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A local structure model for network analysis

EMiLy CASLETON*, DANIEL NORDMAN, AND MARK KAISER

The statistical analysis of networks is a popular research
topic with ever widening applications. Exponential random
graph models (ERGMSs), which specify a model through in-
terpretable, global network features, are common for this
purpose. In this paper we introduce a new class of mod-
els for network analysis, called local structure graph mod-
els (LSGMs). In contrast to an ERGM, a LSGM specifies
a network model through local features and allows for an
interpretable and controllable local dependence structure.
In particular, LSGMs are formulated by a set of full condi-
tional distributions for each network edge, e.g., the probabil-
ity of edge presence/absence, depending on neighborhoods
of other edges. Additional model features are introduced
to aid in specification and to help alleviate a common issue
(occurring also with ERGMs) of model degeneracy. The pro-
posed models are demonstrated on a network of tornadoes
in Arkansas where a LSGM is shown to perform significantly
better than a model without local dependence.
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1. INTRODUCTION

Applications of networks appear in a wide variety of dis-
ciplines. For example, sociologists use graph models to rep-
resent social networks, economists have used networks for
studying relations between countries [17], biologists to rep-
resent brain connectivity [44], [39], zoologists for examining
animal social behavior [28], and computer scientists for rep-
resenting connections on the internet.

Much literature is devoted to algorithmic construction
methods with a goal to quickly and accurately simulate net-
works mimicking certain properties of interest [27]. Such
methods are often not statistical in nature in the sense
that the algorithms involve no probability models produc-
ing tractable likelihood inference. In contrast, some network
analysis approaches allow for explicit probabilistic model-
ing and related likelihood inference. In a review, Hunter et
al. [20] categorize probabilistic modeling of networks into
the exponential random graph models (ERGMs) and latent
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variable models (LVMs). Of these two, ERGMs have been
more widely used and extensively studied. Their popularity
can be attributed to the ability to incorporate graph topol-
ogy as terms of a joint (log-linear) distribution that allows
for complex dependencies [24]. Although ERGMs allow for
complex dependencies, such dependencies are typically in-
duced rather than directly specified. That is, dependencies
in ERGMs are a consequence of graph topologies chosen to
be included in the joint distribution. Latent variable mod-
els encompass a broad class of models that are hierarchical
in nature. Here variables representing edges are commonly
specified as having conditional distributions that are condi-
tionally independent given some latent variable defined on
the nodes, such as group membership [40], [31] or position
within a social space [16], [15].

In this paper, we introduce an approach to specifying
a model for network analysis which we call local structure
graph models (LSGMs). As a key characteristic, the LSGMs
begin model formulation based on a set of full conditional
distributions for each potential edge in the network, the dis-
tribution for the presence/absence of an edge given the out-
comes of all other potential edges. As a further critical char-
acteristic, each conditional distribution is specified in terms
of a flexible neighborhood structure, explicitly identifying a
set of other network edges on which an edge of interest is
“locally” dependent. Under certain conditions, conditional
specifications and neighborhood definitions allow construc-
tion of a global or joint probability model for the network,
having a dependence structure which is interpretable and
introduced in a controlled, local manner.

As a consequence of its formulation, LSGMs have char-
acteristics of both ERGMs and LVMSs, a feature of what has
been called “the next generation” of network analysis [42].
Similarly to LVMs, LSGMs are specified through conditional
distributions. However, the conditional distributions in the
LSGM are not defined in terms of latent variables for nodes,
such as group memberships, but rather in terms of neigh-
borhoods involving other network edges. Hence, potential
network edges are conditionally dependent on other edges
belonging to a neighborhood. Like ERGMs, LSGMs result
in joint distributions that have a Gibbsian form for random
graphs. But in LSGMs the joint distribution results from a
set of specified conditioned distributions for edges, while in
ERGMs the joint is formulated directly. Consequently, the
dependence structure of an ERGM is often induced, while
that of the LSGM can be more directly and explicitly de-
fined.
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Because the joint distributions of LSGMs are similar to
those for ERGMs, some details of ERGMs are discussed in
Section 2. The main features of LSGMs, involving condi-
tional specifications and neighborhood definitions, are de-
tailed in Section 3, along with a numerical demonstration
of a model. Two additional features of LSGMs, the ability
to simply incorporate potential spatial information about
nodes, and the definition of a “saturated graph,” are also
introduced in Section 3. These features can help keep the
potential sizes of LSGM neighborhoods manageable which is
useful for minimizing model degeneracy issues. In Section 4,
a LSGM is applied to an example network consisting of tor-
nado outbreaks in the state of Arkansas. Two simulation-
based model comparison techniques are also presented in
this section and used to compare the fit of the LSGM to that
of a model lacking local dependence. The LSGM is shown
to provide a graph model of tornado occurrences that bet-
ter supports observed tornado patterns in important local
ways with regard to space and time. Section 5 provides some
concluding remarks.

2. EXPONENTIAL RANDOM GRAPH
MODEL (ERGM)

A network, or graph, is defined by a set of n nodes and
m edges, where the networks of interest here are undirected
and simple, with unweighted edges and no self-loops. To
construct a random graph model, assign to each of the (g)
possible edges a binary random variable Y'(s;), where the
marker s; = {¢;,r;} indicates the two nodes, denoted as ¢;
and 7;, that a potential edge would join. Edge values are
collected into Y, an n x n adjacency matrix, and each entry
designates the presence, y(s;) = 1, or absence, y(s;) = 0, of
an edge between each node pair in the graph. For undirected,
simple networks, Y will be symmetric with diag(Y) =0. A
realization of the network will be represented as y.

Specification of an ERGM involves identifying the num-
ber of elements of Y that correspond to edges of certain
types, which are often called topological features of the
graph. For example, the well-studied triad model of [10] in-
cludes the topological features of density, or the expected
proportion of realized edges, 2-stars, and triangles. Let the
classes of edge types to be included in an ERGM be indexed
by j =1,...,q. For any possible realization y, let g;(y) de-
note the number of occurrences of edge class j present in y.
The joint distribution of y is then specified as

1) Pr(Y=y)= ﬁ exp{ S 0;05(y)
j=1

where 0; is a model parameter corresponding to topological
graph feature of type j =1,...,q.
The summation

(2) Qy) = Z 0;9;(y)
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is often referred to as the negpotential function, or Hamilto-
nian, and Z(0) = >_  exp{Q(y)} is a normalizing constant
for the discrete distribution in (1).

Specification of an ERGM involves identifying topological
graph features of interest for defining the negpotential (2)
with statistics, g;(y), as counts of such features. Let N be
the set of all edges which share a common node and C' be
the set of all edges which could potentially form a triangle.
The negpotential function for the triad model of [10] can be
written as

Qy)=pY_ yls)+o > ulsiy(s))
2

Si,S; eEN

(3) +r > ylsiy(s;)y(sk)

si,s;8,€C

where the sufficient statistics correspond to topological fea-
tures as the number g1(y) = >, y(s;) of edges, the num-
ber g2(y) = >, ; y(si)y(s;) of 2-stars, and number g3(y) =
> ik Y(80)y(s;)y(sk) of triangles. In (3), p represents a den-
sity parameter for the graph, o represents a clustering pa-
rameter [10], and 7 is a parameter for transitivity. Hence, the
dependence structure of an ERGM is defined by the choice
of graph features included in the specification (1) or (2); see
[11] for details on choosing topological configurations.

Initially, ERGMs included parameters to represent the
density, transitivity, and k-stars of the network [10], of which
the triad model (3) is a special case. This set of parame-
ters leads to a Markovian dependence structure where two
potential edges are conditionally dependent if they share a
common node. ERGMs can also be expanded to incorporate
more complicated graph topologies [47], exogenous covari-
ate information [12], or summaries of distributions of graph
statistics [43].

An ERGM specified through a joint distribution (1) in-
volving a choice of statistics or parameters corresponding
to graph topological features in the negpotential function
(2) will be referred to here as a traditional ERGM. This
specification requires an explicit identification of global net-
work features thought to reflect important aspects of graph
topology that potentially have scientific interpretations. For
example, the social network interpretation of the transitiv-
ity parameter is that friends of friends are more likely to
also be friends. Thus, the strength of traditional ERGMs is
the ability to describe the graph in terms of understandable
global features.

To end this section, we mention that fitting ERGMs to re-
alized networks has been demonstrated to be a difficult task,
particularly to a network with a large number of nodes. The
model can become degenerate, or place most of its probabil-
ity on a few, disparate graphs, none of which resemble the
observed network. A large amount of research has been de-
voted to identifying the cause of this behavior [6], [14], [33],
[34], recognizing when it has occurred [37], [19], and propos-
ing modifications to the ERGM to avoid the issue [43], [36],



[18]. One hypothesized cause of the behavior are large and
growing neighborhoods [38], [35], which lead to the local de-
pendence dominating the global structure. LSGMs are not
immune to this behavior, although increased interpretabil-
ity of the dependence through controlled neighborhoods and
saturated graphs can permit an easier identification of when
such degeneracy will occur, which we explain in the follow-
ing section.

3. LOCAL STRUCTURE GRAPH MODEL
(LSGM)

Local structure graph models (LSGMSs) are a new class of
graph models, having a global or joint distribution defined
in terms of interpretable and controllable local dependence
structures. Two defining characteristics of LSGMs are the
specification, for each potential edge marker s;, of a full
conditional distribution, Pr(y(s;)|y(s;); j # ), for the prob-
ability of edge presence or absence (y(s;) = 1 or 0) and a
neighborhood, N; = {s; : s; is a neighbor of s;} consisting
of graph edges which are “local” to s;. These two features,
together with an assumption of Markov dependence induce
a direct functional dependence between graph edges defined
to be neighbors,

Pr(y(si)ly(s;); j # i) = Pr(y(s:)|y(s;);s; € Ni).

This allows the probability of the presence of an edge to be
dependent upon the outcomes y(s;) of its neighboring edges,
S; € N;.

The LSGM can be motivated by a Markov Random Field
(MRF) model defined on graph edges. MRF models are com-
monly encountered in the analysis of spatial data, where
effects of spatial dependence are specified conditionally on
spatial location information. Intuitively, a response at a par-
ticular spatial site might be most heavily influenced by those
sites which are spatially neighboring. Through the definition
of neighborhoods and conditional specification, a MRF for
spatial data allows dependence to be defined through spec-
ification of a local structure.

Most common applications of binary MRF models to spa-
tial data can be associated with undirected graphs [23]. In
these spatial problems, graph nodes correspond to binary
random variables and edges connect nodes which are neigh-
bors. To apply a MRF model to LSGMs, potential edges in
the original graph become random variables (locations) in
the MRF and neighborhoods are composed of sets of edges
that are “near” each other according to some metric. Nodes
of the original graph do not appear explicitly in the binary
MRF model other than through their role in the edge mark-
ers.

To make this connection clearer, consider the neighbor-
hood structure of a LSGM as represented through a de-
pendence graph; see also [10]. Each node in the depen-
dence graph corresponds to a potential edge in the original
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(b) Two edges are conditionally dependent if they connect the same number
of solid, or odd numbered, nodes.

Figure 1. Two example networks and dependence structures
with resulting dependence graphs. The nodes of the
dependence graph corresponds to the edges of the original
graph. An edge in the dependence graph indicates conditional
dependence between two random variables (i.e., two edges) in
the original graph.

graph where a connection in the dependence graph indi-
cates the corresponding random variables are conditionally
dependent. Two example networks and dependence struc-
tures with resulting MRF dependence graphs are shown in
Figure 1. The first example appeared in [10] and demon-
strates the Markovian dependence as two edges are condi-
tionally dependent if they are incident, or share a node. The
second example demonstrates the potential flexibility in the
definition of a neighborhood for edges. For this dependence
structure, two edges are conditionally dependent if they con-
nect the same number of solid, or odd-numbered nodes. The
dependence graph here is composed of three disconnected,
yet internally fully connected, subgraphs of edges that join
the same number of solid nodes. In other words, because
the nodes of the dependence graph represent potential edge
occurrences as random variables in the original graph, the
LSGM is placing a MRF on the nodes of the dependence
graph.

The idea of a neighborhood in network analysis has also
been used elsewhere, although the definition of a neigh-
borhood has not been consistent. Within LSGMs, a neigh-
borhood defines edges which are conditionally dependent.
Neighborhoods are often overlapping and a neighborhood is
defined for each potential edge in the network. Our use of the
term “neighborhood” (in connection to MRFs and LSGMs)
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differs from other common uses of this term in network anal-
ysis involving block models or community detection [38],
where a “neighborhood” often implies a partitioning set of
the nodes of the network.

3.1 Specification

To formulate a LSGM, one must specify the form of the
conditional distributions and a neighborhood or dependence
structure. For simple networks, the goal is to model the pres-
ence or absence of edges and thus the conditional distribu-
tions are binary, as with the initial LSGM described next.
A binary conditional distribution expressed in exponential
family form is given by

Pr(Y(s;) = y(si)ly (Ni)) =exp [y(s:) Ai(y(N:))
(4) = Bi(y(N:))],  y(si) =0,1

where A; is a natural parameter function and B; = log[l +
exp(A;(y(N;)))]. In (4), y(V;) represents values of the bi-
nary random variables (here edges) in the neighborhood of
y(s;); note y(s;) = 1 indicates edge occurrence at the marker
s; of a potential edge. Dependence among random variables
is modeled through the natural parameter function, A;, and
a function B; of A;. For binary conditionals, a form of the
natural parameter function is

) A =tos (15 )+ 3 mglutsy)

SjGNi

with m denoting the number of edge markers or total num-
ber of possible edges in the network, the sets of parame-
ters, {k; ¢ =1,...,m} and {n;; : i =1,...,m;s; € N;},
represent global and local structure features of the network
model, respectively, and will be discussed in detail in Sec-
tion 3.2. The parameterization of the natural parameter
function in (5) involves centering by global parameters ;, as
introduced by [7] and [22]. This centered parameterization
has been shown to separate global from local structure in
(4)—(5) leading to increased interpretation of all model pa-
rameters for reasonable amounts of statistical dependence.

Specification of a collection of full conditional distribu-
tions must be done in such a way to guarantee the exis-
tence of a compatible joint distribution. That is, specifying
a graph model based on local structures must be done in a
manner such that a valid global model exists and is consis-
tent with the specified local model structure. Our approach
based on (4) and (5) will meet this requirement if two con-
ditions are satisfied. First, we assume that the presence or
absence of any potential edge can occur with any combina-
tion of other edge realizations. This is the so-called positivity
condition of [4]. Second, we require that n; ; = n;,; for all
possible pairs of edges indexed by i and j. Then the con-
ditions of Theorem 3 in [23] are satisfied and a joint distri-
bution having the specified conditionals exists. An explicit
proof of this for exponential family conditional distributions
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Model specified as negpotential (ERGM)

Qly) & Pr(Y =y) — {Pr'(y(si)ly(s;);j #) :i=1,...,n}
Negpotential < Joint distribution — Induced full
conditional

distributions

Model specified as conditional distributions (LSGM)
{Pry(sily(s;);j #1) :i=1,...,n} = Q(y) & Pri(Y =vy)
Full conditional — Constructed < Constructed
distributions Negpotential joint
distribution

Figure 2. Relationship between the negpotential, joint
distribution, and full conditional distributions when either the
model is specified as the negpotnetial (ERGM) or full
conditionals (LSGM).

having natural parameter functions for which (5) is a special
case is given in Proposition 1 of [21]. Note that these condi-
tions are slightly stronger than conditions that are necessary
for the existence of a joint, which are given in [2]. But, as
demonstrated as a constructive procedure in [23], they are
necessary for the joint to both exist and be correctly identi-
fied up to a constant of proportionality through use of the
negpotential function, (2). Using this constructive procedure
allows us to identify the global model that corresponds to a
specified LSGM, which we do presently.

Section 2 discussed how an ERGM is defined by speci-
fying global topological graph features, or parameters and
statistics, to include in the negpotential function (2). Spec-
ification of the negpotential function is equivalent to the
specification of a joint distribution (1). Graph features cho-
sen to be included in an ERGM implies a set of induced full
conditional distributions, but, because an ERGM focuses
on global network features, these conditional distributions
are not directly modeled or often even identified (and, in
fact, such conditional distributions might not even be “lo-
cal” by depending functionally on every edge in the graph).
In contrast, LSGMs are defined by specifying a set of full
conditional distributions (typically again with local neigh-
borhood structures) that leads to a constructed negpoten-
tial function and thus joint distribution. This relationship
between the two different methods of model specification
is demonstrated in Figure 2. Using the binary conditionals
from (5), a constructed negpotential function for a LSGM
can be shown to be [22]

— D mirg | y(si)
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determining the joint distribution (1) for Y under these
conditionals; above the superscript C' denotes a negpoten-
tial Q¢ constructed from full conditionals, e.g. (4), in con-
trast to a direct negpotential formulation (2). The functional
form (6) implies a LSGM here can be represented as an
ERGM (1) with Markovian dependence, and thus our pro-
posed approach provides an alternate specification of a type
of ERGM.

Network model features can generally be divided into
those that affect the global structure and those that affect
the local structure of random graphs [38], [11]. The global
structure can be defined through patterns prevalent in the
overall network, such as density. Features that allow for de-
partures from the global structure at a local level would be
classified as local structure. An example of the local struc-
ture is transitivity, or tendency towards the closure of indi-
vidual triangles. By specifying LSGMs through conditional
distributions, we are able to directly model such local struc-
ture.

3.2 Model parameters

Recall that, in LSGMs (4), two sets of parameters control
the natural parameter function (5), {x; :i=1,...,m} and
{ni; i =1,...,m;s; € N;}. In its most general form, this
model could allow for a different x; for every potential edge
y(s;) and a different n;;, with n;; = n;;, for every s; € Nj.
However, restrictions are typically placed on these sets of
parameters for model identifiability. The effect of the model
parameters will be demonstrated for the simplest case where
k; = K and n;; = 1 for every i, j in the example network dis-
played in the first panel of Figure 3. The network consists of
97 nodes and 824 possible edges, where only those pairs of
nodes connected in Figure 3 are assigned a random variable
for the potential occurrence of an edge and thus indicate
those network edges with a positive probability of being re-
alized.

Large-scale structure in (4)—(5) is represented by the first
parameter to be discussed, x € (0,1). The parameter x con-
trols the density or proportion of realized edge variables
in the overall network and is interpreted as the marginal
probability a randomly chosen potential edge will be re-
alized, y(s;) = 1. As a demonstration of the effect of &,
10,000 networks were simulated for 20 values of x and a
fixed n = 5. Due to the conditional specification, a network
from a LSGM is naturally simulated with a Gibbs sampler
where each potential edge is sampled from its conditional,
Pr(Y(s;) = y(s;)|y(NV:)), in turn. (Given randomly initial-
ized values for all edges, the Gibbs sampler was run with
a burn-in of 10,000 complete graph iterations after which
sample graphs were retained from subsequent rounds of 500
iterations for thinning.) For the retained simulations, the
proportion of realized edges out of those possible was com-
puted for each graph. The second panel of Figure 3 plots
the median proportion of realized edges for each x against k
and dashed lines enclose 95% of the simulated proportions.
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(a) Example used to demonstrate effect of model
parameters. Gray lines indicate all possible edges.
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(b) The effect of varying x on the proportion of
possible edges realized. Points represent the me-
dian of 10,000 simulations and dashed lines 95%
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(c) Proportion of the 64 possible edges in the dis-
connected clump of the northwest corner realized
for kK = 0.5 in 10,000 simulations obtained from
two values of 7.
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Figure 3.

Example network and a demonstration of the effect

of model parameters.
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A strong, monotonic relationship exists between x and the
proportion of realized edges with little variability, especially
towards the boundaries of the parameter space.

More subtle is the effect on local structure determined
by the dependence parameter, 7. This parameter quantifies
the strength of dependence between neighboring edges and
thus controls the extent to which sets of edges either exhibit
a neighboring effect or behave independently. When 7 = 0,
the summation term in the natural parameter function (5)
that incorporates the value of neighboring edges is absent,
ie., A;(y(N;)) = log (ﬁ), so that each edge formation
consequently occurs according to an independent Bernoulli
trial with success probability s (the conditional probability
of edge realization is equivalent to the marginal one, as ex-
pected under independence). In contrast, larger values of 7
induce neighbor effects on edge probabilities which can lead
to groups of edges behaving in the same manner, e.g., all
realized or all not realized. To illustrate, we again simulated
10,000 networks for each of two LSGMs: n = 0 and n = 10.5,
both with a fixed x = 0.5. Now considering the 64 possible
edges in the disconnected northwest clump of the example
network (Figure 3), we computed the proportion of realized
edges among this local subset from each simulation run and
the last panel of Figure 3 displays a histogram of these pro-
portions across the 10,000 simulations. When n = 0, edge
probabilities are unaffected by the rest of the network re-
sulting in a distribution of proportions which are symmet-
ric and centered at k, as displayed in the solid histogram
of Figure 3. Few simulations resulted in less than 40% or
more than 60% of the edges in this northwest subset be-
ing realized. However, for the larger dependence parameter
value, n = 10.5, an induced dependence between neighbor-
ing edges is clear. Neighboring edges tended to behave in a
group fashion, with edges among this northwest subgroup
either mostly all present or mostly all absent, resulting in
a bimodal distribution of proportions, as displayed by the
dashed histogram of Figure 3. Note that the histogram for
this strong dependence scenario is still centered at the ex-
pected global proportion of realized edges, x = 0.5. That
is, even when the local dependence is strong, the marginal
mean x in LSGMs is preserved over multiple simulations,
due to the centered parameterization of the natural param-
eter function (5).

Additional modeling of the local dependence parameter
is often necessary. In application of a LSGM, we recommend
that this term be adjusted to account for unequal neighbor-
hood sizes. It is common in spatial statistics for neighbor-
hoods of random variables in a MRF to be similar in size,
such as occurs, for example, with a four-nearest neighbor
structure for a regular spatial lattice. However, neighbor-
hoods for potential edges in LSGMs will often not result in
equally-sized neighborhoods (see Figure 9 in Section 4 for
an example). To allow the summation term in the natural
parameter function (5) to have a uniform effect on edges of
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Figure 4. Proportion of realized edges in 10,000 simulations
when k = 0.5 and n = 35. The proportion realized does not
correspond to the large-scale parameter, kK = 0.5. This is an
example of an area of the parameter space where the model is
degenerate.

varying neighborhood size, we modify dependence parame-
ters as

n
(7 M= e
P N TN

where | Ny| represents the size of the neighborhood of edge
y(sk). The summation of neighborhood sizes in the denom-
inator of (7) assures that 7;; = 7;;, guaranteeing the iden-
tification of a joint distribution through construction of a
negpotential function [23].

A practical parameter space for n € R is not as well
defined as the large-scale parameter, x € (0,1). When the
local structure of the model overwhelms the global struc-
ture, e.g., |n| is “too large” compared to x, the model will
become degenerate and place most of its probability on un-
realistic network realizations. As a demonstration, the pro-
portion of realized edges in 10,000 simulations of the exam-
ple network for a LSGM with parameter values x = 0.5 and
n = 35 is shown in Figure 4. Almost all edges are realized
in all simulations, as the model places most of its probabil-
ity on the nearly complete graph. This behavior has been
recognized for the ERGM and, more generally, in a class of
models for interactive systems [45], and is similar to long-
range dependence observed in the Ising model [41]. In the
ERGM context, large and growing neighborhoods have been
identified as a potential cause of degenerate model behavior
[38]. A large dependence parameter in LSGMs produces the
same essential effect of model degeneracy as having overly
large neighborhoods in the ERGM. Both result in summa-
tion terms in a negpotential function (e.g. (3), (5)) that dom-
inate terms for marginal probability, which undermines any
concept of dependence in the model (as a departure from



independence), and thereby ruins the overall model. As a
further complication related to similar degeneracy issues in
ERGMs, the values for dependence parameters which are in-
appropriately large in a LSGM, leading to degeneracy, can
change between data applications. A recommendation from
[22] is to simulate from the fitted LSGM to assure that the
simulations appear reasonable given an observed network.
Further work in this area is a topic of ongoing research, but
the structures of clearly defined neighborhoods in a LSGM
can help in diagnosing and treating degeneracy issues re-
lated to edge dependence.

3.3 Additional features

An important issue in formulating LSGMs is how to de-
fine meaningful neighborhoods which capture an appropri-
ate dependence structure. Two additional modeling features
can be used to assist with this choice, a potentially latent
spatial location of nodes (for defining neighborhoods given
relevant spatial information) and a saturated graph (for re-
stricting the total number of graph edges).

Recall that a LSGM, with its conditional specification
and explicit neighborhood definition, incorporates ideas
from the MRF model, a common tool used to analyze geo-
referenced data. If the nodes of the network have an ob-
served spatial location, such as the location of the buses
in the electric power grid [48], the routers of the Internet
[30], or the formation site of tornadoes, LSGMs provide a
natural way to incorporate this spatial information. Net-
works for which nodes do not have spatial locations can also
be modeled with a LSGM. One option is to impose a la-
tent spatial structure, and such types of spatial locations
for nodes could be applied in defining neighborhoods. As
an illustration, three example point processes and the re-
sulting node placements are displayed in Figure 5. In this
LSGM formulation, latent node locations could potentially
be estimated iteratively as a step in a Gibbs sampler. As an-
other example of imposing a spatial location for the nodes,
a latent variable on the nodes might be imposed based on
auxiliary information. That is, nodal covariate information
could potentially be incorporated to define spatial locations
for nodes in some unobserved “social space” (cf. [16] and
[15]). However, to avoid introducing additional complicat-
ing factors, the application of latent point processes will not
be considered in the current work; rather, the tornado exam-
ple presented in Section 4 illustrates how spatial information
may be incorporated to formulate a LSGM.

A saturated graph is a second additional LSGM feature
that can assist in the specification of meaningful and useful
neighborhoods for a network. A saturated graph is defined
as those network edges having a positive probability of be-
ing realized, so that a saturated graph represents the max-
imal network realization under consideration. The network
displayed in the first panel of Figure 3 is an example of a
saturated graph. In some applications, it is reasonable to
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Figure 5. Examples of random node placements through
different point processes.

impose some types of cutoffs in potential edge formations,
to produce a meaningful saturated graph for n nodes that
is significantly smaller than a graph allowing (72’) edges. For
instance, Sensor-Actuator Networks (SAN) have a common
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transmission range which is the maximum distance possible
between two connected nodes [32] and, in biological net-
works, growth factors and diffusible signaling concentration
decrease as a function of distance making “long distance”
edges improbable [44].

For networks composed of nodes with an observed or la-
tent spatial setting, an intuitive approach for defining satu-
rated graphs is to use a method similar to the formation of
a unit disk graph [26]. Given a radius, r, an edge between
two nodes within distance r will be defined to have positive
probability of being realized. To illustrate, three example
saturated graphs with consistent node locations on the unit
square are displayed in Figure 6. Radius size is held constant
at r = 0.1 and r = 0.25, respectively, for all nodes in the
first two panels. Smaller radius size leads to a graph that is
not completely connected with two clusters of nodes discon-
nected from the majority and one isolated node. In contrast,
the resulting saturated graph from the larger radius size is
completely connected with no isolated nodes. Additionally
in this manner, hubs of nodes could be permitted and mod-
eled by varying the radius size between nodes. The saturated
graph displayed in the bottom panel of Figure 6 was created
with a radius of r = 0.1 for all except the three hubs which
had radius r = 0.35.

One advantage to imposing a saturated graph is a de-
crease in the number of random variables to be modeled. As
an illustration consider the three saturated graphs of Fig-
ure 6, which contain 213 nodes. The small radius of » = 0.10
results in 668 possible edges. When the radius is increased to
r = 0.25, the number of possible edges jumps to 3,467; the
combination of radius sizes results in 873 possible edges.
Without a saturated graph, edges could form between all
pairs of nodes which would result in (2;3) = 22,578 random
variables to model. In a small example this may be plausi-
ble. However, the direction of current research is to analyze
networks with a large number of nodes [9] so that modeling
an edge between all pairs of nodes can be computationally
prohibitive and perhaps physically unreasonable. Defining
a saturated graph based on contextual information for the
problem under consideration can be a beneficial modeling
strategy.

As alluded to in Section 2, a further consequence of the
saturated graph is reasonably sized neighborhoods. Con-
sider an incidence definition of dependence, where two edges
which share a node are conditionally dependent in the ex-
ample network of Figure 6. In the absence of a saturated
graph, each of the 22,578 edge random variables would be
dependent upon 2(213 — 2) = 422 neighbors, and thus each
summation in the natural parameter (5) would include 422
terms. For the same incidence dependence structure, the use
of a saturated graph allows the neighborhood size to vary
and depend on the number of “nearby” edges. The average
neighborhood size for edges in the first panel of Figure 6 is
12.5, 68 for the second panel, and for the final panel each
edge is dependent upon 30.67 neighbors, on average. Thus,
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(c) Saturated graph defined with » = 0.1 for all
nodes except the three hubs with r = 0.35.

Figure 6. Examples of saturated graph on same set of nodes
for various radius sizes.

the use of a saturated graph not only decreases computa-
tional time, but also can alleviate overly large neighborhood
sizes, which was identified by [38] as a source of model de-
generacy.



4. APPLICATION

The atmospheric and meteorological processes that lead
to the formation of tornadoes remains an active topic
of research. Thunderstorm supercells, which are thunder-
storms that contain rotating updrafts, are often the focus
of research into tornadogenesis (e.g., [29]) although a non-
negligible number of tornadoes seem to occur in conjunc-
tion with other strong convection events [46]. In addition,
the evolution of supercell mesocyclones and possible pro-
duction of multiple vortices within one cell have led to the
concepts of tornado families and long-track tornadoes that
“skip” (e.g., [1]). Some of the evidence used by atmospheric
scientists to develop and evaluate theories of tornadogenesis
involves proximity of tornadoes in space and time [1] and
viable theories must be able to explain patterns in tornado
occurrence. Our interest here lies in determining whether
network analysis offers one potential way to characterize
such patterns. In particular, we are interested in whether
a random graph model of tornado occurrence can be used
to generate patterns of tornadoes that agree with observed
tornado events in important ways. The data pattern of con-
cern in this application was the proximity in both space
and time of tornadoes spawned by the same storm system
or event.

4.1 The network

The data consist of locations and times of origin for tor-
nadoes that occurred in Arkansas during April, 2011. These
data were obtained from the United States National Oceanic
and Atmospheric Administration (NOAA) National Data
Center Storm Data severe weather report database. Graph
nodes were defined as locations of origin for tornadoes and
edges connect two tornadoes from the same storm system.
In total, 13 storm systems generated 59 tornados during this
time period. The observed graph, presented in Figure 7, re-
sulted from defining two tornadoes to be from the same
storm system if they originated within 80 kilometers and
two hours of each other (80 kilometers is roughly the fastest
that thunderstorms are thought to travel in an hour [25]).

To formulate a LSGM here, we first defined a relatively
large saturated graph for the model (i.e., the largest possible
graph for realization) having possible edges defined as join-
ing tornadoes that originated within 80 kilometers of each
other. This saturated graph contained a total of 292 possi-
ble edges and is shown in Figure 8. Neighborhoods for the
LSGM were specified as groups of potential edges that were
incident in the saturated graph (i.e., all shared a common
tornado node). These neighborhoods contained from 2 to 39
potential edges and the frequency distribution of neighbor-
hood sizes is given in Figure 9. In addition to the LSGM, we
also considered an independence model with potential edges
in the saturated graph conceptualized as occurring through
independent, identically distributed Bernoulli trials.

Note that the realized graph is defined to have edges be-
tween tornados that are within certain distances of each

P
@

Figure 7. Nodes and realized edges of the Arkansas tornado
network.

Figure 8. Nodes of the Arkansas tornado network defined by
tornadoes that originated in Arkansas during April, 2011.
Plotting symbol corresponds to the event in which the
tornado occurred. Edges represent the saturated graph.

other in both space and time. In contrast, the saturated
graph contains potential edges that are defined in terms of
only proximity in space. Both the LSGM and the indepen-
dence model take possible edges to be given by the saturated
graph. The independence model represents the occurrence
of these potential edges as equally likely. The LSGM rep-
resents the occurrence of edges in a neighborhood group as
being related to the occurrence of other edges in the same
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Figure 9. Neighborhood sizes when a saturated graph of
r = 80 kilometers is used in the analysis of the Arkansas
tornado network.

group. These neighborhood groups consist of tornados clus-
tered even more tightly in space than the saturated graph.
If the LSGM can reproduce the spatial and temporal pat-
terns of edges in the realized graph, then partial information
on spatial proximity plus the use of neighborhoods may be
sufficient to represent the pattern of tornados arising from a
series of storm cells over time. This use of neighborhoods is
motivated by the concept of families of tornados, in which
a single storm cell spawns a sequence of tornados over a
limited region in space.

4.2 The fit of the LSGM

Here we consider the LSGM with a single marginal mean,
k, and single dependence parameter, 7, for the Arkansas
tornado network. The dependence parameter is adjusted to
account for unequal neighborhood sizes as in (7). Point es-
timates of the model parameters are obtained through a
maximization of the log pseudo-likelihood (PL) [5], the sum-
mation of the log of the conditional distributions,

log PL = Z{y(si) log[pi(Ni)] + (1 — y(si)) log[1 — pi(Ni)]}

where p;(N;) = E;(Y (s;)|y(N;)) represents the conditional
expectation for edge Y(s;) given neighboring values y(1V;),

_ exp(Az‘(Ni))
PN = T )

Point estimates obtained by maximizing the PL function
are known to be generally consistent and asymptotically
normal for Markov random field models [13], including the
LSGM here. Interval estimates were obtained using para-
metric bootstrap percentile intervals [8, Chapter 5.3] with
10,000 bootstrap renditions of the network data. For each
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Table 1. Point estimates and 90% percentile parametric
bootstrap interval estimates for the LSGM and independence
model fits to the Arkansas tornado network

K n
LSGM 0.27 (0.15, 0.75) 8.60 (4.93, 11.07)
Independence 0.43 (0.38, 0.48) —

simulated network, parameter estimates were obtained by
PL and 90% percentile bootstrap confidence intervals were
calibrated from the 5th and 95th percentiles of the result-
ing empirical distributions of estimates. Point estimates and
90% confidence intervals are shown in the first row of Ta-
ble 1. For comparison purposes, a maximum PL estimate
and parametric bootstrap interval are obtained for the one
parameter independence model fit to the tornado network
with the dependence parameter 7 set to zero. The results of
this fit are also shown in Table 1.

4.3 Model assessment

Two methods of model comparison are used to contrast
the fits of the LSGM and independence models for the
Arkansas tornado network. The first involves a simulation-
based analog of the likelihood-ratio test and the second ap-
proach attempts to quantify the extent to which the LSGM
is able to replicate types of local structure in the observed
tornado network.

Comparison of the LSGM and independence models us-
ing a likelihood-based test does not fall under the umbrella
of regular problems, making identification of an appropri-
ate reference distribution complicated. An alternative is to
construct a reference distribution through the use of simu-
lation. We used the difference in maximized log PL as a test
statistic, specifically,

(8)

To construct a reference distribution, both the LSGM and
independence models were fit to 10,000 networks simulated
from the fitted independence model. The p-value for assess-
ing the plausibility of the LSGM relative to the indepen-
dence model was

D =1log PL(LSGM) — log PL(Indep).

10000

1
I(D; > D)

10000
hf

9)

based on the test statistics Dy, h = 1,...10,000, computed
for each simulation as in (8); above I(A) denotes the indica-
tor function which takes the value 1 if an event A holds and
0 otherwise. The observed tornado data resulted in a test
statistic D = 14.06 and associated p-value of 0.0016. Thus,
we conclude that the LSGM is superior to the independence
model for representing the Arkansas tornado network.
Model assessment may also proceed using an approach
similar to that proposed in [19]. In this approach, one



chooses a feature of the data that is of interest in the prob-
lem, but that is not involved in the manner by which the
data inform the estimation procedure used (e.g., sufficient
statistics). This data feature is quantified, and the value
resulting from the observed data is compared to a distri-
bution of values resulting from data sets simulated from a
fitted model.

Our interest here is whether the LSGM can generate data
that are more similar to the actual data than data gener-
ated by the independence model. The distinguishing feature
of the LSGM used in this application is the use of neighbor-
hoods, which were defined externally to the observed data.
The effect of including neighboring (potential) edges in the
LSGM is to increase or decrease the probabilities of edge
realization from the marginal value, depending on whether
neighboring edges are realized or not. This causes a certain
extent of group behavior because neighborhood membership
is symmetric for pairs. That is, if edge j is in the neigh-
borhood of edge k, then edge k is in the neighborhood of
edge j as well. Thus, realized potential edges tend to have
a large (relative to the marginal) proportion of neighbor-
ing edges that are also realized, and similarly for unrealized
potential edges. In the independence model, neighborhood
information is not used and each potential edge should have
roughly the marginally dictated proportion of realized and
unrealized neighbors.

The saturated graph defines a potential state space and
neighborhoods provide a way to specify relations among po-
tential edges of the saturated graph. The LSGM and in-
dependence models provide two mechanisms by which re-
alized graphs can be generated, the LSGM making use of
neighborhood information and the independence model ig-
noring neighborhood information. Given a realization of one
of these models, we quantified the manner in which the
model reflects local group behavior by computing the pro-
portion of realized neighbors for each realized potential edge
from the saturated graph, and the proportion of unrealized
neighbors for each unrealized potential edge from the satu-
rated graph. For each potential edge of the saturated graph
we then have the proportion of “like” edges in its neigh-
borhood that occur in the particular realization under in-
spection. The average of these proportions over all potential
edges in the saturated graph then provides a measure of the
degree of group behavior in the realization. Conducting this
procedure for 10,000 simulated realizations from the LSGM
results in a reference distribution for that model. Similarly,
conducting the procedure for 10,000 simulated realizations
from the independence model results in a reference distribu-
tion for that model. Conducting the procedure once using
the actual tornado network as the realized graph results in
a test statistic that can be compared to the two reference
distributions in a manner similar to the p-value of expres-
sion (9). In this application the test statistic had a value of
0.561, and associated p-values were 0.0002 for the indepen-
dence model and 0.7481 for the LSGM. We conclude that

0.8
.

pi(N;)
<
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Figure 10. Number of positive neighbors against conditional
expectation for a random variable with 20 neighbors. The
dashed, vertical line represents the marginal expectation of

k=0.27.

the independence model is not able to reflect this aspect of
local behavior in the tornado network, while the LSGM is
able to do so.

The previous model assessment techniques indicate that
the patterns in the observed Arkansas tornado network can
be appropriately captured by the LSGM, which can detect
and accommodate local spatial dependence (i.e., in this case
attributable to temporal behavior in tornadoes). To bet-
ter understand the nature of this local dependence in the
LSGM, it is helpful to consider how the conditional proba-
bility of an edge (tornado siting) changes under the model
as a function of neighboring outcomes. This relationship is
plotted in Figure 10. This plots considers an edge, y(s;),
with 20 neighbors, |N;| = 20, where each of its neighbors
also has 20 neighbors, |N;| =20 Vs; € N;. Under the fitted
LSGM, the marginal expectation for this edge being real-
ized is £ = 0.27, regardless of the value of the neighbors
(dashed vertical line). However, the conditional probability,
pi(N;), that this edge occurs (black points and line), de-
pends heavily on the number of realized neighboring edges.
When all neighboring edges of y(s;) are absent, the condi-
tional probability that y(s;) = 1 is only 0.10. The proba-
bility increases monotonically with the number of realized
neighboring edges to p;(IV;) = 0.89 when all neighboring
edges are realized, i.e., y(s;) =1 Vs; € N,.

5. CONCLUSIONS

The goal of this work is to introduce local structure graph
models (LSGMs), a new class of models for network analysis,
and to demonstrate its use with a simple application. Speci-
fication of a LSGM is achieved through conditional distribu-
tions which are functions of specified edge neighborhoods,

Local structure graph model (LSGM) 365



or sets of conditionally dependent edges. An advantage of
the LSGM approach is an explicit formulation of local de-
pendence in the network, resulting in dependence which is
interpretable and controlled by the modeler.

Behavior of LSGMs is controlled by two sets of pa-
rameters in a binary model for graph edges: parameters
{ki;i = 1,...,m} which represent the global structure for
the network model and control the marginal probabilities of
edge realization in the network, and parameters {n;;;7 # j},
which capture the local model structure and can be inter-
preted as dependence parameters. If dependence parameters
become too large, LSGMs can become degenerate, a com-
mon modeling consideration for models of interactive sys-
tems which encompasses ERGMs. However, because LSGMs
are connected to edge neighborhoods through their specifi-
cation, this aspect may help in formulating and diagnosing
models which avoid model degeneracy through controlled,
local dependence parameters; this is a topic of on-going in-
vestigation. Spatial location of nodes and a saturated graph
are introduced to aid in avoiding model degeneracy. These
features are not required to the specification of a LSGM, as
the form of the conditional distributions and neighborhood
structure is all that is necessary.

An extension to LSGMs is the inclusion of auxiliary in-
formation into either the global or local (dependence) struc-
ture. This can be accomplished through additional modeling
of x, n, or the neighborhoods. Explicit modeling of transi-
tivity, or dependence between triples of random variables,
will also require an additional extension. This is due to the
fact that the constructed negpotential of a LSGM in (6)
includes an assumption of pairwise-only dependence, where
dependent sets of random variables of size greater than two
are not directly modeled. Although this assumption is often
appropriate for the common spatial application of a MRF
model, it may be less suitable for the analysis of some net-
works.
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