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Variable screening procedure is popularly used in
ultrahigh-dimensional data analysis. It ranks the impor-
tance of the predictor variables by marginal correlations and
then screens out the variables that are weakly correlated or
uncorrelated with the response variables. Though demon-
strated their effectiveness, the performance of most variable
screening approaches depend on the pre-determined thresh-
old of the size of selected predictor variables, which is some
integer multiples of �n/ log(n)� with n being the sample size.
To circumvent this issue, we propose a novel data-driven
variable screening procedure that can automatically deter-
mine the threshold. In our proposal, we rank the importance
of the predictor variables by the p-values using some modi-
fied independent tests, with the smaller p-values indicating
higher correlation. Compared with the existing counterpart,
extensive simulation studies and a real genetic data indicate
the preference of our procedure.

Keywords and phrases: Adaptive threshold, Distance
correlation, False discovery rate, Sure independence screen-
ing, Ultrahigh dimensional data.

1. INTRODUCTION

Owing to rapid advances of technologies and science,
ultrahigh-dimensional data emerge increasingly in contem-
porary scientific research areas including biological science,
social science and so on. The major challenge in dealing with
such kind of data lies in the ultrahigh-dimensionality, which
means that the number of predictors p is much larger than
the sample size n. This limitation leads to the rank defi-
ciency of the design matrix and thus traditional statistical
methods cannot be applied directly.

Variable screening procedure has been proposed to deal
with ultrahigh-dimensional data and received increasing at-
tention in recent literature. It works by ranking the impor-
tance of predictors through marginal utility measures (for
example, correlation) between response and predictors and
selecting the top few variables as the most important ones.
The framework of variable screening started with the semi-
nal work of Fan and Lv [5], in which they proposed the sure
independence screening (SIS) procedure with the Pearson
correlation as the marginal measure. When the data come
from a linear model with Gaussian errors, Fan and Lv [5]
have shown that the SIS procedure possesses the desirable
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sure screening property, that is, with probability very close
to one, the procedure retains all of the important variables in
the selected model. Soon afterward, SIS has been extended
to generalized linear models [6], additive models [4], Cox
models [17], compress sensing [15] and so on.

Since specifying a proper/useful model for ultrahigh-
dimensional data is challenging, model-free sure screening
procedures are more appealing in practice as a first step of
analysis. Compare to the SIS technique and its extension,
the model-free sure screening procedures measure the impor-
tance of variables by utilities that don’t rely on any model.
Thus these model-free methods tend to have robust perfor-
mance and could be quite flexible in practical implemen-
tation. For example, Zhu et al. [18] developed sure screen-
ing procedure with their newly proposed marginal utility
measure, which is concerned with the entire conditional dis-
tribution of the response given the predictors. Li, Zhong
and Zhu [8] introduced model-free sure screening procedure
called DC-SIS with utility measure being the distance cor-
relation, a recently proposed measurement of independence
by Székely et al. [13, 10].

All the aforementioned variable screening procedures in-
volve the choice of an appropriate threshold of the size of
selected predictors. The selection of the threshold could in-
fluence the performance of variable screening in ultrahigh-
dimensional data substantially and statistical accuracy in
the follow-up analysis. Therefore, selecting an appropriate
threshold becomes an important question of interest, both
theoretically and practically.

For SIS, Fan and Lv (2008) recommended the thresh-
old value being �n/ log(n)� and shown its consistency with
the sure screening property in numerical studies. For DC-
SIS, Li, Zhong and Zhu [8] extended the criterion and chose
the threshold as the multiples of �n/ log(n)�. However, these
thresholds are solely depended on sample sizes, which might
influence the screening results significantly as said in Li,
Zhong and Zhu [8]. Rather than just fixing the threshold
to be a function of sample size, Zhu et al. [18] set a pre-
specified value �n/ log(n)� as the maximum for their thresh-
old in their proposal and a data-driven cutoff value ob-
tained by adding artificial auxiliary variables to the data.
Yet the auxiliary variables added may not reflect the true
relation between response and predictors. Furthermore, this
might increase computation burden and makes it infeasible
in ultrahigh-dimensional data analysis.

In this work, we propose an adaptive model-free sure in-
dependence screening procedure, in which the threshold is
totally determined by the data. The marginal measure in the
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proposal is the p-values from the modified distance correla-
tion test, a modified version which was introduced to cor-
rect the bias in the squared distance covariance [11]. Rather
than simply choosing the top few variables with smallest p-
values, we adopt the multiple testing correction to adjust
the p-values and select the predictor variables under some
criterions. Compared with existing methods, the most dis-
tinguishable feature is that the threshold here is totally de-
termined by the data itself but not the sample size only. This
might increase the power in detection of important variables
and thus increase the statistical accuracy in further analy-
sis. Besides, the proposed procedure is model-free and has
robust performance in practical implementation.

The rest of this paper is organized as follows. In Section 2,
we give some preliminaries and then demonstrate the moti-
vation by a simple example. In Section 3, we develop a novel
model-free feature screening approach with adaptive thresh-
old. Section 4 demonstrates its finite performance by Monte
Carlo simulations and Section 5 presents its application to a
GAW17 dataset. A brief discussion in included in Section 6.
Some extra numerical study can be found in the Appendix.

2. PRELIMINARIES AND MOTIVATION

2.1 Preliminaries

Let Y ∈ Rq be the response variable, X = (X1, ..., Xp)
T

be the predictor variables. Xk(k = 1, . . . , p) is rk dimen-
sional and can be grouped or categorical data here. The
goal of variable screening is to identify all the variables in
the predictors X that are relevant to the response variable
Y . To be more formal, define the index sets of active and
inactive predictors without specifying a regression model by

A ={r : F (y|x) functionally depends on Xr for some y},
I ={r : F (y|x) does not functionally depends on Xr for

any y}.

(1)

where F (y|x) denotes the conditional distribution function
of y given x. In the framework of variable screening, the
target is to identify an index set that includes all indexes in
A and includes as less as possible indexes in I as the sample
size tends to infinity.

Suppose W = (X1, . . . ,Xp,Y) = {(Xi1, . . . , Xip, Yi) :
i = 1, . . . , n} is a random sample from the joint distribution
ofX and Y . Denote the Euclidean distance betweenXik and
Xjk by akij = |Xik − Xjk|rk , and those between Yi and Yj

by bij = |Yi−Yj |q. Furthermore, define the doubly centered
distance matrix Ak

ij of Xk by

(2) Ak
ij = akij − āki· − āk·j + āk··, i, j = 1, . . . , n,

where

āki· =
1

n

n∑
l=1

akil, āk·j =
1

n

n∑
s=1

aksj , āk·· =
1

n2

n∑
s,l=1

aksl.

The doubly centered distance matrix of Bij of Y is defined
similarly. Then the distance covariance and distance corre-
lation between Xk and Y by

(3) V2(Xk,Y) =
1

n2

n∑
i,j=1

Ak
ijBij ,

and

(4) R(Xk,Y) =
V(Xk,Y)√

V(Xk,Xk)V(Y,Y)
,

if V(Xk,Xk)V(Y,Y) > 0, otherwise R2(Xk,Y) = 0.
The DC-SIS marginally ranks the importance of each

predictor Xk by the distance correlation with Y, namely
R(Xk,Y). Then the top d predictors are identified as se-
lected variables, where d is chosen to be an integer multiple
of �n/ log(n)� as in [8].

2.2 Motivation

To demonstrate the need of an adaptive threshold se-
lection criterion, we begin with a simple example where a
linear model Y = Xβ + ε, where ε ∼ N (0, 1) and X is
generated from multivariate Gaussian distribution with zero
mean and autoregressive covariance matrix Σ = (σij)p×p.
More specifically, the covariance matrix Σ has entries σij =
ρ|i−j|, ij,= 1, . . . , p. In this example, we fix the sample size
n = 200, the dimensionality p = 100 and ρ = 0.5. The
sizes of the true models p1, i.e., the numbers of non-zero
coefficients, were chosen from 5 to 50 and the non-zero com-
ponents of the p-vectors β were randomly chosen. We set
a = 4 log(n)/n1/2 and picked non-zero coefficients of the
form (−1)U (a + |Z|), where U was drawn from a Bernoulli
distribution with parameter 0.4 and Z was drawn from the
standard Gaussian distribution. We repeated the above pro-
cedures for 100 times.

Figure 1 gives boxplots of the selected model size and the
true positive rate for DC-SIS. As seen in the upper panel,
the model size of DC-SIS remains the same since the sample
size is fixed and the threshold equals to �n/ log(n)� as rec-
ommended in [8]. However, as p1 increases, this threshold
cannot guarantee most of the true active predictors are in-
cluded. Actually, it leads to an sharply decrease of the true
positive rate as one can see from the lower panel of Figure 1.

3. ADAPTIVE MODEL-FREE SURE
INDEPENDENCE SCREENING

In this section, we propose an adaptive model-free sure
screening procedure with data-driven threshold. Unlike DC-
SIS, the marginal measure we use here is the p-values of the
modified distance correlation [11]. These marginal p-values
are sorted and transformed into a series of order q-values
{q(k) : k = 1, . . . , p} by controlling the false discovery rate
(FDR, Benjamini and Hochberg [2], Benjamini and Yekutieli
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Figure 1. Motivation example: Boxplot of model size and true
positive rate for DC-SIS and ADC-SIS.

[3]). Finally, the threshold is determined by the largest k
such that q(k) ≤ α, where α is the significant level.

The modified distance covariance was introduced to cor-
rect the bias in the sample squared distance covariance, for
details see [11] and [12]. To be precise, we modify the doubly
centered distance matrices Ak

ij , Bij as

Ãk
ij =

{
n

n−1 (A
k
ij −

ak
ij

n ), i �= j;
n

n−1 (ā
k
i· − āk··), i = j,

B̃ij =

{
n

n−1 (Bij − bij
n ), i �= j;

n
n−1 (b̄i· − b̄··), i = j.

Then the modified distance covariance and modified dis-
tance correlation are given by
(5)

Ṽ2(Xk,Y) =
1

n(n− 3)

⎛
⎝∑

i �=j

Ãk
ijB̃ij −

2

n− 2

n∑
i=1

Ãk
iiB̃ii

⎞
⎠

and

(6) R̃(Xk,Y) =
Ṽ(Xk,Y)√

Ṽ(Xk,Xk)Ṽ(Y,Y)
,

if Ṽ(Xk,Xk)Ṽ(Y,Y) > 0, otherwise R̃2(Xk,Y) = 0.
To obtain the p-values of R̃n(Xk,Y), we could use the

nonparametric permutation procedure just like the distance
covariance test [13]. However, it involves at least hundreds of
resamples and thus the computation burden is heavy espe-
cially in ultrahigh-dimensional data. Alternatively, one can
use the asymptotic distribution of the modified distance cor-
relation statistic R̃(Xk,Y). It has been shown that under
independence the distribution of a transformation, i.e.,

(7) τkn =

√
n(n− 3)

2
− 1 · R̃(Xk,Y)√

1− R̃2(Xk,Y)
,

converges to Student t distribution with degrees of freedom
being n(n− 3)/2−1, as dimensions of Xk and Y tend to in-
finity [11]. Although the dimensions of Xk and Y are fixed
and small in this paper, the approach of using Student t
asymptotic distribution is still appropriate, as shown in Ap-
pendix. Thereby, we prefer to the asymptotic t test for its
computational flexibility and comparable performance with
the permutation bootstrap test. That is, the p-values is given
by Pr(T > τkn), where T is a Student t random variable with
degrees of freedom being n(n− 3)/2− 1.

Next we adjust the p-values in multiple testing by con-
trolling the false discovery rate (FDR). FDR control offers
a way to increase power while maintaining some princi-
pled bound on error. We adopt the Benjamini-Hochberg-
Yekutieli (BH) procedure [2, 3] since it performs best in very
sparse cases, which matches the assumption in ultrahigh-
dimensional variable screening methods. As shown in Ap-
pendix, the performance of the asymptotic t statistic is com-
parable with the bootstrap test when α is around 0.1. Thus
the significant level used in the BH procedure is set to be
0.1 throughout this paper. This proposed procedure is thus
referred as adaptive distance correlation sure independence
screening (ADC-SIS) and the algorithm is summarized as
follows:

Adaptive Distance Correlation Sure Independence Screening
(ADC-SIS)

1. For each predictor Xk(k = 1, . . . , p), calculate the mod-
ified distance correlation and transform it into τkn as in
Equation (7);

2. Derive the p-values pk = Pr(T > τkn) for each predic-
tors and sort them in an increasing order;

3. Derive the q-values qr using the BH procedure, that is,
q(k) = p/k

∑p
j=1 1/j·p(k), where p(k) is the k-th smallest

p-value;

4. For a given α, determine the threshold K by the largest
k such that q(k) ≤ α;

5. Select the predictors corresponding to the q-values
{q(1), q(2), . . . , q(K)}.

4. SIMULATION STUDIES

In this section, we illustrate the variable screening perfor-
mance of ADC-SIS in various examples in comparison with
DC-SIS. Three measures are used to evaluate the relative
performance of ADC-SIS. The first measure is the true pos-
itive rate (TPR), the proportion of the truly selected pre-
dictors among the true active predictors. The second mea-
sure is the false positive rate (FPR), which is the propor-
tion of falsely selected predictors among the true inactive
predictors. These two measures are commonly used in the
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biomedical literature. Ideally, one wishes to have TPR to be
close to one and FPR to be close to zero simultaneously. Be-
sides, the size of the selected model is reported to measure
the performance of ADC-SIS.

4.1 Motivation example

We evaluate the screening performance of ADC-SIS in
the motivation example, which was discussed in Section 2.2.
The screening results are given in Figure 1. When the num-
ber of true active predictors is small, i.e., p1 = 5 or 10, the
average selected model size for ADC-SIS is much smaller
than those for DC-SIS, while the proportions of true active
predictors among selected variables for both methods are
similar. When p1 is larger, the average proportion of true
active predictors among selected variables for ADC-SIS is
significantly higher than those for DC-SIS, whereas the av-
erage selected model size for ADC-SIS is slightly larger.

4.2 Example I: univariate response

In this section, we consider situations that the response
variable is univariate. To imitate the real data in genetic
studies, the predictors are mixtures of continuous and bi-
nary data. To be specific, the predictor X is generated
from a multivariate normal distribution with cov(Xi, Xj) =
0.5|i−j|. We discrete X12 using its median, i.e., X12 =
I(X12 < median(X12)), where I(·) is the indicator function.
We consider the following five scenarios:

(1.a) : Y = c1β1X1 + c2β2X2 + c3β3X12 + c4β4X22 + ε;

(1.b) : Y = c1β1 sin(X1)+ c2β2X2 + c3β3X12 + c4β4X22 + ε;

(1.c) : Y = c1β1X1 + c2β2X2 + c3β3X12 + c4β4X
2
22 + ε;

(1.d) : Y = c1β1X1X2 + c3β2X12 + c4β3X22 + ε;

(1.e) : Y = c1β1X1X2 + c3β2X12X22 + ε;

where (c1, c2, c3, c4) = (2, 0.5, 3, 2) means different effect
sizes of predictors to the response. The non-zero regression
coefficient βj(j = 1, 2, 12, 22) is set to (−1)U (a+ |Z|), where
a = 4 logn/

√
n with n being sample size, U ∼ Bernoulli(0.4)

and Z ∼ N (0, 1). The random error ε is generated from a
standard normal distribution. For each scenarios, four dif-
ferent sample sizes ranging from 100 to 400 have been con-
sidered. The dimension of predictors is set to be p = 1000.
For each sample sizes, a total of 1000 random replications
have been conducted. The first three scenarios are all addi-
tive models, in which scenario (1.a) depicts linear model and
the rest represents non-linear models. The last two scenarios
considers interaction terms, which is a common phenomenon
in genetic data analysis. While scenario (1.d) considers only
interaction in continuous predictors, scenario (1.e) includes
interaction between continuous and binary predictors.

Table 1 and Figure 2 present the variable screening re-
sults for ADC-SIS with sample size being 100, 200, 300 and
400. For comparison, we also obtained the screening results
for DC-SIS with threshold d = �n/ log(n)� as recommend
in [8]. Specially, Table 1 lists the mean and standard error

Figure 2. Univariate response example: The average true
positive rate (TPR) and false positive rate (FPR) for

ADC-SIS and DC-SIS with sample size being
n = 100, 200, 300 and 400.

Table 1. Univariate response example: the mean size of the
selected model for n = 100, 200, 300 and 400 observations for
ADC-SIS. The numbers in parentheses are the corresponding
standard errors. For comparison, the model size for DC-SIS,

i.e., �n/ log(n)�, is included in the last row

Sample size n
Scenario 100 200 300 400

(1.a) 29(7.37) 32(7.46) 34(7.60) 35(7.23)
(1.b) 30(7.25) 32(7.39) 34(7.17) 35(7.44)
(1.c) 28(7.19) 30(7.15) 32(7.36) 33(7.17)
(1.d) 28(7.61) 31(7.03) 33(7.28) 34(7.17)
(1.e) 25(6.97) 28(7.10) 29(6.96) 30(7.22)

DC-SIS 21 37 52 66

of the selected model size and Figure 2 displays the plots
of the average FPR and TPR bases on 1000 replications.
One can see from the figure that the TPRs for both DC-SIS
and ADC-SIS are close to 1 as the sample size n increases,
which supports the assertion that the sure screening prop-
erty is possessed by both procedures. Moreover, ADC-SIS
performs competitively with DC-SIS in terms of TPR, which
suggests the feasibility of using FDR to select the threshold
in variable screening procedures. As sample size n increases,
the FPR of DC-SIS increases rapidly as the threshold (and
thus the model size) is only determined by the sample size.
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At the same time, the average FPR of our proposal almost
stay the same as sample size increases. Compared with DC-
SIS, ADC-SIS has much smaller mean FPR when the sample
size is large and comparable mean FPR when sample size is
small. This indicates that ADC-SIS helps reduce false pos-
itive when more data are included, while DC-SIS couldn’t
control the false positive.

Table 1 clearly shows that as expected, ADC-SIS leads
to an adaptive threshold with different scenarios. In partic-
ular, the average selected model size is different in scenarios
(1.a)–(1.c) even if they all reflect additive effect of predictors
to the response. Besides, scenario (1.e) is much smaller than
the first three scenarios since the coefficient of X2 for sce-
nario (1.e) is much larger. In comparison, the selected model
size for DC-SIS is fixed and non-adaptive to data. Further-
more, when n = 400, the average model size for ADC-SIS
is only half of those for DC-SIS, whereas they have com-
parable performance in terms of TPR. Both Figure 2 and
Table 1 suggest that ADC-SIS seems to be more adaptive
to the data and this adaptive property seems to be helpful
in screening variables.

4.3 Example II: multivariate response

In this example, we consider the multivariate response
cases. To be precise, we generate Y = (Y1, Y2)

T from mul-
tivariate normal distribution with mean 0 and variance
Σ = (σij)2×2, where σ11 = σ22 = 1 and σ12 = σ21 = σ(x).
For σ(x), we consider the following two scenarios:

(2.a) :σ(x) = sin(βT
1 x) where β1 = (0.8, 0.6, 0, ..., 0)T ;

(2.b) :σ(x) = {exp(βT
2 x)− 1}/{exp(βT

2 x) + 1}, where β2 =

(2− U1, 2− U2, 2− U3, 2− U4, 0, ..., 0)
T , and

Ui(i = 1, . . . , 4) is independently generated

from Uniform[0,1].

Figure 3 depicts the average TPR and FPR for ADC-SIS
and DC-SIS. Although the mean TPRs for both methods
are low when n = 100, both of them grow rapidly as sample
size increases as one can see from the figure. This numerical
example supports the sure screening property for ADC-SIS
and DC-SIS. While ADC-SIS has comparable performance
with DC-SIS in terms of TPR, the average FPR of DC-SIS
is much higher than that of ADC-SIS.

Table 2 summaries the selected model sizes for ADC-SIS
and DC-SIS, from which we can see that the mean model
sizes of ADC-SIS is much less than those of DC-SIS. Com-
pared with the examples with univariate response, ADC-SIS
has quite different selected model size because of its adap-
tive property. However, the selected model size for DC-SIS
is the same since the threshold value depends only on the
sample size.

5. REAL DATA ANALYSIS: GAW 17 DATA

To demonstrate the practical efficiency of the ADC-SIS
approach, we consider here a GAW 17 mini-exome data de-

Figure 3. Multivariate response example: The average true
positive rate (TPR) and false positive rate (FPR) for

ADC-SIS and DC-SIS with sample size being
n = 100, 200, 300 and 400.

Table 2. Multivariate response example: the mean size of the
selected model for n = 100, 200, 300 and 400 observations for
ADC-SIS. The numbers in parentheses are the corresponding
standard errors. For comparison, the model size for DC-SIS,

i.e., �n/ log(n)�, is included in the last row

Sample size n
Scenario 100 200 300 400

(2.a) 17(6.52) 18(6.52) 19(6.47) 19(6.36)
(2.b) 17(6.71) 19(6.05) 19(6.14) 19(6.33)

DC-SIS 21 37 52 66

scribed in [1]. The data are a hybrid of real exome sequence
data and simulated synthetic quantitative phenotypes. The
sequence data are used to provide a realistic pattern of num-
ber and frequency of SNPs, whereas the simulated pheno-
types provide a way to investigate relative performance as
the true causal SNPs are known. For each sample, 200 repli-
cates of the phenotypes were simulated.

We focus here on the GAW 17 unrelated data with met-
ric phenotype Q1 and Q2. The corresponding sequence data
matrix contains information on 24,487 SNPs for n = 697 in-
dividuals. By construction, phenotype Q1 is correlated with
39 SNPs and has a residual heritability of 0.44, while pheno-
type Q2 is correlated with 72 SNPs with a relatively lower
residual heritability of 0.29. Following the preprocessing pro-
cedure in [19], we have a total of 8,020 SNPs and a reduced
true unique SNPs for phenotypes Q1(38) and Q2(71).

For each phenotype, ADC-SIS and DC-SIS were used
for screening SNPs. The threshold in DC-SIS was fixed to
�n/ log(n)� = �697/ log(697)� = 107, as suggested in [8].
Figure 4 reports the screening accuracy for ADC-SIS and
DC-SIS procedures in terms of true positive, which is de-
fined as the number of truly identified active predictors.

As can be seen from Figure 4, ADC-SIS uniformly out-
performs DC-SIS in terms of true positives. In particular,
for phenotype Q1, the median true positives for ADC-SIS is
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Figure 4. True positive SNPs being selected by ADC-SIS and
DC-SIS for phenotypes Q1 and Q2. For DC-SIS, the threshold

is fixed to be �n/ log(n)� = �697/ log(697)� = 107.

Table 3. GAW17 data: The mean size of the selected model
for ADC-SIS. The numbers in parentheses are the

corresponding standard errors. For comparison, the model size
for DC-SIS, i.e., �n/ log(n)�, is included in the last column

phenotype ADC-SIS DC-SIS

Q1 651(147) 107
Q2 166(62) 107

9 while those for DC-SIS is only 3. Table 3 lists the mean
and standard deviation of model sizes of the selected model
for ADC-SIS. Note that for DC-SIS, the threshold is fixed
(d = 107) and the same for phenotypes Q1 and Q2. How-
ever, the mean model sizes for phenotype Q1 is much higher
than those for Q2. This coincides with the construction of
these two phenotypes, i.e., Q1 is characterized by SNPs with
strong effects and moderate minor allele frequencies, the
true SNPs for Q2 have a very low minor allele frequencies.

To make a more fair comparison, we compare the per-
formance when DC-SIS has the same threshold value with
ADC-SIS in each replicates. The boxplots of the true pos-
itives for both two methods are shown in Figure 5. It is
clearly that ADC-SIS still leads to a higher true positives
even with the same threshold for this particular data.

6. DISCUSSION

In this paper, we examine the problem of the choice of
selected predictor variables in ultrahigh-dimensional data
analysis and propose a novel sure independence screening
procedure with adaptive threshold. The proposal eliminates
the predictor variables that are weakly correlated or uncor-
related with the response variable via a modified distance
correlation test. Then the threshold is determined by the
size that the ascending order of adjusted p-values is no more
than the significant level.

The extensive simulation studies suggests the preference
of our procedure and the possible consistency of the selec-
tion of the active predictors as sample size increases. The-

Figure 5. True positive SNPs being selected by ADC-SIS and
DC-SIS for phenotypes Q1 and Q2. For DC-SIS, the threshold

is chosen to be the same as those in ADC-SIS in each
replication.

oretical study of the sure screening property and model
selection consistency for the proposal is yet to be estab-
lished.

As the referees suggested, the idea of adaptive threshold
could be naturally extended to feature screening procedures
using correlation-based independence tests when both Xk

and Y are univariate. For example, [9] proposed a feature
screening procedure based on Kendall rank correlation and
studies its screening properties for linear regression mod-
els and transformation regression models. In the nonpara-
normal graphical models, [16] proposed sparse estimation
scheme based on the Spearman’s rank correlation and shown
it has some desirable theoretical properties. Instead of ap-
proximate p-values of distance correlation as in our proposal,
it would be possible to obtain p-values directly from the
asymptotic distribution. One could use technique such as
Fisher’s Z transform to obtain the asymptotical normality,
i.e., Kendall rank correlation and Spearman’s rank correla-
tion [14, 7].

APPENDIX. COMPARISON BETWEEN
PERMUTATION TEST AND ASYMPTOTIC

T TEST

In this section, we study extensive simulations to com-
pare the relative performance of permutation test based on
the modified distance correlation and the asymptotic t test.
Throughout this section, we study the correlation between
univariate random variables X and Y .

We will start with examination of independent cases. For
the distribution of X and Y , we consider the following three
scenarios: (a) standard normal distribution; (b) Student t
distribution with degree of freedom 1; (c) exponential distri-
bution with mean 1. Next we will consider the cases when X
and Y are linear related with correlation ρ = 1 or ρ = 0.5.
Then we will examine the situations with nonlinear rela-
tionship between X and Y . To this end, seven patterns are
considered: wave, trapezoid, diamond, quadratic, X shade,
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Figure 6. Several sets of (X, Y) points, with the Distance
correlation coefficient of X and Y for each set.

circle and cluster. The scatter plot for these cases with the
sample size being n = 800 is given in Figure 6.

We compare the performance of permutation test and
asymptotic t test in the three independent cases and eight
dependent cases. The sample size is fixed to be 200 and the
test procedure is repeated for 1000 times. Then for each α ∈
(0, 0.5), Figure 7 gives a plot of the power, i.e., Pr(p-value <
α), versus α.

It is obviously that permutation test and asymptotic t
test have similar performance when X and Y are corre-
lated, especially when they are linear correlated. To look
further into Figure 7, the asymptotic t test performs slightly
better when α < 0.1 for trapezoid and diamond patterns.
When X and Y are independent, both permutation test and
asymptotic t test can control the type I error. However, the
asymptotic t test is more conservative when α > 0.1.
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