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Information criterion of seriously over-fitting
change-point models
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It is shown that a general class of information criteria
is able to rule out seriously over-fitting change-point mod-
els where the number of change points is comparable to
the sample size. Equivalently speaking, it is not necessary
to impose a pre-specified upper bound on the number of
change points when we search for the optimal solution as
in Bardet, Kengne, and Wintenberger (2012). For the time
series with finite but unknown number of change points, the
model with consistently estimated number of change points
tends to be preferred to any other models (even seriously
over-fitting) under such a class of information criteria. The
results hold under a broad class of time series model in-
troduced in Bardet and Wintenberger (2009) that includes
ARMA-GARCH as a special case. Since exhaustive search of
all possible change-point models for the optimal information
criterion value is computationally infeasible, it is common
to impose certain restrictions on the searching range. The
applications of the information criterion to the restricted
search of the optimal model are also discussed.
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1. INTRODUCTION

The change-point detection has received considerable at-
tention in various disciplines including econometrics, meteo-
rology, engineering, and biomedicine. For example, [6] stud-
ied the abrupt climate changes in the historical data. [14]
considered the segmentation of music video as a change-
point detection problem. [16] studied the change-points in
the copy number variation data and identify the location of
abnormality in the chromosome of a tumor cell. [1] applied
the change-point detection method to the volatility of the
financial markets.

By assuming that the number of change points is known,
change-point detection can be done by maximizing the like-
lihood function or other objective functions like sum of
squares. Under this framework, [2] and [3] proposed a dy-
namic programming algorithm for the maximum likelihood
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estimation and developed an asymptotic theory of the max-
imum likelihood estimator. See also [24] for a summary of
this approach. Methods are also developed to test the exis-
tence of change-points, for example, [22].

If the true number of change points is unknown, [4] sug-
gested to select the optimal change-point model based on the
Bayesian information criterion and established the asymp-
totic theory under a broad class of time series models. Let
n be the sample size of the data. Since it is computa-
tionally infeasible to compare all 2n−1 change-point mod-
els using the Bayesian information criterion, it is necessary
to impose certain restrictions on the change-point mod-
els. For example, [4] only select the optimal model from
those with ≤ Kmax change points, where Kmax is a user-
specified fixed upper bound. Some other authors only com-
pare the models obtained from the sequential algorithms,
see e.g., the sequential cusum method of [17], [19], and [7],
the pruned exact linear time (PELT) of [18], the simulta-
neous multiscale change-point estimator (SMUCE) of [13],
and the pruned dynamic programming segmentation algo-
rithm (SEG) of [25]. Recently, [16] considered the penalized
likelihood method of change-point detection based on the
LASSO penalty of [27]. This method has also been stud-
ied in [8], [9], [15], and [26]. It takes a tuning parameter
λ as input and generates a piecewise constant function as
output. The Bayesian information criterion can further be
used to compare the piecewise constant functions generated
from different values of λ. It is noteworthy that when λ is
close to zero, the number of change points in the gener-
ated piecewise constant function can be comparable to the
sample size n. The theory developed in [4] cannot handle
the “seriously” over-fitting model with diverging number of
change points directly and thus cannot guarantee that the
Bayesian information criterion prefers the consistent model
(in terms of correct identification of the number of change
points) to the over-fitting model generated from small λ. All
the above-mentioned methods actually generate a solution
set (change-point models) from which the optimal solution
is further chosen by certain information criteria, especially
the Bayesian information criterion and its variants.

Information criterion can serve as a general method
of comparing the models obtained from any solution-set-
generating methods only if the theory of the “seriously”
over-fitting model with diverging number of change points
is available. The objective of this paper is to establish the
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consistency theory of the number of change points without
placing any fixed upper bound on the number of change
points in the solution. The theory developed in this paper is
applicable to all situations provided that the solution set is
shown to be including certain consistent models with prob-
ability goes to one. The ideas are elaborated in section 4 in
this paper.

This paper is organized as follows. In section 2, the
change-point model is specified and a class of information
criteria encompassing Bayesian information criterion and
Akaike information criterion as special cases are described.
The new consistency theory of the number of change points
is established in section 3. The implications of the new the-
ory on the change-point detection are discussed in section 4.
Simulation studies are given in section 5. The finite-sample
performance of a variety of criteria including Bayesian infor-
mation criterion and Akaike information criterion are com-
pared. The application of information criterion is illustrated
in section 6 via the US monthly purchasing manager index
data.

2. CHANGE-POINT MODEL

Consider the model of [23], which is closely related to
those used in [4] and [5]. Let X1, X2, . . . , Xn be the observ-
able time series generated from the following multidimen-
sional causal process,

Xt = Mtεt + ft

Mt = M(θ0M,t, Xt−1, Xt−2, . . .)

ft = F(θ0f,t, Xt−1, Xt−2, . . .) .

Here, θ0t = (θ0M,t, θ
0
f,t), t = 1, 2, . . . , n is p-dimensional

vector-valued and is piecewise constant with k change
points. Suppose that k is unknown but finite. Following [4]
and [20], assume that for some 0 = q(0) < q(1) < q(2) < . . . <
q(k) < q(k+1) = 1, θ0t = θ0

[nq(�)]
for [nq(�−1)] ≤ t < [nq(�)],

� = 1, . . . , k + 1. Here, [x] is the greatest integer less than
or equal to x. It is convenient to set [nq(0)] = 1 and
[nq(k+1)] = n + 1. The random variables εt are indepen-
dent and identically-distributed with mean zero and vari-
ance one. M and F are two given functions and are used
to describe the evolution of the volatility and mean respec-
tively. For convenience, assume that the stochastic process
Xt, t = [nq(1)]−1, [nq(1)]−2, . . . , 2, 1, 0,−1,−2, . . . is strictly
stationary.

For any sequence of p-dimensional vectors θ = {θt =
(θM,t, θf,t) : t = 1, 2, . . . , n}, define the quasi log-likelihood
function

(1)

L(θ) =

n∑
t=1

Ct(θt)

= −1

2

n∑
t=1

{
log |Ht(θM,t)|+ tr(H−1

t (θM,t)St(θf,t))
}
.

Here, Ht(θM,t) = Mt(θM,t)M
T
t (θM,t), St(θf,t) = (Xt −

ft(θf,t))(Xt − ft(θf,t))
T and (Mt, ft)(θ) are obtained recur-

sively by the relationships,

Mt(θM,t) = M(θM,t, Xt−1, Xt−2, . . . , X1, 0, 0, . . .) ,

ft(θf,t) = F(θf,t, Xt−1, Xt−2, . . . , X1, 0, 0, . . .) ,

for t = 1, 2, . . . , n. In the above recursive formulas, the ob-
servations before t = 1 are truncated and replaced by zero.
Note that certain assumptions on the positive definiteness
of Ht(θM,t) are required. Roughly speaking, Xt cannot be
a deterministic sequence. Moreover, there should be no de-
terministic relationship between the components in Xt. The
required assumptions are stated in the next section.

3. INFORMATION CRITERION

A class of information criterion is defined as follows.
Let Θ be a p-dimensional compact space. For any k′ =
1, 2, . . . , n and 1 = t(0) < t(1) < t(2) < . . . < t(k

′) <
t(k

′+1) = n + 1, define θ̂(k′, t(1), t(2), . . . , t(k
′)) as the maxi-

mum point of L(θ) within Θn subjected to the constraints
that θt = θt(�−1) for t(�−1) ≤ t < t(�), � = 1, . . . , k′ + 1.
Since Θ is compact, the maximum of L(θ) must exists

and L(θ̂(k′, t(1), t(2), . . . , t(k
′))) is well-defined. However, it

should be noted that when t(�) − t(�−1) is less than the
number of unknown parameters, the corresponding θ is not
unique. In such cases, choose any one of such θ values. The
proofs of the main results in the next section do not de-
pend on such a choice. Let Dn be a monotonic increasing
deterministic sequence. Define the information criterion as

IC(k′, t(1), t(2), . . . , t(k
′))

= −2L(θ̂(k′, t(1), t(2), . . . , t(k
′))) +Dnk

′ψ(n) .

Below are some examples of the function ψ(n),

• Akaike information criterion (AIC): ψ(n) = 2p,

• Small-sample-corrected AIC (AICc): 2p
(
1 + p+1

n−p−1

)
,

• Bayesian information criterion (BIC): ψ(n) = p log(n),
• Minimum description length (MDL): ψ(n) = log(k′) +

(k′ + 1)(log(n) + log(p)) + p+2
2

∑k′+1
j=1 log(nj),

where nj is the length of the j-th segment. Roughly speak-
ing, all these four information criteria discourage over-fitting
(k′ > k) by imposing a large penalty term Dnk

′ψ(n) on
large k′. Traditionally, Dn = 1 is chosen in the regression
analysis literature particularly when the number of covari-
ates is finite. Recently, even greater Dn is chosen for the
high-dimensional problems, see e.g., [28] and [12]. The choice
of Dn for the change-point problems is discussed in Theo-
rem 3.1.

The objective of this section is to show that the optimal
model with smallest IC(k′, t(1), t(2), . . . , t(k

′)) has k′ = k. [4]
considered the optimal model among those with k′ ≤ Kmax,
a pre-specified fixed upper bound. In this paper, we further
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prove that such restricted optimal model of [4] indeed has
smaller IC value than any other models even with k′ >
Kmax.

3.1 Notation and assumptions

First, notation to be used in the main results is intro-
duced. Similar notation is also used in [4], [5], and [23]. For
� = 0, 1, . . . , k, t = 0,±1,±2, . . ., let � be the regime at

which t is located, and ε
(�)
t be independent and identically

distributed such that for [nq(�)] ≤ t < [nq(�+1)], ε
(�)
t = εt.

Define X
(�)
t , t = 0,±1,±2, . . . via

X
(�)
t = M

(�)
t ε

(�)
t + f

(�)
t ,

M
(�)
t = M(θ0M,[nq(�−1)], X

(�)
t−1, X

(�)
t−2, . . .) ,

f
(�)
t = F(θ0f,[nq(�−1)], X

(�)
t−1, X

(�)
t−2, . . .) .

Let (X̃, M̃ , f̃)t = (X,M, f)
(0)
t for t < [nq(1)] and

(X̃, M̃ , f̃)t = (X,M, f)
(�)
t for [nq(�)] ≤ t < [nq(�+1)]. For

[nq(�)] ≤ t < [nq(�+1)], define

M̃M,t(θt) = M(θM,t, X
(�)
t−1, X

(�)
t−2, . . .) ,

f̃f,t(θt) = F(θF,t;X
(�)
t−1, X

(�)
t−2, . . .) .

C̃t(θt) = −1

2

{
log |H̃t(θM,t)|+ tr[H̃−1

t (θM,t)S̃t(θf,t)]
}

.

Here, H̃t(θM,t) = M̃t(θM,t)M̃
T
t (θM,t) and S̃t(θf,t) = (X̃t −

f̃t(θf,t))(X̃t − f̃t(θf,t))
T .

The following assumptions are used.

(A1) For any ε > 0,

sup
θ∈Θn

max
1≤a<b≤n

(b− a)−1/2

∣∣∣∣∣
b∑

t=a

{
∂mC̃t(θt)− E[∂mC̃t(θt)]

}∣∣∣∣∣
is op(n

ε). Here, ∂m is anym-th order partial derivative w.r.t.
components of θt, where m ≤ 3.

Following the arguments of Lemma 3.1 in [21], condition
(A1) holds under the extra assumption that for all s > 0,

E

∣∣∣∣∣
b∑

t=a

{
∂mC̃t(θt)− E[∂mC̃t(θt)]

}∣∣∣∣∣
2s

≤ Ks(b− a)s

for some Ks > 0. This can be satisfied easily by the time
series fulfilling certain mixing conditions (i.e. weakly depen-
dent, roughly speaking), for example, stationary time series
with geometrically decaying covariance structure. It is pos-
sible to establish condition (A1) rigorously under some as-
sumptions. However, this involves proofs that would be too
lengthy for this paper aiming at the information criterion
theory. In this paper, we assume condition (A1) without
proof.

(A2) The smallest eigenvalue of the Hessian matrix
E[∇2C̃t(θt)] is bounded below by some positive constant
not depending on θ and t. This condition indeed implies the
identifiability of the model.

Conditions (A3) and (A4) below are similar to those adopted
by [4], [5], and [23]. They are satisfied by many commonly
used models including the GARCH model and ARMA
model with finite autoregressive order and moving average
order.

(A3) The following Lipschitz conditions are satisfied. There

exists a sequence of non-negative real numbers (α, β, γ)
(m)
j ,

j = 1, 2, . . . such that for all m, index set with cardinality
≤ 3,

sup
ϑ∈Θ

∥∥∥∂(m)
θM

M(ϑM , x1, x2, . . .)− ∂
(m)
θM

M(ϑM , y1, y2, . . .)
∥∥∥

≤
∞∑
j=1

α
(m)
j ‖xj − yj‖

sup
ϑ∈Θ

∥∥∥∂(m)
θf

F(ϑf , x1, x2, . . .)− ∂
(m)
θf

F(ϑf , y1, y2, . . .)
∥∥∥

≤
∞∑
j=1

β
(m)
j ‖xj − yj‖

sup
ϑ∈Θ

∥∥∥∂(m)
θM

H(ϑM , x1, x2, . . .)− ∂
(m)
θM

H(ϑM , y1, y2, . . .)
∥∥∥

≤
∞∑
j=1

γ
(m)
j ‖xj − yj‖ .

Here, H = MMT and ϑ = (ϑM , ϑf ). The sequence

(α, β, γ)
(m)
j is bounded above by some O(j−κ) quantity with

κ > 2. In addition,

∞∑
j=1

α
(0)
j + [Eερ0]

1/ρ
∞∑
j=1

β
(0)
j < 1

for some ρ > 4.

(A4) For ϑ ∈ Θ, the smallest eigenvalue of
M(ϑM , x1, x2, . . .) is bounded below by some positive
constant.

More technical assumptions are used in [4], [5], and [23]. To
avoid repeating all these assumptions here, (A5) below is
used instead for technical convenience. Indeed, following the
lines of [4], [5], and [23], (A5) can be established rigorously
under mild conditions. Therefore, condition (A5) is weak
enough.

(A5) For any 0 < ν < ρ, we have

E‖X̃t‖ν < ∞ and E‖Xt‖ν < ∞ .

E‖M̃t‖ν < ∞ and E‖Mt‖ν < ∞
E sup

Θ
‖∂mM̃t(θM,t)‖ν < ∞ and E sup

Θ
‖∂mMt(θM,t)‖ν < ∞

E sup
Θ

‖∂mf̃t(θf,t)‖ν < ∞ and E sup
Θ

‖∂mft(θf,t)‖ν < ∞
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Figure 1. Merging of constant regimes.

3.2 Main theorem

The following theorem suggests that information crite-
rion with appropriately chosen Dn and ψ(n) can select the
change-point model consistently in terms of the number of
change points. This means that the consistent model is pre-
ferred to any other change-point models including those with
diverging number of change points.

Theorem 3.1. Choose Dn = n	 and ψ(n) = O(n	∗
) for

some � > 0 and �∗ > 0 so that � +�∗ < 1. Under condi-
tions (A1)–(A5), IC(k′, t(1), t(2), . . . , t(k

′)) is minimized at

k′ = k and (t(1), t(2), . . . , t(k
′)) = (t

(1)
† , t

(2)
† , . . . , t

(k)
† ), where

(t
(1)
† , t

(2)
† , . . . , t

(k)
† )

= argmaxu(1),u(2),...,u(k) L(θ̂(k, u(1), u(2), . . . , u(k)))

with probability going to one as n → ∞.

Proof. For arbitrarily given k′ and 1 = t(0) < t(1) < t(2) <
. . . < t(k

′) < t(k
′+1) = n+1, the �-th regime t(�−1) ≤ t < t(�)

is called a constant regime if it contains no true change
point.

Consider the change in the IC after merging adjacent
constant regimes. The idea is illustrated in Figure 1. In this
example, there are k = 3 true change points. In Model 1,
there are five regimes. Regime 1 and 4 contain true change
points. Regime 2 and 3 are consecutive constant regimes.
Model 2 is essentially the same as Model 1 except that
regime 2 and 3 are merged. After merging consecutive con-
stant regimes, there is at most one constant regime between
two consecutive non-constant regimes. Moreover, the num-
ber of non-constant regimes is at most k. Therefore, the
merged model (Model 2) contains at most 2k change points,
or equivalently 2k + 1 regimes. If there are 3 true change
points, the number of change points in the merged model

must be bounded by 6, see Model 3 (before merging) and
Model 4 (after merging). Let

θ̂(�) = argmaxϑ∈Θ

t(�)−1∑
t=t(�−1)

Ct(ϑ) ,

θ̃(�) = argmaxϑ∈Θ

t(�)−1∑
t=t(�−1)

C̃t(ϑ) ,

θ̂(�+1) = argmaxϑ∈Θ

t(�+1)−1∑
t=t(�)

Ct(ϑ) ,

θ̃(�+1) = argmaxϑ∈Θ

t(�+1)−1∑
t=t(�)

C̃t(ϑ) ,

θ̂(�,�+1) = argmaxϑ∈Θ

t(�+1)−1∑
t=t(�−1)

Ct(ϑ) ,

θ̃(�,�+1) = argmaxϑ∈Θ

t(�+1)−1∑
t=t(�−1)

C̃t(ϑ) .

It suffices to show that for any two adjacent constant regimes
� and �+ 1,

Δ(t(�−1), t(�), t(�+1))

=

t(�)−1∑
t=t(�−1)

Ct(θ̂
(�)) +

t(�+1)−1∑
t=t(�)

Ct(θ̂
(�+1))

−
t(�+1)−1∑
t=t(�−1)

Ct(θ̂
(�,�+1))

is bounded by an Op(n
δ) quantity for any 0 < δ < � +�∗

and such a bound is uniform of the starting points and end
points of the regimes, i.e. (t(�−1), t(�), t(�+1)). If this is true,
the IC of any model must be greater than that of its merged
model. Therefore, any models that can further be merged
must not be optimal. Since the number of change points in
the merged model is bounded by Kmax = 2k, which is fixed
(not to be confused with k′), the existing results of [4] is
then applicable. Though such a value of Kmax is unknown,
it should be noted that the results of [4] only requires that
Kmax is fixed.

Let

Δ̃(t(�−1), t(�), t(�+1))

=
t(�)−1∑

t=t(�−1)

C̃t(θ̃
(�)) +

t(�+1)−1∑
t=t(�)

C̃t(θ̃
(�+1))

−
t(�+1)−1∑
t=t(�−1)

C̃t(θ̃
(�,�+1)) .

Using the fact that for any functions f(θ) and g(θ), the
supremum norm ‖f‖∞ = supθ |f(θ)| fulfills −‖f − g‖∞ ≤
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‖f‖∞ − ‖g‖∞ ≤ ‖f − g‖∞,

|Δ(t(�−1), t(�), t(�+1))− Δ̃(t(�−1), t(�), t(�+1))|(2)

≤ 2 sup
ϑ∈Θ

t(�)−1∑
t=t(�−1)

|Ct(ϑ)− C̃t(ϑ)|

+2 sup
ϑ∈Θ

t(�+1)−1∑
t=t(�)

|Ct(ϑ)− C̃t(ϑ)|

≤ 2 sup
ϑ∈Θ

n∑
t=1

|Ct(ϑ)− C̃t(ϑ)|

≤ sup
θ∈Θn

n∑
t=1

|Ct(θt)− C̃t(θt)| .

The items in (2) are handled in the following.

Bound of Δ̃(t(�−1), t(�), t(�+1)): Arbitrarily choose 0 < ε <
δ/2. Conditions (A1) and (A2) guarantees that standard
arguments based on the Taylor expansion can be used to
establish

sup
t(�)−t(�−1)≥nδ

nε(t(�) − t(�−1))1/2|θ̃(�) − θ0t | = op(1)

and

sup
t(�)−t(�−1)≥nδ

sup
ϑ∈Θ

(t(�)− t(�−1))−1

∣∣∣∣∣∣
t(�)−1∑

t=t(�−1)

∇2C̃t(ϑ)

∣∣∣∣∣∣ = Op(1) .

Moreover, condition (A2) and the compactness of the pa-
rameter space Θ give |θ̃(�) − θ0t | = Op(1) and

sup
t(�)−t(�−1)<nδ

sup
ϑ∈Θ

t(�)−1∑
t=t(�−1)

∇2C̃t(ϑ) = Op(n
δ) .

Combining these results, the Taylor expansion at θt around

θ̃(�) suggests that
∑t(�)−1

t=t(�−1) [C̃t(θ̃
(�)) − C̃t(θ

0
t )] ≤ Op(n

δ).

Similarly, we have
∑t(�+1)−1

t=t(�) [C̃t(θ̃
(�+1)) − C̃t(θ

0
t )] ≤ Op(n

δ)

and
∑t(�+1)−1

t=t(�−1) [C̃t(θ̃
(�,�+1))−C̃t(θ

0
t )] ≤ Op(n

δ). Since regimes
� and �+1 are adjacent constant regimes, canceling out the
terms C̃t(θ

0
t ) yields Δ̃

(�,�+1) = Op(n
δ).

Bound of supθ∈Θn

∑n
t=1 |Ct(θt) − C̃t(θt)|: In condition

(A3), we assume κ > 2 which is stronger than that used
in [23]. Under such stronger condition, together with (A2),
(A4), and (A5), following the lines in the proof of Lemma
C.6 in [23], we have for all 0 < ν < ρ,

n∑
t=1

{
E‖Xt − X̃t‖ν

}1/ν

=O(1) ,(3)

n∑
t=1

{
E sup

θ∈Θn

‖Mt(θM,t)− M̃t(θM,t)‖ν
}1/ν

=O(1) ,(4)

n∑
t=1

{
E sup

θ∈Θn

‖ft(θf,t)− f̃t(θf,t)‖ν
}1/ν

=O(1) .(5)

Then, the required bound can be established as follows,

2E sup
θ∈Θn

n∑
t=1

|Ct(θt)− C̃t(θt)|

≤ E sup
θ∈Θn

n∑
t=1

{
log |Ht(θM,t)H̃

−1(θM,t)|

+tr(H−1
t (θM,t)St(θf,t)− H̃−1

t (θM,t)S̃t(θf,t))
}

≤ E sup
θ∈Θn

n∑
t=1

{
|H̃t(θM,t)|−1 · |Ht(θM,t)− H̃t(θM,t)|

}

+E sup
θ∈Θn

n∑
t=1

{
tr[H−1

t (θM,t)(Ht(θM,t)− H̃t(θM,t))

·H̃−1
t (θM,t)S̃t(θf,t)]

}

+E sup
θ∈Θn

n∑
t=1

{
tr[H−1

t (θM,t)(St(θf,t)− S̃t(θf,t))]
}

.

Using

Ht(θM,t)− H̃t(θM,t)

= Mt(θM,t)(Mt(θM,t)− M̃t(θM,t))
T

+(Mt(θM,t)− M̃t(θM,t))M̃
T
t (θM,t)

and

St(θf,t)− S̃t(θf,t)

= (Xt − ft(θf,t))(Xt − X̃t − ft(θf,t) + f̃t(θf,t))
T

+(Xt − X̃t − ft(θf,t) + f̃t(θf,t))(X̃t − f̃t(θf,t)) ,

Holder’s inequality, (3)–(5), condition (A4), and condition
(A5), it can be shown that

E sup
θ∈Θn

n∑
t=1

|Ct(θt)− C̃t(θt)| = O(1) .

From the inequality (2) and the bounds obtained above, we
have Δ(t(�−1), t(�), t(�+1)) = Op(n

δ) for any 0 < δ < �. This
completes the proof.

4. IMPLICATIONS OF THE NEW
CONSISTENCY RESULTS

Even though in practice it is computational infea-
sible to compare each of 2n−1 possible configurations
(k, t(1), t(2), . . . , t(k)), Theorem 3.1 guarantees that the in-
formation criterion with appropriately chosen penalty terms
Dn and ψ(n) can be used to select the consistent change-
point model from the solution set obtained by any solution-
set-generating methods under certain conditions. Suppose

Information criterion of change-point models 347



that there is a solution-set-generating method that takes a
parameter λ as input and generates a piecewise constant

function with configuration (k′λ, t
(1)
λ , t

(2)
λ , . . . , t

(k′
λ)

λ ) as out-
put. If we are able to show that the consistent model with
k′ = k and

(t(1), t(2), . . . , t(k
′))

= argmaxu(1),u(2),...,u(k) L(θ̂(k, u(1), u(2), . . . , u(k)))

is included in the solution set with probability goes to one,

λ∗ = argminλ IC(k′λ, t
(1)
λ , t

(2)
λ , . . . , t

(k′
λ)

λ )

must correspond to this consistent model since it is optimal
in terms of the IC value according to Theorem 3.1. It is out of
the scope of this paper to develop a solution-set-generating
method fulfilling such requirement, but it is an interesting
future research topic.

The conditions for establishing (i) and (ii) below have
been widely discussed in the literature, e.g., [21], [4], [8],
and [9];

(i) at least a model with k′ = k is included in the solution
set and

(ii) Δ = max1≤j≤k min1≤i≤k′ |n−1t(i) − q(j)| →p 0.

However, it is noteworthy that (i) and (ii) do not necessarily
imply that λ∗ gives the consistent model. It is difficult to rule
out the possibility that some models with k′ �= k has smaller
IC value than some consistent but not optimal models.

To illustrate the ideas, consider the LASSO penalized
likelihood method of [16]. In the cases where the time se-
ries is a sequence of independent Normal random variables
with constant variance and time-varying mean, it takes λ as
input and minimizes

n∑
t=1

(Xt − θt)
2 + λ

n−1∑
t=1

|θt − θt+1|

over θ ∈ Θn for some compact space Θ ⊂ R. Let An be
the set of change points in the solution. [8] and [9] shown
that if λ is chosen appropriately, Bayesian information cri-
terion can select the consistent model with probability goes
to one from the models with all change points belong to An.
However, in the finite-sample cases, it is difficult to tell if a
particular value of λ falls within the range of consistency.
Therefore, it is necessary to test many different possible val-
ues of λ, including those much smaller than the lower bound
of the range. The Bayesian information criterion theory es-
tablished in [8] and [9] cannot handle small λ below such
lower bound. Theorem 3.1 in this paper fills some missing
gaps by showing that the all over-fitting models are not opti-
mal. However, it should be noted that though there exists λ
corresponding to a consistent model, such consistent model
is not necessarily the model with optimal IC value. It is still
difficult to rule out the possibility that some inconsistent
model have even better IC value.

Figure 2. Time series plot, estimated change-points, BIC and
the number of estimated change-points along the solution
path for a realization of (6). The estimated change-point is
in vertical line. The shaded area is the range of λs that

achieves the minimum BIC.

5. SIMULATION STUDIES

Following the discussion in Section 4, in this section we
conduct simulation experiments to illustrate the consistency
of change-point estimation using different information crite-
ria along the solution path of LASSO-type penalized like-
lihood methods. In particular, it is demonstrated that the
over-fitting model generated from small penalization param-
eter λ does not affect the determination of the optimal so-
lution.

5.1 Single change-point model

We consider the piecewise stationary autoregressive
model

(6)

Xt =

{
1 + 0.3Xt−1 + 0.1Xt−2 + εt , if 1 ≤ t ≤ [n/2] ,
1− 0.3Xt−1 + 0.2Xt−2 + εt , if [n/2] < t ≤ n ,

where εt ∼ N(0, 1). Using the notations in Section 3, we
may express θt = (φ0,t, φ1,t, φ2,t), where φ0,t, φ1,t, φ2,t are
the coefficient of the autoregressive model. Also, the number
of change-points is k = 1, q(1) = 0.5, M0

t = M1
t = 1 for

all t = 1, . . . , n, θ00 = (1, 0.3, 0.1, 1), θ10 = (1,−0.3, 0.2, 1),
f0
t = 1 + 0.3Xt−1 + 0.1Xt−2 for 1 ≤ t < [nq(1)] and f1

t =
1−0.3Xt−1+0.2Xt−2 for [nq(1)] ≤ t ≤ n, H̃t(θM,t) = 1, and
St(θf,t) = (Xt − φ0,t − φ1,tXt−1 − φ2,tXt−2)

2. A realization
of (6) is given in Figure 2.

The group LASSO solution path are the parameters that
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Table 1. Estimation results for Model 6. Proportion of correct estimated number of breakpoints (Corr. # ), the averages (ave)
and the empirical standard deviations (e.s.d.) of the change-point estimates. True change-point is at t = n/2

�=0.05 �=0.1 �=0.2
IC n Corr. # ave e.s.d. Corr. # ave e.s.d. Corr. # ave e.s.d.

200 0.860 93.80 9.164 0.965 93.58 9.479 0.930 93.48 8.404
AIC 400 0.890 195.12 8.404 0.965 194.05 9.500 1.000 194.12 9.403

800 0.925 394.24 8.054 0.995 393.79 8.980 1.000 392.04 10.46

200 0.920 93.99 9.427 0.970 93.39 9.086 0.905 93.49 8.365
AICc 400 0.910 195.11 8.363 0.970 194.08 9.483 1.000 194.05 9.395

800 0.935 394.07 8.600 0.995 393.56 8.270 1.000 392.04 10.46

200 0.845 93.22 8.467 0.725 93.33 8.426 0.150 94.30 7.159
BIC 400 0.995 194.05 9.412 0.940 193.77 9.400 0.555 194.68 8.323

800 1.000 392.04 10.46 1.000 392.04 10.46 0.850 391.25 10.82

200 0.825 92.98 8.99 0.695 93.41 8.321 0.150 94.30 7.159
MDL 400 0.980 193.85 9.32 0.910 193.95 9.088 0.460 194.86 8.243

800 1.000 392.04 10.46 0.995 391.99 10.47 0.825 391.16 10.95

minimize

−2L(θ̂(k′, t(1), t(2), . . . , t(k
′))) + λ

n−1∑
t=1

‖θt − θt+1‖2 ,

for different values of λ, where ‖ · ‖2 is the Euclidean norm
and L(θ) is given in (1). Note that group LASSO has to
be used instead of the ordinary LASSO since each segment
contains involves three parameters. The group LASSO esti-
mation is implemented by the R-package gglasso. Figure 2
plots a typical solution path for a group LASSO estimation
for a realization of (6) with n = 200. Also, the log of BIC for
each value of λ is depicted. It can be seen that BIC success-
fully pick up the change-point around n = 100. Also, when
λ is very small, the number of estimated change-points and
BIC are both very large, which is consistent to our finding
that the BIC is able to handle “seriously” over-fitting model.

Next we conduct large scale simulations to study the bi-
ases and variance of the change-point estimators. We com-
pare several information criteria of the form

IC(k′, t(1), t(2), . . . , t(k
′))

= −2L(θ̂(k′, t(1), t(2), . . . , t(k
′))) +Dnk

′ψ(n) ,

along the group LASSO solution path. In particular, we
compare

• Akaike information criterion (AIC): ψ(n) = 2p,

• Small-sample-corrected AIC (AICc): 2p
(
1 + p+1

n−p−1

)
,

• Bayesian information criterion (BIC): ψ(n) = p log(n),
• Minimum description length (MDL): ψ(n) = log(k′) +

(k′ + 1)(log(n) + log(p)) + p+2
2

∑k′+1
j=1 log(nj),

where nj is the length of the j-th segment.
Table 1 reports the change-point estimation results for

Dn = n	, � ∈ {0.05, 0.1, 0.2}, n ∈ {200, 400, 800} with
200 replications. First we interpret the performance of the

BIC criterion. Table 1 suggests that the performance using
the penalty � = 0.05 is the best in terms of detecting the
correct number of change-points. Also, the performance of
change-point estimation improves as sample size increases.
Moreover, when the sample size is large, the detection per-
formance is not very sensitive to the choice of �. On the
other hand, the penalty � = 0.2 appears to be too heavy
especially for small sample size n = 200; the percentage of
correct estimated number of change-point is only 15%.

Comparing the performance of different criteria in Ta-
ble 1, we see that AIC and AICc perform similarly, and BIC
and MDL perform similarly. This is because both AIC and
AICc have penalty ψ(n) of constant order, while both BIC
and MDL have penalty ψ(n) of order log(n). As AIC and
AICc impose a smaller penalty, they perform better than
BIC and MDL for small sample sizes. However, BIC and
MDL tends to perform better as the sample size grows. In
summary, using AIC or AICc with � = 0.2, and BIC or
MDL with � = 0.05 give good performance in most cases.

5.2 Single change-point model with changes
near the end-points

We consider the piecewise stationary autoregressive
model

Xt =

{
0.75Xt−1 + εt , if 1 ≤ t ≤ [ηn] ,
−0.5Xt−1 + εt , if [ηn] < t ≤ n ,

(7)

where εt ∼ N(0, 1). The specification of k, q, M0
t , M

1
t , θ

0
0,

θ10, f
0
t , f

1
t , H̃t(θM,t) = 1, and Sf,t(θt) are similar to that in

Section 5.1. We consider the cases η = 0.1 and 0.9, that is,
the change-point is close to the boundary of the data set.
Model 7 with n = 1024 and [ηn] = 50 was studied in [10].
The realizations of (7) with η = 0.1 is given in Figure 3. We
consider the performance of change-point estimation using
the four criteria along the group LASSO solution path. See
Figure 3 for a typical solution path of a realization of (7)
with n = 200 and η = 0.1.
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Table 2. Estimation results for Model 7. Proportion of correct estimated number of breakpoints (Corr. # ), the averages (ave)
and the empirical standard deviations (e.s.d.) of the change-point estimates. True change-point is at t = [ηn]

�=0.05 �=0.1 �=0.2
IC n Corr. # ave e.s.d. Corr. # ave e.s.d. Corr. # ave e.s.d.

η=0.1
200 0.655 24.85 15.44 0.800 25.83 15.95 0.865 25.34 12.58

AIC 400 0.680 42.35 6.45 0.900 43.41 8.26 1.00 46.88 15.15
800 0.755 81.89 4.61 0.930 83.22 6.42 1.00 84.57 10.50
200 0.715 26.45 18.34 0.845 25.77 15.59 0.865 25.57 12.60

AICc 400 0.735 42.27 6.47 0.905 43.60 8.47 1.000 46.97 15.15
800 0.775 82.03 4.69 0.935 82.20 6.40 1.000 84.57 10.50
200 0.835 24.98 10.08 0.795 26.48 13.69 0.620 23.85 8.11

BIC 400 1.000 47.09 15.19 0.965 47.35 15.84 0.815 46.26 12.19
800 1.000 84.84 11.05 0.995 85.77 12.15 0.970 86.82 13.95
200 0.795 26.48 13.69 0.710 26.18 13.65 0.505 23.15 8.30

MDL 400 0.965 47.36 15.84 0.935 47.54 16.16 0.690 45.52 12.13
800 0.995 85.67 12.13 0.990 86.38 13.10 0.910 86.42 12.81

η=0.9
200 0.370 172.66 16.86 0.680 168.36 24.60 0.815 166.06 22.70

AIC 400 0.460 354.40 8.50 0.795 352.81 22.53 0.960 350.22 20.42
800 0.470 715.69 6.02 0.800 715.14 7.59 1.000 712.255 11.18
200 0.485 171.57 20.44 0.745 168.36 23.79 0.810 165.31 23.10

AICc 400 0.560 351.88 26.33 0.810 352.48 22.83 0.970 349.99 20.43
800 0.515 715.86 5.85 0.820 715.06 7.42 1.000 711.13 15.25
200 0.780 165.46 22.65 0.645 167.24 17.41 0.335 169.36 14.25

BIC 400 0.945 345.33 29.85 0.885 344.86 25.89 0.590 346.25 19.48
800 0.990 709.55 16.54 0.980 707.10 18.61 0.880 702.63 22.94
200 0.640 167.06 17.41 0.500 168.77 14.88 0.195 171.80 9.99

MDL 400 0.895 344.75 25.79 0.765 344.99 22.57 0.440 348.42 14.78
800 0.985 707.49 18.38 0.965 704.65 21.00 0.740 701.68 24.12

Figure 3. Time series plot, estimated change-points, and the
number of estimated change-points along the solution path

for a realization of (7) with η = 0.1. The estimated
change-point is in vertical line. The shaded area is the range

of λs that achieves the minimum BIC.

Table 2 reports the change-point estimation results for
Dn = n	, � ∈ {0.05, 0.1, 0.2}, n ∈ {200, 400, 800} with 200
replications. Given that η = 0.1 or 0.9, the shorter segment
length is only 20 when n = 200. Surprisingly, the perfor-
mance of the change-point estimation is in general satisfac-
tory even in this challenging set up. Similar to the results in
the previous subsection, the performance of BIC using the

penalty� = 0.05 is the best in terms of detecting the correct
number of change-points. Also, the performance of change-
point estimation improves and becomes less sensitive to the
choice of � as sample size increases. On the other hand,
AIC and AICc perform poorly for � = 0.05 but perform
quite well for � = 0.2. Nevertheless, BIC and MDL tend to
give a more stable results across different values of � when
sample size is large.

5.3 Multiple change-point model

In this subsection we consider the multiple change-point
model
(8)

Xt =

⎧⎪⎪⎨
⎪⎪⎩

1 + 0.4Xt−1 + 0.1Xt−2 + εt , if 1 ≤ t ≤ [0.2n],
1− 0.5Xt−1 + 0.2Xt−2εt , if [0.2n] < t ≤ [0.5n],
2 + 0.4Xt−1 − 0.1Xt−2 + εt , if [0.5n] < t ≤ [0.8n],
0.5− 0.4Xt−1 + 0.2Xt−2 + εt , if [0.8n] < t ≤ n,

where εt ∼ N(0, 1). The specification of k, q, M j
t , θ

j
0, f

j
t for

j = 1, 2, 3, 4, H̃t(θM,t) = 1, and St(θf,t) are similar to that
in Section 5.1. A realization of (8) is given in Figure 4. We
consider the performance of change-point estimation using
the four criteria along the group LASSO solution path. See
Figure 4 for a typical solution path of a realization of (8)
with n = 400.
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Table 3. Estimation results for Model 8. Proportion of correct estimated number of breakpoints (Corr. # ), the averages (ave)
and the empirical standard deviations (e.s.d.) of the change-point estimates. True change-point is at t = [ηn]

�=0.05 �=0.1 �=0.2
IC n Corr. # ave e.s.d. Corr. # ave e.s.d. Corr. # ave e.s.d.

First change-point t(1) = [0.2n]

400 0.795 75.58 5.79 0.905 74.82 6.10 0.93 73.49 8.57
AIC 800 0.820 155.51 4.80 0.950 155.38 4.81 1.00 154.55 5.96

1200 0.800 235.63 4.61 0.965 235.13 5.27 1.00 233.71 6.55

400 0.820 73.45 8.72 0.615 73.91 8.78 0.16 75.59 4.81
BIC 800 0.990 153.97 8.07 0.915 153.25 8.81 0.395 398.41 5.92

1200 1.000 233.28 7.31 0.980 232.28 8.60 0.625 232.84 7.56

Second change-point t(2) = [0.5n]

400 198.82 1.70 198.81 1.64 198.70 1.80
AIC 800 398.99 1.43 398.98 1.36 398.86 1.85

1200 598.99 1.71 598.99 1.63 598.97 1.63

400 198.72 1.85 198.64 1.90 198.53 1.76
BIC 800 398.86 1.86 398.76 1.86 398.41 2.33

1200 598.97 1.63 598.98 1.65 598.92 1.70

Third change-point t(3) = [0.8n]

400 318.44 1.26 318.26 1.42 318.11 1.94
AIC 800 638.39 1.34 638.32 1.43 638.18 1.66

1200 958.65 0.86 958.60 0.94 958.41 1.27

400 317.98 2.15 317.73 2.86 317.03 3.58
BIC 800 638.17 1.67 638.14 1.69 637.75 2.10

1200 958.41 1.27 958.37 1.30 958.22 1.48

Figure 4. Time series plot, estimated change-points, and the
number of estimated change-points along the solution path
for a realization of (8). The estimated change-points are in

vertical lines. The shaded area is the range of λs that
achieves the minimum BIC.

When LASSO type methods are used for multiple change-
point models, the best model obtained from the solution
path contains all the true change-points in a small neighbor-
hood, but over-estimation may occur. On the other hand, a
backward elimination algorithm based on the same informa-
tion criterion can be employed to extract an improved set
of change-point estimators from the over-estimated set; see
[8]. Therefore, we apply the backward elimination algorithm
on the model selected by the group LASSO solution path.

Table 3 reports the change-point estimation results for
Dn = n	, � ∈ {0.05, 0.1, 0.2}, n ∈ {400, 800, 1200} with

200 replications. The percentage of correctly identifying
three change-points are over 90% for most cases except AIC
with � = 0.05 and BIC with � = 0.2. Similar to the results
in the previous subsection, the performance of BIC using the
penalty � = 0.05 and AIC using the penalty � = 0.2 are
the best in terms of detecting the correct number of change-
points. Again, the performance of change-point estimation
improves and becomes less sensitive to the choice of � as
sample size increases.

6. DATA ANALYSIS

We applied the proposed procedure in Section 4 on the
US monthly purchasing managers index (PMI) data between
January 1948 and July 2015. Differencing the log of the PMI
series results in a seemingly piecewise stationary time series
y = {y1, . . . , y810}; see Figure 5. [11] employ autoregressive
models for similar datasets. Following their approach, we
applied the proposed procedure using autoregressive (AR)
model with order 2. Based on the results in Section 5, AIC,
AICc with � = 0.2 and BIC, MDL with � = 0.05, which
give the best performance, are used in the analysis. Figure 5
depicts a typical solution path of the estimation procedure
using BIC with � = 0.05. Interestingly, all of the four cri-
teria give the same change-point at t = 401, which corre-
sponds to June 1981. This change-point could be associated
with the early 1980s recession in the US.

To investigate the goodness of fit of each segment, Table 4
reports the AICs for various AR models for the estimated
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Figure 5. Left: Differenced log purchasing managers index
(PMI) series. Right: Solution path from the group LASSO
procedure. The time axis are the index 1 to 810 of the

difference series {y1, . . . , y810}.

Table 4. AICs for various AR models for the estimated
segments in the differenced log-PMI series. Segment 1:

{y1, . . . , y400}; Segment 2: {y401, . . . , y810}
Segment 1 Segment 2

AR(0) 1846.4 1496.2
AR(1) 1811.9 1486.0
AR(2) 1813.9 1474.8
AR(3) 1813.1 1476.3
AR(4) 1813.0 1478.0
AR(5) 1814.5 1479.5
AR(6) 1815.3 1481.5

segments y1, . . . , y400 and y401, . . . , y810. It can be seen that
AR(1) and AR(2) achieve the lowest AIC values for the first
and second estimated segment, respectively. Therefore, the
use of AR(2) model in the LASSO method is appropriate.
Moreover, when AR(2) models are used in both segments,
the p-values of Ljung-Box tests for the residuals of the two
segments are 0.996 and 0.889, respectively, indicating the
fitted models are adequate.

In practice, change-point analysis in the off-line setting
is helpful for prediction. For example, if no change-point
is detected in the data, then predictions will be based on
the model fitted to the whole series {y1, . . . , yn}. On the
other hand, if change-points at t̂1 < t̂2 < · · · < t̂k are
detected, then predictions based on the model fitted to
{yt̂k , . . . , yn} is expected to perform better. To illustrate this
point, we compare the out-of-sample prediction errors E0 =∑8

i=1(y810+i − ŷ810+i)
2 and E1 =

∑8
i=1(y810+i − ỹ810+i)

2,
where y811, . . . , y818 corresponds to the difference log-PMI
data from August 2015 to March 2016, ŷjs and ỹjs are
predictions using the whole series and the second segment,
respectively. In computing E0, we compared the AICs of
AR(0) to AR(6) fitted to the series {y1, . . . , y810} and the
AR(4) model was selected. On the other hand, from Table 4,
an AR(2) model was used in computing E1. It is found that
E0 = 1.89 and E1 = 1.67, which confirms that the predic-
tion error using the post-change segment is lower than that
using the whole time series.

7. CONCLUSIONS

To summarize, it is shown in Theorem 3.1 that with ap-
propriately chosen penalty terms, information criteria can
be used to select a consistent change-point model. Unlike
the existing results in [4] that require a upper bound Kmax

on the number of change-points, Theorem 3.1 is able to rule
out all seriously over-fitting change-point models with num-
ber of change-points exceeding Kmax.

In practice, obtaining a change-point model with opti-
mal information criterion value can be challenging. Though
methods based on dynamic programming are available in the
literature, see e.g., [18], [13], and [25], most of such methods
are designed for sequences of independent observations. To
guarantee the maximum O(n2) computational complexity,
it is necessary that the objective function (evaluated at the
parameter estimates) can be updated in O(1) steps upon the
arrival of a new observation. This may not be true in gen-
eral for dependent non-Gaussian data. It is an interesting
future research direction to study the numerical methods of
finding optimal change-point model of [5].

Recently, LASSO based method is proposed in [8] and
[9]. This method takes a tuning parameter λ as input and
generates a piecewise constant sequence θt(λ) as output. As
explained in Section 4, Theorem 3.1 guarantees that optimal
change-point model can be chosen if the optimal change-
point model belongs to {θt(λ) : λ > 0}. However, optimality
within {θt(λ) : λ > 0} may not imply global optimality. It
is also interesting to establish results of the probability that
the optimal change-point model belongs to {θt(λ) : λ > 0}.
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