inference, 2nd
ed. Duxbury Press.

[4] Davidian, M. and Giltinan, D. M. (1993). Some general estima-
tion methods for nonlinear mixed-effects models. J. Biopharm.
Stat. 3 23–55.

[5] Davidian, M. and Giltinan, D. M. (1993). Some simple meth-
ods for estimating intraindividual variability in nonlinear mixed
effects models. Biometrics 49 59–73.

[6] Diggle, P. J., Heagerty, P., Liang, K. Y. and Zeger, S. L.

(2002). Analysis of longitudinal data, 2nd ed. Oxford University
Press, USA. MR2049007

[7] Foulley, J. L., Cristobal, M. S., Gianola, D. and Im, S.

(1992). Marginal likelihood and Bayesian approaches to the anal-
ysis of heterogeneous residual variances in mixed linear Gaussian
models. Comput. Stat. Data Anal. 13 291–305.

[8] Greene, W. H. (2011). Econometric analysis, 7th ed. Pearson
Education.

Semiparametric hierarchical model with heteroscedasticity 423

http://www.ams.org/mathscinet-getitem?mr=2864351
http://www.ams.org/mathscinet-getitem?mr=2049007


[9] Harlow, S. D. and Matanoski, G. M. (1991). The association
between weight, physical activity, and stress and variation in the
length of the menstrual cycle. Am. J. Epidemiol. 133 38–49.

[10] Hedeker, D., Mermelstein, R. J., Berbaum, M. L. and Camp-

bell, R. T. (2009). Modeling mood variation associated with
smoking: an application of a heterogeneous mixed-effects model
for analysis of ecological momentary assessment (EMA) data. Ad-
diction. 104 297–307.

[11] Jennrich, R. I. and Schluchter, M. D. (1986). Unbalanced
repeated-measures models with structured covariance matrices.
Biometrics 42 805–820. MR0872961

[12] Ke, C. L. and Wang, Y. D. (2001). Semiparametric nonlinear
mixed-effects models and their applications. J. Amer. Statist. As-
soc. 96 1272–1281. MR1946577

[13] Kwan, K. C., Breault, G. O., Umbenhauer, E. R., McMa-

hon, F. G. and Duggan, D. E. (1976). Kinetics of indomethacin
absorption, elimination and enterohepatic circulation in man. J.
Pharmacokinet. Biopharm. 4 255–280.

[14] Lai, T. L. and Shih, M. C. (2003). A hybrid estimator in nonlin-
ear and generalized linear mixed effects models. Biometrika 90
859–879. MR2024762

[15] Li, B. Y., Bruyneel, L. and Lesaffre, E. (2014). A multivariate
multilevel Gaussian model with a mixed effects structure in the
mean and covariance part. Stat. Med. 33 1877–1899. MR3256909

[16] Lin, X. H., Raz, J. and Harlow, S. D. (1997). Linear mixed
models with heterogeneous within-cluster variances. Biometrics
53 910–923. MR1475054

[17] Lindstrom, M. J. and Bates, D. M. (1990). Nonlinear mixed
effects models for repeated measures data. Biometrics 46 673–
687. MR1085815

[18] Liu, W. and Wu, L. (2010). Some asymptotic results for semi-
parametric nonlinear mixed-effects models with incomplete data.
J. Stat. Plan. Infer. 140 52–64. MR2568121

[19] Ramsay, J. O. and Silverman, B. W. (2005). Functional data
analysis, 2nd ed. Springer, New York. MR2168993

[20] Rodbard, D. and Frazier, G. R. (1975). Statistical analysis of
radioligand assay data. Methods Enzymol. 37 3–22.

[21] Serfling, R. J. (1980). Approximation theorems of mathematical
statistics. John Wiley & Sons, Inc., New York. MR0595165

[22] Sheiner, L. B. and Beal, S. L. (1980). Evaluation of methods for
estimating population pharmacokinetic parameters. I. Michaelis-
Menten model: routine clinical pharmacokinetic data. J. Pharma-
cokinet. Biopharm. 8 553–71.

[23] Sherman, M. and Le Cessie, S. (1997). A comparison between
bootstrap methods and generalized estimating equations for cor-
related outcomes in generalized linear models. Commun. Statist.-
Simula. 26 901–925. MR1467108

[24] Solomon, P. J. and Cox, D. R. (1992). Nonlinear component of
variance models. Biometrika 79 1–11. MR1158513

[25] Tian, M. Z., Tang, M. L. and Chan, P. S. (2009). Semiparamet-
ric quantile modelling of hierarchical data. Acta. Math. Sin-E. 25
597–616. MR2495512

[26] Vonesh, E. F. (1992). Non-linear models for the analysis of lon-
gitudinal data. Stat. Med. 11 1929–1954.

[27] Vonesh, E. F. (1996). A note on the use of Laplace’s approxima-
tion for nonlinear mixed-effects models. Biometrika 83 447–452.
MR1439795

[28] Walker, S. (1996). An EM algorithm for nonlinear random ef-
fects models. Biometrics 52 934–944. MR1411741

[29] Wang, H. J. (2009). Inference on quantile regression for
heteroscedastic mixed models. Stat. Sinica. 19 1247–1261.
MR2536154

[30] Wang, T. and Wu, L. (2013). Multivariate one-sided tests
for nonlinear mixed-effects models. Can. J. Stat. 41 453–465.
MR3101594

[31] Wang, Y. D. (1998). Mixed-effects smoothing spline analysis of
variance. J. Roy. Stat. Soc. B. 60 159–174. MR1625640

[32] Wong, R. (2001). Asymptotic approximations of integrals. So-
ciety for Industrial and Applied Mathematics (SIAM), Philadel-
phia. MR1851050

[33] Wu, H. L. and Zhang, J. T. (2002). The study of long-term HIV
dynamics using semi-parametric non-linear mixed-effects models.
Stat. Med. 21 3655–3675.

[34] Wu, H. L. and Zhang, J. T. (2006). Nonparametric regression
methods for longitudinal data analysis: mixed-effects modeling ap-
proaches. John Wiley & Sons, Inc. MR2216899

[35] Zeger, S. L. and Diggle, P. J. (1994). Semiparametric models
for longitudinal data with application to CD4 cell numbers in HIV
seroconverters. Biometrics 50 689–699.

Chuoxin Ma
School of Mathematics
University of Manchester
Manchester, M13 9PL
UK
E-mail address: chuoxin.ma@manchester.ac.uk

Maozai Tian
Center for Applied Statistics
School of Statistics
Renmin University of China
Beijing
100872
P.R. China

School of Statistics
Lanzhou University of Finance and Economics
Lanzhou
730101
Gansu
P.R. China
E-mail address: mztian@ruc.edu.cn

Jianxin Pan
School of Mathematics
University of Manchester
Manchester, M13 9PL
UK
E-mail address: Jianxin.Pan@manchester.ac.uk

424 C. Ma, M. Tian, and J. Pan

http://www.ams.org/mathscinet-getitem?mr=0872961
http://www.ams.org/mathscinet-getitem?mr=1946577
http://www.ams.org/mathscinet-getitem?mr=2024762
http://www.ams.org/mathscinet-getitem?mr=3256909
http://www.ams.org/mathscinet-getitem?mr=1475054
http://www.ams.org/mathscinet-getitem?mr=1085815
http://www.ams.org/mathscinet-getitem?mr=2568121
http://www.ams.org/mathscinet-getitem?mr=2168993
http://www.ams.org/mathscinet-getitem?mr=0595165
http://www.ams.org/mathscinet-getitem?mr=1467108
http://www.ams.org/mathscinet-getitem?mr=1158513
http://www.ams.org/mathscinet-getitem?mr=2495512
http://www.ams.org/mathscinet-getitem?mr=1439795
http://www.ams.org/mathscinet-getitem?mr=1411741
http://www.ams.org/mathscinet-getitem?mr=2536154
http://www.ams.org/mathscinet-getitem?mr=3101594
http://www.ams.org/mathscinet-getitem?mr=1625640
http://www.ams.org/mathscinet-getitem?mr=1851050
http://www.ams.org/mathscinet-getitem?mr=2216899
mailto:chuoxin.ma@manchester.ac.uk
mailto:mztian@ruc.edu.cn
mailto:Jianxin.Pan@manchester.ac.uk

	Introduction
	Hierarchical models with heteroscedasticity
	Estimation
	The approximated likelihood function
	Iterative procedures
	Bootstrap standard errors and confidence band
	Asymptotic results

	Simulation studies
	Real analysis
	Conclusion
	Appendix
	Derivatives of (bold0mu mumu ) in (6)
	Proof of Theorem 3.1
	Proof of Theorem 3.2
	Proof of Theorem 3.3

	References
	Authors' addresses

