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Efficient feature screening for
ultrahigh-dimensional varying coefficient models
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Feature screening in ultrahigh-dimensional varying coef-
ficient models is a crucial statistical problem in economics,
genomics, etc. Current methods not only suffer from cir-
cumstances when the models involve multiple index vari-
ables or group predictor variables, but also cannot handle
nonlinear varying coefficient models. To address these real-
life scenarios efficiently, we develop a screening procedure
for ultrahigh-dimensional varying coefficient models utiliz-
ing conditional distance covariance (CDC). Extensive sim-
ulation studies and two real economic data examples show
the effectiveness and the flexibility of our proposed method.
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1. INTRODUCTION

The varying coefficient models are natural extensions of
classical parametric models with good flexibility and inter-
pretability, which ameliorates the “curse of the dimension-
ality”, and are applied in economics, epidemiology, medical
science, ecology and so on (Fan and Zhang 2008). While
ultrahigh-dimensional data are becoming increasingly pop-
ular in data science, most variable selection methods using
penalization do not perform well for ultrahigh-dimensional
varying coefficient models owning to the challenges of com-
putational expediency, statistical accuracy, and algorith-
mic stability (Wang and Xia 2009, Tang et al. 2012). Fan
and Lv (2008) novelly proposed sure independence screen-
ing (SIS) for ultrahigh-dimensional data in linear model.
Since then, various versions of SIS methods have been de-
veloped, with ranges from linear models to nonlinear mod-
els, from specific models to model-free models, and from
parametric models to nonparametric models. Among them,
Hall and Miller (2009) introduced a generalized Pearson
correlation to screen variables. Zhu et al. (2011), Li et al.
(2012), Shao and Zhang (2014) developed sure indepen-
dent ranking and screening (SIRS), sure independent screen-
ing based on distance correlation (DC-SIS) and sure inde-
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pendent screening based on martingale difference correla-
tion (MDC-SIS) respectively. Fan et al. (2009, 2010, 2011)
considered ultrahigh-dimensional generalized linear models
and additive models. For varying coefficient models, Fan et
al. (2014) introduced nonparametric independence screen-
ing (NIS) which used marginal mean regression and spline
approximation. Liu et al. (2014) developed a conditional
correlation sure independence screening (CC-SIS) based on
conditional Pearson correlation. Song et al. (2014) stud-
ied the longitudinal data analysis by ranking the magni-
tude of spline approximations of the nonparametric compo-
nents.

In many regression problems, some predictors can be nat-
urally grouped, such as groups of dummy variables in mul-
tifactor analysis of variance. NIS and CC-SIS suffer in the
case of group predictor variables. On the other hand, ex-
isting methods do not perform well in the case of multiple
index variables, which are very important models (Lee et al.
2012 and Park et al. 2015). Moreover, current methods can-
not handle nonlinear varying coefficient models which are
possible in reality and illustrated in later section. To over-
come these drawbacks in applications, we accordingly de-
velop a screening procedure for ultrahigh-dimensional vary-
ing coefficient models utilizing conditional distance covari-
ance (CDC). Due to the nature of conditional distance co-
variance, our method can work efficiently in almost all sce-
narios.

The paper is organized as follows. In Section 2, we present
our general model framework, and then introduce our proce-
dure named as CDCS. Section 3 illustrates the finite sample
performance with both Monte Carlo simulations studies and
two real data examples. The article concludes with a brief
discussion in Section 4.

2. METHODOLOGY

2.1 Conditional distance correlation

Conditional distance correlation (Chen et al., 2015 and
Wang et al., 2015 ) can measure both linear and nonlinear
conditional correlations. Let Y ,W and Z be q, d and r
dimensional random vectors in Rq, Rd and Rr, respectively.
φY ,W |Z(t, s) is the conditional joint characteristic function
of Y ,W given Z (t ∈ Rq, s ∈ Rq). Conditional distance
covariation(CDcov) between Y and W with finite moments
given Z is defined as square root of
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CDcov2(Y ,W |Z)

= ‖φY ,W |Z(t, s)− φY |Z(t)φW |Z(s)‖2

=
1

cqcd

∫
Rq+d

|φY ,W |Z(t, s)− φY |Z(t)φW |Z(s)|2

|t|q+1
q |s|d+1

d

drds,

where cq = π(q+1)/2/Γ((q + 1)/2), cd = π(d+1)/2/Γ((d +
1)/2). Further, let CDcov2(Y |Z) = CDcov2(Y ,Y |Z). As
the standardization of CDcov, CDcor between Y and W
with finite moments given Z is defined as square root of

CDcor2(Y ,W |Z) =
CDcov2(Y ,W |Z)√

CDcov2(Y |Z)CDcov2(W |Z)
,

if CDcov2(Y |Z)CDcov2(W |Z) > 0 and 0 otherwise.

Suppose that Gi = (Yi,Wi,Zi), i = 1, . . . , n are random
samples from G = (Y ,W ,Z). Let ωi(Z) = KH(Z − Zi),
ω(Z) =

∑n
i=1 ωi(Z), where K(•) is a kernel function such

as the Gaussian kernel, H is the bandwidth. Denote the
Euclidean distance of Xi and Xj as dXij = d(Xi,Xj), and

similarly, dYij for Y . Let

daijkl = dijkl + dijlk + dilkj

where dijkl = (dXij + dXkl − dXik − dXjl )(d
Y
ij + dYkl − dYik − dYjl ).

CDcov can be estimated by:

̂CDcov
2
(Y ,W |Z) =

1

C4
n

∑
i<j<k<l

ψn(Gi,Gj ,Gk,Gl|Z).

where ψn(•) is the symmetric random kernel of degree 4
defined in Schick(1997)

ψn(Gi,Gj ,Gk,Gl|Z) =
n4ωi(Z)ωj(Z)ωk(Z)ωl(Z)

12ω4(Z)
daijkl

Further, we can get accordingly ̂CDcor
2
(Y ,X|Z).

2.2 A new screening procedure

Let Y be the response, X = (X1, . . . , Xp)
� be the p

dimensional predictor variables. We consider the following
varying coefficient models:

Y = X1

q∑
l=1

β1l(Ul) + · · ·+Xp

q∑
l=1

βpl(Ul) + ε. (1)

where (βk1(U1), . . . , βkq(Uq))
� are q dimensional unknown

smooth functions. U = (U1, . . . , Uq)
� are the q(< p) dimen-

sional multiple index variables. Fan et al. (2014) and Liu et
al. (2014) supposed U to be one dimension. In this paper,
we relax this assumption.

Define the true model index set D and its complement
Dc by D = {1 ≤ j ≤ p :

∑q
l=1 βkl(ul) �= 0 for some u ∈ U}

and Dc = {1 ≤ j ≤ p :
∑q

l=1 βkl(ul) = 0 for all u ∈ U}.

The goal is to select a reduced model with a moder-
ate scale which can almost fully contain D for ultrahigh-
dimensional varying coefficient models. Because given u, the
varying coefficient models become linear regression models
(Liu et al.,2014). It is natural to apply the CDcor to screen
variable in ultrahigh-dimensional varying coefficient models.
For Xk and Y given the U , wk is defined as

wk = E{CDcor2(Y,Xk|U)}.

For a random sample {(Yi,Xi,Ui)}ni=1 from (Y,X,U)�,
we can have the estimator:

ŵk =
1

n

n∑
i=1

̂CDcor
2
(Yi, Xik|Ui), k = 1, . . . , p.

We then sort the magnitudes of all the components of ŵ =
(ŵ1, . . . , ŵp)

� in a decreasing order and select a submodel:

D̂ = {k : ŵk ≥ cn−κ, 1 ≤ k ≤ p},

where c and 0 < κ < 1/2 are prespecified values. In practice,
for given d, one can select a submodel:

D̂ = {1 ≤ k ≤ p:ŵk is among the first d largest of all }

3. NUMERICAL STUDIES AND
APPLICATION

3.1 Simulation studies

In this section, we assess the finite sample performance
of the proposed method in following three criteria:

(1) S: the minimum model size to include all active predic-
tors.

(2) Pk: the proportion of all active predictors are selected
for given model size d.

(3) P : the proportion of an individual predictor is selected
for given model size d.

We set p to be 1000, and n to be 200. d1 = [n/ log(n)],
d2 = 2d1 and d3 = n − 1, where [a] denotes the integer
part of a. All the simulation results are based on 1000 repli-
cations. We consider varying coefficient models with single
index variable in the Examples 1 and 2, multiple index vari-
ables in Example 3, group predictor variables in Example 4,
and a more complex model in Example 5.

Example 1. We consider the following varying coefficient
model:

Y = β1(U)X1 + β2(U)X2 + β3(U)X3 + ε

where β1(U) = exp(2U − 1), β2(U) = 4U(U − 1), β3(U) =
2 cos(2πU), X = (X1, . . ., Xp)

� ∼ N(0, Ip), where Ip is a
p× p identity matrix. U ∼ U(0, 1), and ε is generated from
the standard normal distribution.
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Table 1. The mean, 25%, 50%,75%,85% and 95% quantiles
of S in Example 1

Methods Mean (SD) 25% 50% 75% 85% 95%

CDCS 5.7 (19.5) 3 3 3 4.2 13
NIS 18.1 (38.2) 3 4 14 29 83.2

CC-SIS 37.5 (76.9) 8 18 41 63.2 117

Table 2. The proportions of P and Pk in Example 1

Methods d1 d2 d3
CDCS P1 1.000 1.000 1.000

P2 0.988 0.991 0.999
P3 1.000 1.000 1.000
P 0.988 0.991 0.999

NIS P1 1.000 1.000 1.000
P2 0.881 0.942 0.991
P3 1.000 1.000 1.000
P 0.881 0.941 0.991

CC-SIS P1 0.999 0.999 0.999
P2 0.733 0.886 0.984
P3 0.998 0.998 0.998
P 0.732 0.884 0.981

Tables 1 and 2 summarize the simulation results of Ex-
ample 1. CDCS is significantly better than NIS and CC-SIS
because the 75%, 85% and 95% quantiles of their S are
much larger than CDCS. Almost all of P and Pk of CDCS
in Table 2 are larger than those of NIS and CC-SIS.

Example 2. We consider the nonzero coefficient functions:

β2(U) = 2I(U > 0.4), β100 = 1 + U, β400 = 3− 3U,

β600(U) = 1 + 2 sin(2πU), β1000 = exp(U/(U + 1))

where U and X are generated as follows: first, take sam-
ples of U∗ and X from (U∗,X) ∼ N(0,Σ), and Σ =
(σij)(p+1)×(p+1) and σij = 0.5|i−j|. Then take U = Φ(U∗),
where Φ is the cumulative distribution function of the stan-
dard normal distribution. Thus, U follows a uniform distri-
bution in (0, 1) and is correlated with X, and all the pre-
dictor variables X1, . . . , Xp are correlated with each other.

From Tables 3 and 4, we can see that CDCS again per-
forms better than NIS and CC-SIS.

Example 3. In this example, we investigate the perfor-
mance of models with multiple index variables. As Lee et
al. (2012) and Park et al. (2015), we consider two index
variables:

β11(U1) = 1 + U2
1 β12(U2) = 4(U2 − 0.5)2

β21(U1) = U1 β22(U2) = 2 cos(2πU2)

β31(U1) = exp(2U1 − 1) β32(U2) = sin(2πU2)

where (U1, U2) are iid uniform distribution U(0, 1). Since
NIS and CC-SIS do not work in the case of multiple in-
dex variables, we compare the performance of the proposed

Table 3. The mean, 25%, 50%,75%,85% and 95% quantiles
of S in Example 2

Methods Mean (SD) 25% 50% 75% 85% 95%

CDCS 6.1 (3.9) 5 5 6 6 9
NIS 7.7 (11.5) 5 5 7 9 14.1

CC-SIS 36.5 (86) 12 20 37 50.2 86.1

Table 4. The proportions of P and Pk in Example 2

Methods d1 d2 d3
CDCS P2 1.000 1.000 1.000

P100 0.999 1.000 1.000
P400 1.000 1.000 1.000
P600 0.999 1.000 1.000
P1000 0.999 1.000 1.000
P 0.997 1.000 1.000

NIS P2 0.999 1.000 1.000
P100 0.996 0.999 1.000
P400 1.000 1.000 1.000
P600 1.000 1.000 1.000
P1000 0.991 0.998 0.999
P 0.986 0.997 0.999

CC-SIS P2 0.962 0.991 0.999
P100 0.952 0.989 0.997
P400 0.978 0.997 0.999
P600 0.970 0.994 0.999
P1000 0.855 0.960 0.992
P 0.763 0.934 0.987

method (CDCS) with three existing methods, SIRS (Zhu et
al., 2011), DC-SIS (Li et al., 2012) and MDC-SIS (Shao and
Zhang 2014), which are model-free feature screening proce-
dures. The other settings are the same as Example 1.

Tables 5 and 6 show that CDCS is superior to SIRS, DC-
SIS and MDC-SIS. It is because the latters only use the
information of Y and X, not U .

Example 4. This example is designed to illustrate the per-
formance in the case of group independent predictor vari-
ables. We consider the following model:

Y = β1(U)X1 + β
(1)
12 (U)1(X12 < q1)

+ β
(2)
12 (U)1(q1 ≤ X12 < q2) + β22(U)X22 + ε

where β1(U) = 4U(U − 1), β
(1)
12 (U) = exp(U/(U + 1)),

β
(2)
12 (U) = 3U , β22(U) = 2 sin(2πU), q1 and q2 are the 30%

and 60% quantiles of X12. (X1, . . . , Xp) ∼ N(0,Σ), and
Σ = (σij)p×p and σij = 0.5|i−j|. The other settings are the
same as Example 1. We write

X̃12 = {1(X12 < q1),1(q1 ≤ X12 < q2)}T .

Then these two indicator variables become a group.
The predictor variable vector is X = (X1, . . . , X11,
X̃12, X13, . . . , Xp) ∈ Rp+1.
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Table 5. The mean, 25%, 50%, 75%, 85% and 95% quantiles
of S in Example 3

Methods Mean (SD) 25% 50% 75% 85% 95%

CDCS 3 (0.6) 3 3 3 3 3
SIRS 192 (242) 13 73 304 488 728

DC-SIS 93 (152) 6 22.5 102 205 439
MDC-SIS 103 (185) 4 18 100 233 547

Table 6. The proportions of P and Pk in Example 3

Methods d1 d2 d3
CDCS P1 1.000 1.000 1.000

P2 1.000 1.000 1.000
P3 1.000 1.000 1.000
P 1.000 1.000 1.000

SIRS P1 1.000 1.000 1.000
P2 0.384 0.505 0.676
P3 1.000 1.000 1.000
P 0.384 0.505 0.676

DC-SIS P1 1.000 1.000 1.000
P2 0.581 0.694 0.847
P3 1.000 1.000 1.000
P 0.581 0.694 0.847

MDC-SIS P1 1.000 1.000 1.000
P2 0.624 0.715 0.831
P3 1.000 1.000 1.000
P 0.624 0.715 0.831

Table 7. The mean, 25%, 50%,75%,85% and 95% quantiles
of S in Example 4

Methods Mean (SD) 25% 50% 75% 85% 95%

CDCS 9.8 (34.2) 3 4 5 7 22.1
DC-SIS 77.4 (98.4) 19.8 46 93 138 249

Table 8. The proportions of P and Pk in Example 4

Methods d1 d2 d3
CDCS P1 0.990 0.994 0.999

P12 0.979 0.988 0.991
P22 1.000 1.000 1.000
P 0.970 0.982 0.990

DC-SIS P1 0.994 0.997 1.000
P12 0.989 0.995 0.997
P22 0.455 0.684 0.920
P 0.455 0.678 0.918

Since NIS and CC-SIS cannot be applied for screening
group variables, we compare the performance of the pro-
posed method (CDCS) with DC-SIS of Li et al. (2012). From
Tables 7 and 8, we can see that CDCS is superior to DC-
SIS. The 95% quantile of S of DC-SIS is 10 times more than
that of CDCS. It implies CDCS is capable of handling group
variable.

Table 9. The mean, 25%, 50%,75%,85% and 95% quantiles
of S in Example 5

Methods Mean (SD) 25% 50% 75% 85% 95%

CDCS 4 (5.5) 3 3 3 4 8
NIS 161 (217) 16 62 215 356 677

CC-SIS 207 (222) 51 122 275 409 730

Table 10. The proportions of P and Pk in Example 5

Methods d1 d2 d3
CDCS P1 1.000 1.000 1.000

P2 0.999 1.000 1.000
P3 0.998 1.000 1.000
P 0.997 0.999 1.000

NIS P1 0.514 0.605 0.756
P2 0.906 0.960 0.995
P3 0.871 0.941 0.980
P 0.397 0.541 0.734

CC-SIS P1 0.303 0.436 0.680
P2 0.797 0.915 0.987
P3 0.789 0.906 0.980
P 0.178 0.358 0.657

Given index variables, the varying coefficient models (1)
become linear regression models (Liu et al., 2014). However,
in reality, we may have the following extended varying coef-
ficient models (EVCM):

Y = f1(X1)

q∑
l=1

β1l(Ul) + · · ·+ fp(Xp)

q∑
l=1

βpl(Ul) + ε. (2)

where fi(·), i = 1, · · · , p, are unknown functions. EVCM is
a potential nonlinear varying coefficient models.

Example 5.We now consider a simple EVCM that contains
a quadratic form of the first variable:

Y = β1(U)X2
1 + β2(U)X2 + β3(U)X3 + ε

where β1(U) = 2U , β2(U) = 4U(1− U), β3(U) = sin(2πU).
The other settings are the same as Example 1. Note given
u, the relationship between Y and X1 is not linear, but
nonlinear.

From Tables 9 and 10, we can see that NIS and CC-SIS
do not work well. It is because NIS cannot estimate β1(U)
well using B spline given f1(X1) = X2

1 , and CC-SIS only
describes the conditional linear relationship.

3.2 Real data analysis

3.2.1 China economy data analysis

We apply CDCS to the China economy data which is col-
lected from 1987 to 2012 and contains five variables: GDP
(Gross Domestic Product), R&D (Research and Develop-
ment), VTCI (Value of Technology Contracts Imported),
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Table 11. The mean, 50%,75%,85% and 95% quantiles of S
in China economy data

Methods Mean (SD) 25% 50% 75% 85% 95%

CDCS 6.2 (2.1) 5 5 6.3 8 10
NIS 384 (186) 242 354 503 596 740

CC-SIS 330 (203) 168 308 484 570 662

CS (Capital Stock), EMP (Employment) and Year. GDP
are commonly used to measure the economic performance
of a whole country or region. R&D stands for independent
innovation. The larger the R&D is, the stronger the inno-
vation is. VTCI represents the usage of foreign technology.
CS is obtained by perpetual inventory method (Goldsmith,
1951). EMP stands for the labour utilization. We take GDP
as the response, Year as the index variable and R&D, VTCI,
CS and EMP as predictor variables, denoted by X1, . . . , X4.
Variables X1, . . . , X4 are known to be important in con-
tributing to GDP. The response and predictor variables
are transformed to have zero mean and unit stand devia-
tion, and the index variable is transformed into the range
of [0, 1].

In order to evaluate the performances of CDCS, NIS and
CC-SIS, we generate new variables (X∗

1 , . . . , X
∗
4 ) as follows:

each time 20 samples are resampled from 26 original data
points without replacement. (X∗

5 , . . . , X
∗
1000) are generated

from the N(0, I996). We set M = {1, 2, 3, 4}, and replicate
for 1000 times.

From Table 11, we can see that the CDCS works very well
in screening out redundant predictors since 95% quantile of
S is very small, while NIS and CC-SIS do not perform well
since the quantiles of S are very large, at least 50 times
larger than CDCS.

3.2.2 Boston housing data analysis

We also apply our method to Boston housing data that
concerns the median value of owner-occupied homes for 506
census tracts of Boston from the 1970 census, which can be
found from BostonHousing in R pacakge inmlbench. Follow-
ing Wang and Xia (2009), we take MEDV (median value of
owner-occupied homes in USD 1000’s) as the response Y ,
LSTAT (percentage of lower status of the population) as
the index variable U , and the following predictors as the
predictor variables: CRIM (per capita crime rate by town),
RM (average number of rooms per dwelling), PTRATION
(pupil-teacher ratio by town), NOX (nitric oxides concen-
tration (parts per 10 million)), TAX (full-value property tax
rate per USD 10,000), AGE (proportion of owner-occupied
units built prior to 1940), denoted by X1, . . . , X6. Before
applying our method, both the response and the predic-
tor variables (except for INT) are transformed to have zero
mean and unit variance. The index variable LSTAT is trans-
formed so that its marginal distribution is in [0, 1].

Table 12. The mean, 50%,75%,85% and 95% quantiles of S
in Boston housing data

Methods Mean (SD) 25% 50% 75% 85% 95%

CDCS 3.9 (1.0) 4 4 4 5 5
NIS 43.8 (63.8) 8 19 51 80 171.3

Wang and Xia (2009) use LASSO to select variables and
claim that X1, X2, X3 are significant predictors, whose cor-
responding coefficients are nonzero. We only compare the
performances with NIS because the bandwidth selection of
CC-SIS using plug-in method seems not to be working for
this dataset. We generate new variables (X∗

1 , . . . , X
∗
6 ) as fol-

lows: 200 samples are resampled from those 506 real data
without replacement. (X∗

7 , . . . , X
∗
1000) are generated from

the N(0, I994). We set M = {1, 2, 3}, and replicate for 1000
times.

From Table 12, we can see that the CDCS performs much
better than NIS because the sizes of CDCS are much smaller
compared with NIS.

4. DISCUSSION

In the paper, we propose a new feature screening for
ultrahigh-dimensional varying coefficient models based on
conditional distance covariance. The numerical studies and
real data analysis show CDCS performs much better than
competitors NIS and CC-SIS. The underlying reason is that
the nature of conditional distance covariance which can effi-
ciently handle group variable, multiple index variable and
non-linearity. The selection of bandwidth is challenging.
The larger bandwidth is, the smoother our estimator be-
comes. We compare three methods in selecting the band-
width: plug-in (Wand and Jones, 1994), smoothed cross-
validation (Jones, Marron and Park, 1991) and least-squares
cross-validation (Bowman, 1984), and find that CDCS is in-
sensitive to these bandwidth selection methods. In our im-
plementation, we use plug-in method as it is easy to calcu-
late and performs very well in Examples 1–5.
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