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Analysis of cortical morphometric
labeled cortical distance maps

E. CEYyHAN*, T. NisHINO, K. N. BOTTERON,
M. I. MILLER, AND J. T. RATNANATHER

Morphometric (i.e., shape and size) differences in the
anatomy of cortical structures are associated with neuro-
developmental and neuropsychiatric disorders. Such differ-
ences can be quantized and detected by a powerful tool
called Labeled Cortical Distance Map (LCDM). The LCDM
method provides distances of labeled gray matter (GM) vox-
els from the GM/white matter (WM) surface for specific
cortical structures (or tissues). Here we describe a method
to analyze morphometric variability in the particular tis-
sue using LCDM distances. To extract more of the infor-
mation provided by LCDM distances, we perform pooling
and censoring of LCDM distances. In particular, we em-
ploy Brown-Forsythe (BF) test of homogeneity of variance
(HOV) on the LCDM distances. HOV analysis of pooled
distances provides an overall analysis of morphometric vari-
ability of the LCDMs due to the disease in question, while
the HOV analysis of censored distances suggests the loca-
tion(s) of significant variation in these differences (i.e., at
which distance from the GM/WM surface the morphome-
tric variability starts to be significant). We also check for
the influence of assumption violations on the HOV analy-
sis of LCDM distances. In particular, we demonstrate that
BF HOV test is robust to assumption violations such as the
non-normality and within sample dependence of the residu-
als from the median for pooled and censored distances and
are robust to data aggregation which occurs in analysis of
censored distances. We recommend HOV analysis as a com-
plementary tool to the analysis of distribution/location dif-
ferences. We also apply the methodology on simulated nor-
mal and exponential data sets and assess the performance
of the methods when more of the underlying assumptions
are satisfied. We illustrate the methodology on a real data
example, namely, LCDM distances of GM voxels in ven-
tral medial prefrontal cortices (VMPFCs) to see the effects
of depression or being of high risk to depression on the
morphometry of VMPFCs. The methodology used here is
also valid for morphometric analysis of other cortical struc-
tures.
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1. INTRODUCTION

Quantification of morphometric properties of cortical
structures is a major component of Computational Anatomy
(CA). Recently, the laminar structure of the neo-cortex
has received considerable attention thanks to advances in
high resolution magnetic resonance imaging (MRI) technol-
ogy and the development of CA methods (see, e.g., [1-6]).
Specifically, Labeled Cortical Distance Mapping (LCDM)
has been used for structural comparisons of cortical thick-
ness in the cingulate cortex in studies of Alzheimer’s disease
[7] and schizophrenia [40] in comparison to control sub-
jects. The LCDM algorithm provides distances of labeled
gray matter (GM) voxels from the GM/white matter (WM)
surface for cortical structure of interest. Depending on the
resolution of the GM voxels, the associated data set can be
very large for each subject. Previously, the morphometric
differences between the diagnostic groups were discovered
by the analysis of LCDM distances, more specifically, by
comparing the means and distributions of the LCDM dis-
tances [8,9]. However, in this article, cortical morphometric
variability (possibly due to a disease or impairment) as mea-
sured by the LCDM distances is studied.

Cortical thinning has been observed in other regions in
a variety of neuro-developmental and neuro-degenerative
disorders (see above references for examples). In particu-
lar, functional imaging studies implicate the ventral me-
dial prefrontal cortex (VMPFC) in major depressive disor-
ders (MDD) [10,11] which have been correlated with shape
changes observed in structural imaging studies [12,13]. Some
specific regions of the prefrontal cortex play an important
role in modulating emotions and mood. Structural imaging
studies in MDD have largely focused on adult onset with
only few focused on early onset MDD which has been as-
sociated with structural deficits in the subgenual prefrontal
cortex, a subregion of the VMPFC. Furthermore, the whole
VMPFC has been examined in a twin study of early onset
MDD [13].

Several studies of the VMPFC and related structures
have been obtained from analysis of the cortex as a whole
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[13-17], whereas others have pursued more attempts at the
localized analysis attempts to deal with the highly folded
and variable GM cortex [18] and to address issues of signal
inhomogeneity or artifacts which can cause processing issues
in this region. Also in the localized approach, the laminar
shape (i.e., curvature/folding and thickness) of the cortex
can be quantified in great detail. Two aspects of the lami-
nar shape are structural formation (like surface and form of
the cortex or curvature of the tissue) and scale or size (like
volume and surface area). Thus, morphometry refers to all
aspects of laminar structure, where “shape” refers to the
surface structure and “size” refers to the scale of the tissue
in question.

LCDMs can be used in many ways. For example, the
90*" percentile distance of LCDMs can be used as a mea-
sure of cortical thickness [19]. Group comparisons can be
performed on GM volumes (by the usual ¢-test) or on ran-
domly selected subsamples from LCDM distances can be
analyzed via Wilcoxon rank sum (WRS) test [7]. Various
morphometric measures (i.e., volume, descriptive statistics
based on LCDM distances such as median, mode, range,
and variance) can be used for group comparisons; however,
these variables were shown to have less power in discriminat-
ing the depressed subjects from healthy ones, possibly due
to oversimplification of cortical characterization represented
in LCDM distances [9]. To avoid this information loss, the
LCDM distances can be pooled (i.e., merged) for each di-
agnostic group and various statistical tests (such as tests
on differences in distribution (such as Kolmogorov-Smirnov
(KS) test or WRS test) or location (i.e., tests on mean or me-
dian such as ANOVA F-tests and t-tests) can be performed
by classical parametric or non-parametric tests [8]. Further-
more LCDM distances can be censored at various (consec-
utive) distance thresholds to determine the location (i.e.,
distance from the GM/WM surface) where significant dif-
ferences in morphometry starts [20]. That is, at each step we
only use the voxels with distances smaller than the threshold
distance and we do not use the voxels with distances larger
than the threshold distance, hence the term “censoring” for
this process. Previously, the distributional and mean differ-
ences at the diagnostic group level are investigated using
LCDM distances [8,9] and also the location (i.e., the dis-
tance from the GM/WM surface) of such differences were
found by using censored LCDM distances [20]. But, in this
article, the morphometric variability of the region of inter-
est (ROI) due to the disease in question is assessed. Due
to the structure of LCDM distances, the location, distribu-
tion, and variance comparisons might provide complemen-
tary information. In particular, LCDM distances are pos-
itive, and with a skewed right probability density function
(pdf). Hence, the distributional and location analysis are not
totally unrelated to the morphometric variability. Here, we
investigate the similarities and differences between variabil-
ity (or variance) analysis when compared to distributional
and location analysis. The effect of a disease or a disorder on
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the variability may be important in the sense that, if, e.g.,
the disease reduces variability, then the diagnostic inference
on the morphometry of the ROI will be more precise in in-
dicating the possibility of the disease. However, variability
analysis should be performed in addition to or in conjunc-
tion with the distributional or location analysis to obtain
more reliable information.

The LCDM approach has been applied in clinical
neuroimaging studies of the cingulate in subjects with
Alzheimer’s Disease [21] and schizophrenia [22-24], the
prefrontal cortex in subjects with schizophrenia [25], the
parahippocampal gyrus in subjects with schizophrenia [26],
the occipital cortex in visual attention [27,28], Area 46 of the
frontal cortex in fetal irradiated macaques [29] and ERC
in normal aging controls and in subjects with mild cogni-
tive impairment [30]. Finally, our observation of variable
cortical thickness in the left PT in three groups of age-
matched and gender-matched controls and patients with
schizophrenia and bipolar disorder [31] is consistent with
post-mortem analysis [32]. The approach has also been ex-
tended to deal with deeply buried sulci by modeling image
intensity stochastically based on the normal distance where
the model includes cortical thickness as one of the parame-
ters [1]; others have similarly adapted LCDMs [33,34]. The
LCDM approach is similar to the voxel-based cortical thick-
ness method (VBCT) [35] where each voxel in the GM has a
thickness value associated with it, but our analysis of these
voxel-based thickness values is different. In VBCT cortical
thickness values are compared on a voxel-by-voxel basis as in
SPM2 [36], while our analysis of LCDM distances allows us,
for example, to first pool (i.e., merge) the distance values for
each diagnostic group, and perform the comparisons on the
overall distance (or thickness) level, rather than the voxel
level for each individual. It has been shown that LCDMs are
comparable to other methods for computing cortical thick-
ness [37] and that LCDM profiles for whole brains are sim-
ilar in shape [35,38]. LCDM is essentially a ROI approach
and therefore differs from global ones such as FreeSurfer [39]
which averages point-to-point distances between outer and
inner cortical surfaces.

HOV analysis of pooled distances provides an overall
analysis of morphometric variability of the LCDMs at the
group level due to the disease in question, while the HOV
analysis of censored distances suggests the location(s) of
significant variation in these differences (i.e., at which dis-
tance(s) from the GM/WM surface the morphometric vari-
ability starts to be significant on the average) at the group
level. We also check for the influence of the assumption vi-
olations on the HOV analysis of LCDM distances. In par-
ticular, we demonstrate that BF HOV test is robust to as-
sumption violations by the LCDM distances such as non-
normality and within sample dependence of the residuals
from the median. Furthermore, at each censoring step, the
censored distances aggregate, which might confound the re-
sults of statistical testing. We investigate the influence of



data aggregation with a Monte Carlo simulation analysis
and show that such influence on the HOV test is only mild
and negligible in practice. We also assess the performance
of the methods on normal and exponential data sets to see
the performance of the tests when more assumptions than
those of LCDM distances are satisfied.

As an illustrative example, we perform LCDM analysis of
GM tissue in VMPFCs in a study of early onset depression
in twins. The methodology is applied to LCDMs generated
for the VMPFC implicated in major depressive disorders
(MDD) [10,11,13,18,40]. Furthermore, in analysis of censor-
ing distances, we have the multiple testing problem when all
censoring thresholds are considered together. We consider
various corrections for simultaneous inference (i.e., p-value
adjustment or correction for multiple testing) and compare
these correction methods. We demonstrate that among these
methods, Benjamini-Hochberg correction [41] has the best
performance.

We describe the acquisition of LCDM distances for
VMPFCs in Section 2.1, pooling and censoring of LCDM
distances in Section 2.2., statistical methods we employ in
Section 2.3, assess the influence of assumption of violations
and data aggregation with an extensive Monte Carlo simu-
lation study in Sections 3.1-3.3, assess the performance of
the methods on normal and exponential data in Section 3.4,
and discuss the simultaneous inference procedures for analy-
sis of censored distances in Section 3.5. We present the HOV
analysis of the example data set in Section 4, and discussion
and conclusions in Section 5.

2. METHODS

2.1 Data acquisition

A cohort of 34 right-handed young female twin pairs be-
tween the ages of 15 and 24 years old were obtained from
the Missouri Twin Registry and were used to study cor-
tical changes in the VMPFC associated with MDD. Both
monozygotic and dizygotic twin pairs were included, of
which 14 pairs were controls (Ctrl) and 20 pairs had one
twin affected with MDD, their cotwins are designated as the
High Risk (HR) group. Three high resolution T1-weighted
MPRAGE magnetic resonance scans of each subject in this
population were acquired using a Siemens 1.5T Sonata scan-
ner with 1 mm? isotropic resolution. Images were then av-
eraged, corrected for intensity inhomogeneity and interpo-
lated to 0.5 x 0.5 x 0.5 mm3 isotropic voxels. Following Rat-
nanather et al. (2001), a ROI comprising the prefrontal cor-
tex stripped of the basal ganglia, eyes, sinus, cavity, and
temporal lobe was defined manually and segmented into
gray matter (GM), white matter (WM), and cerebrospinal
fluid (CSF) by Bayesian segmentation using the expectation
maximization algorithm [42]. A triangulated representation
of the cortex at the GM /WM boundary was generated using
isosurface algorithms [43].

LCDM is a method to characterize the cortical laminar
shape over a specified cortical ROI and are generated as
follows: first, the ROI subvolume is partitioned by a regular
lattice of voxels of specific size h, denoted V' (h). Each voxel is
a cube of size h x h x h (in some unit, say, mm?). Every voxel
is labeled by tissue type as gray matter (GM), white matter
(WM), and cerebrospinal fluid (CSF) [e.g. 2,42]). For every
voxel in the ROI subvolume, the (normal) distance from the
center of the voxel to the closest point on GM/WM surface is
computed. Let S (A) be the triangulated graph representing
the smooth boundary at the GM/WM surface. The distance
computation algorithm is specified as follows [2,18,19]:

for all 7 do

Sclosest <— @ point in S (A) such that
for all s; € S(A) do
d (Sclosest, centroid(v;)) < d(s;, centroid(v;))
end for
D; + d (Sclosest, centroid(v;))

end for
where d (-, -) stands for the usual Euclidean distance, v; is
the i*h voxel, s; is the j*® point in S (A) and D; is the
ith distance (i.e., distance for the i't voxel). That is, an
LCDM distance is a set distance function d : v; € V —
d (centroid(v;), S (A)), which is the distance between the
centroid (or center of mass) of v; and the set S (A). More
precisely,

(1) D, :=d(centroid(v;),S (A)) =

mi centroid(v;) —
oo | id(vi) — sl

where C)y (+) stands for center of mass (or centroid), and
|-l is the usual Lo-norm. A signed distance is used to indi-
cate the location of each voxel with respect to the GM/WM
surface; distances are positive for GM and CSF voxels, and
negative for WM voxels. These distances constitute the
LCDM distance data. We will only use LCDM distances for
the GM of the ROI in our further analysis. Hence, LCDM
distances refer to those of GM voxels for the rest of the
article.

Let DLL]  be the distance associated with kth voxel in GM
of left VMPFC of subject j in group i for j = 1,2,...,n,,
i1 =1,2,3 (group 1 is for MDD, group 2 for HR, and group
3 for Ctrl) and k = 1,2,...,miLj where ml-Lj is the num-
ber of voxels for left VMPFC of subject j in group i. Thus,
n1 = 20, ne = 20, and ng = 28. Right VMPFC distances
are denoted similarly as Dﬁk with mf; being the number of
voxels for right VMPFC of subject j in group i. Based on
prior anatomical knowledge (e.g., [44]), cortical thickness of
the VMPFC is roughly 6 mm so we only retain distances
larger than —0.5 mm so that mislabeled WM is excluded
from the data with an upper limit of 5.5 mm. This causes
discarding a small portion of the LCDM distance data set.
In particular, in our VMPFC LCDM distances data, it turns

Morphometric variability with labeled cortical distance maps 315



out that only 0.16% of left distances and 0.14% of right dis-
tances are below —0.5 mm; on the other hand, only 0.22% of
left distances and 0.07% of right distances are above 5.5 mm.

By construction, most of GM distances are positive, most
of WM distances are negative, and all of CSF distances are
positive. Mismatch of the signs for some GM and WM vox-
els close to the GM/WM boundary are due to the way the
surface is constructed in relation to how the pixels are la-
beled, such that a surface is always intersecting pixels, i.e.,
partial volume. Hence some appropriately labeled GM and
WM pixels may fall on a side of surface that they should
not belong to; however, these mislabeled voxels constitute a
small number of voxels and do not affect the overall analy-
sis. Reliability of LCDMs is dependent on reliability of GM
segmentation and reconstruction of GM/WM surface which
has been validated for several cortical structures including
VMPFC [18], cingulate gyrus ([45]; [46]) and planum tem-
porale [47].

2.2 Pooling and censoring of LCDM
distances by group

We pool LCDM distances of subjects from the same di-
agnostic group or condition; that is, we pool the LCDM dis-
tances of all left MDD VMPFCs in one group, those of all
left HR, VMPFCs in another group, and those of all left Ctrl

VMPFCs in another. Let S’iLj = {D{“jk,kz =1,2,.. .,m{“j }
be the set of LCDM distances of subject j from group i for
j=1,2,...,n;and i = 1,2,3. Then we set

2) D = UL, SE={D}, t=12,...,mimj;}

where DI is the set of left distances for group i with
1=1,2,3, D{;Z is the ¢*" distance value for the merged (or
pooled) distances from left VMPFCs of subjects in group 4
for £ =1,2,... ,nlmlL] We pool the right VMPFC LCDM
distances in a similar fashion and replace L with R in the
notation.

One of the underlying assumptions for pooling is that the
distances from left VMPFCs of subjects with the same diag-
nostic condition have the same distribution (i.e., distances
of left VMPFCs of subjects with MDD have the same dis-
tribution, say F{*, those of HR have the same distribution,
F¥, and so do those of Ctrl group, with F¥); and the same
holds for distances of right VMPFCs with distributions F}?
for ¢ = 1,2, 3. In other words, we assume that Diij are iden-
tically distributed for all j =1,...,n; and k =1,... ,mfj .
So, Diij ~ FE for all j, k, and SZ-Lj is a sample from the
distribution F¥; likewise ij-’k ~ FFE for all j, k. Hence the
pooled distances are distributed as D5 ~ Fl' and D ~ FF
fori =1,2,3and ¢ = 1,2,... ,nim{“j. We take this action
under the presumption that the morphometry of VMPFCs
of the healthy subjects are similar and those of subjects with
the same disease are affected in the same manner, hence age
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and gender matched subjects with the same health condi-
tion (whether healthy or diseased) have VMPFCs similar in
morphometry. We also denote all left pooled distances as

D' =Ul_ \Df =
{DE,i=1,23,i=1,2,...,n;, k=1,2,...,m; }

and similarly denote all right pooled distances D as replace
L with R in the notation.

Next, we partition the range of LCDM distances into bins
of size d, then we have |dmax/d | many bins where |s| stands
for the floor of (i.e., largest integer less than or equal to) s.
To construct LCDM censored distances, we only retain dis-
tances less than or equal to a specified distance value de-
noted 75, In particular, at step k, we only consider the vox-
els whose LCDM distances are less than equal to s, = kd.
Thus we only consider the layer of the cortex with thick-
ness of roughly k6 from the GM/WM surface. These dis-
tances are called the censored LCDM distances, which, for
left VMPFCs, are denoted as

Cl (k,6):={de D" n[-05, kd]} = {de D" : d < ks}
and for group 7 of left VMPFCs,
Cii(k,6) == {d € DF : d < ké}

for i = 1,2,3 (i.e., for groups MDD, HR, and Ctrl, respec-
tively). Censored LCDM distances for right VMPFCs are de-
noted similarly as C% (k, §) and for group i of right VMPFCs
as CF; (k,9).

Censored distances depend on the bin size, § and res-
olution of the voxels h. We recommend the use of a bin
size between [h/10, h] (which corresponds to 0.01 to 0.5 mm
for our data). Because, if they are too large, censored dis-
tances do not provide the desired resolution in the dis-
tances from the GM/WM surface, and if they are too small,
they do not improve on the results of 0.01 mm but in-
crease computation time. So the lower bound on the bin
size is rather of practical choice. In what follows, we use
dmax = 5.5mm and § = 0.01 mm. Therefore, we have
k = 0,1,2,...,551 and ~s; = .00,.01,.02,...,5.50 mm.
To overcome the possible confounding effects of the misla-
beled GM voxels close to the GM/WM surface, censored dis-
tances within [0.5,5.5] mm are used for statistical inference,
as these censored distances provide more reliable results.
Moreover, the censored distance analysis is performed with
the same tests as the pooled distance analysis performed in
[20].

2.3 Statistical tests

Previously, we have analyzed the pooled and LCDM dis-
tances for differences in location and distribution in [8] and
[20], respectively. In this article, we employ a test of equality
or homogeneity of the variances (HOV) of pooled and cen-
sored distances which is important in its own right, because



variance differences in distances between groups might be
indicative of differences between the morphometric varia-
tions/variability of VMPFCs (due to the disease). That is,
variance of LCDM distances for, e.g., left VMPFC of a sub-
ject is a measure of shape or size variation in that particular
VMPFC.

HOV tests are usually employed to check an important
assumption in ANOVA and the ¢-test for mean comparisons
which states that the variances in the different groups are
equal (i.e., homogeneous). The two most common HOV tests
are the Levene’s test and the Brown-Forsythe test where the
latter is a modification of Levene’s test. HOV assumption
is not a crucial one for ANOVA methods, so we perform
HOV tests not for assumption checking for ANOVA but for
a different purpose: to determine the effect of a certain dis-
ease on the morphometric variability of a brain tissue. In
Levene’s test ANOVA is performed on the absolute devia-
tions (called residuals) of the values from the mean, and BF
test does the same but on deviations from the median. The
basic assumptions for these HOV tests are the same as the
ANOVA assumptions, not on the original variable but on the
residuals from the mean or median. That is, the residuals
should enjoy within sample independence, between sample
independence, normality (i.e., Gaussianity), and equality of
the variances (of the residuals). It has been shown that BF
test is more robust to the assumption violations [48], hence
we prefer it over Levene’s test in our further HOV analysis
of LCDM distances. Therefore, we perform HOV by using
Brown-Forsythe’s (BF) HOV test (see, e.g., [49]). We apply
a multi-group BF HOV test and if this is significant, then
we perform (directional) pairwise HOV comparisons with
Holm’s correction [50]. In the literature, BF HOV (and Lev-
ene’s HOV) tests are only used for two-sided alternatives,
as they are based on ANOVA F-test on the residuals. How-
ever, in the two-sample case, ANOVA F-test and t-test are
equivalent, and the latter can be used for directional alter-
natives. Hence for pairwise HOV comparisons (i.e., in the
two-sample case), we use BF test as the usual ¢t-test on the
residuals from the median.

For the pooled LCDM distances by group and censored
distances, there is an inherent spatial correlation between
neighboring voxels which implies the dependence between
LCDM distances (and hence the residuals from the medi-
ans) of the close-by voxels. Furthermore, LCDM distances
(and hence the residuals from the medians) are significantly
non-normal. Previously, it has been shown in [8] that the
assumption violations for the parametric tests (ANOVA F-
test and ¢-test) and for nonparametric tests (Kruskal-Wallis
(KW) and WRS tests) have negligible effect on the empiri-
cal size and power performance of these tests. In this article,
we also check the influence of assumption violations on the
ANOVA of the residuals from the median, i.e., on BF HOV
test.

The similarity in the morphometry of ROIs implies sim-
ilarity of LCDM distances, which in turn implies similarity

of the distributions of LCDM distances (hence similarity in
the means, medians, and variances). That is, identical mor-
phometry in the ROIs would imply identical distance dis-
tributions. But converse is not necessarily true in the sense
that two ROIs might have similar distance distributions,
but the corresponding morphometry could be very differ-
ent. However, when the distance distributions are found to
be different, it would logically imply different morphometry
in the ROIs. For KW test, which is a nonparametric test,
we test the equality of the distributions of the left pooled
distances between groups; i.e., H, : Fit = Ff = ... = Ft
where F is the distribution function of the left pooled dis-
tances for group ¢ = 1,2,..., k. The null hypothesis for the
right distances is similar with L being replaced with R. For
ANOVA F-tests with or without HOV, we test the equality
of the means of the left pooled distances between k groups;
ie, Hy, : u¥ = pb = ... = pf where pl is the mean of
the left pooled distances for group ¢ = 1,2,...,k. The null
hypothesis for the right distances is similar with L being
replaced with R.

Observe that KW, ANOVA or WRS tests suggest shape
and size differences when rejected, in particular the direc-
tion of the alternatives for the WRS test might indicate cor-
tical thinning. Similarity of the morphometry of ROIs will
cause similarity of LCDM distances, which would also imply
similarity of the variances of LCDM distances. Variance of
distances is suggestive of morphometric variation in ROIs.
So similar shapes and sizes imply similar variances, but not
vice versa. For example, cortical thinning might reduce the
variation in LCDM distances, and the larger the spread in
the boundary (surface) of ROI, the larger the variance of
LCDM distances. In HOV analysis, we test the equality of
the variances of the left pooled distances between k groups;
ie.,

(3)

where Var(DL) is the variance of the left pooled distances
for group ¢ = 1,2,..., k. The null hypothesis for the right
distances is similar with L replaced with R.

H, : Var(D{¥) = Var(D%) = ... = Var(D})

3. THE INFLUENCE OF ASSUMPTION
VIOLATIONS AND AGGREGATION OF
CENSORED DISTANCES ON THE HOV

TESTS: A MONTE CARLO STUDY

The influence of the assumption violations due to the spa-
tial correlation and nonnormality (i.e., non-Gaussianity) in
the pooled LCDM distances has been shown to have neg-
ligible effect on the tests of location and distribution (such
as ANOVA F-test, pairwise t-tests, KW test, WRS test,
and KS test) [8]. In censoring LCDM distances, in addi-
tion to the above violations, we have the issue of accumula-
tion/aggregation of the distances at each step. This aggre-
gation of the distances have been shown not to substantially
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influence the tests and their sensitivity to the differences be-
tween the groups [20]. In this article, we assess the influence
of the above problems on HOV tests. That is, we use an
extensive Monte Carlo simulation study to determine the
influence of violations of within sample independence and
normality of pooled LCDM distances on the BF HOV test;
and in censoring distances, in addition to these violations,
we investigate the effect of distance accumulation at each
censoring step on the HOV test. We employ the same Monte
Carlo simulation setting of [8] in our data generation. For
completeness, we replicate the distance generation proce-
dure below which is shown to generate distances resembling
those of LCDM distances from real subjects; i.e., capturing
the true randomness in LCDM distances.

3.1 Simulation of distances resembling
LCDM distances

We choose the left VMPFC of HR subject 1 whose dis-
tances are denoted as D = {DL,.k = 1,2,...,m{}.
We partition the range of distances into intervals Iy :=
[-1,0.5] mm, I := (0.5,1.0] mm, I := (1.0,1.5] mm, ...,
and I11 := (5.5,6.0] mm. Let ¢ be the number of distances
within interval I;, i.e., v? = |94 N L], fori =0,1,2,...,11.
Then for DL we have 7, = (v, 1%, ...,v8) = (2059, 1898,
1764, 1670, 1492, 1268, 814, 417, 142, 81, 61, 16). A possi-
ble Monte Carlo simulation to obtain LCDM-like distances
can be performed as follows. We generate n = 10000 num-
bers with replacement in {0, 1,2, ..., 11} proportional to the
above frequencies, v (the choice of n = 10000 is due to
the fact that the number of distances for left VMPFC of
HR subject 1 is 11659). Then we generate as many uniform
numbers in (0,1) (i.e., numbers from U (0,1) distribution)
for each ¢ € {0,1,2,...,11} as ¢ occurs in the generated
sample of 10000 numbers, and add these uniform numbers
to i. Then we divide each distance by 2 to match the range of
generated distances with [0, 6.0] which is roughly the range
of DL, . More specifically, we independently generate n num-
bers from {0, 1,2, ..., 11} with the discrete probability mass
function P, (N; =) = v, = v /11659 for i = 0,1,...,11
and j =1,2,...,n. So, P, (N; =1i) = vJ, where

Pyt

(V80 V81s - o) = D9 = (177, 163,

1151, .143, .126, .109, .070, .036, .012, .007, .005, .001).

Let n; be the frequency of ¢ among the n generated num-
bers from {0,1,2,...,11} with distribution Py, for i =
0,1,...,11. Hence n = Z;io n;. Then the set of simulated
distances is

Dpe ={(Js +U)/2: J. “ Py and U, “ 14 (0,1) and

,n}.

See Figure 1 for histograms overlaid with the kernel den-
sity estimates of LCDM distances from HR subject 1 and

Js and Ug are independent for s = 1,2, ...
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Figure 1. Histograms overlaid with the kernel density
estimates of LCDM distances for the left VMPFC of HR
subject 1 (top) and a simulated sample as described in
Section 3.1 (bottom).

10000 simulated distances as described above. Notice that
the histograms and the kernel density estimates are very
similar, which indicates that distances generated by the

above simulation procedure resembles distances from real-
life VMPFCs.

3.2 Empirical size estimates and size curves
3.2.1 Multi-sample case

In the multi-sample case, our null hypothesis is HOV (i.e.,
equality of the variances) of LCDM distances, which follows
from the equality of the distribution of LCDM distances for
the groups. For simplicity, we consider k = 3 groups, exten-
sion of the below discussion to k > 3 groups is straightfor-
ward. Thus, for the null case, we generate three samples X,
Y, and Z each of size n,, ny, and n,, respectively, as de-
scribed above in Section 3.1 with the sample sizes for bins
(stacks) being selected to be proportional to the frequen-
cies U, = (V§,v%,...,v§;); i.e., distances are generated to be
similar to the left VMPFC of HR subject 1. No generality
is lost here, because distances for any other VMPFC can



Table 1. Estimated significance levels (i.e., empirical size
estimates) and proportions of agreement between the test
pairs based on Monte Carlo simulations of distances with
three groups, X, Y, and Z each of size n,, ny, and n,
respectively, with N,,. = 10000 Monte Carlo replicates. The
empirical sizes in the same row with the same superscript are
not significantly different from each other. Empirical size
estimates within [.0464,.0536] are not significantly different
from the nominal level of 0.05. The sample sizes for the
proportion of agreement rows are same as those for the
empirical size estimates. (In the superscripts “>" means the
empirical size is significantly larger than 0.05; i.e., method is
liberal; “<” means empirical size is significantly smaller than
0.05; i.e., method is conservative; ‘?" means the proportion
of agreement significantly less than the minimum of the
empirical sizes; “~" means the proportion of agreement not
significantly less than the minimum of the corresponding
empirical sizes)

Empirical size

aBF

(na,ny,n2) agw apy ar,
(1000,1000,1000) .0495% | .0512% | .0501* .0506%
(5000,5000,10000) | .0509* | .0474* | .0473% 04777
(5000,7500,10000) | .0486* | .0506* | .0484*< | .0484*<
(10000,10000,10000) | .0512* | .0515* | .0501% .0500%

Proportion of agreement
aKW,Fl aKW,FQ aFl,FZ aBF,KW aBF,Fl aBF,Fg
.0403° .0406° | 04927 .0049° .0080° | .0080°
.0376° .0378% | .0468~ .0044° .0067° | .0068°
.0396° 03957 | .0479% .0055° .0078° | .0078°
.0404° .0403° | 0497 .0041° .0074° | .0076°

either be obtained by rescaling of the generated distances,
or by modifying the frequencies in 7,. In particular, sample
X is generated as

(4) DX ={(J,+Uy)/2:J, ¥ Pyand U, “1s(0,1)

and Jg and Uy are independent for s = 1,2,...,n,}.

Samples Y and Z are generated similarly and denoted as
DY . and DZ_, respectively.

We repeat this sample generation procedure N, =
10000 times and count the number of times the null hypoth-
esis is rejected at a = 0.05 level for BF test of HOV, KW test
of distributional equality, and ANOVA F-tests (with and
without HOV) of equality of mean distances, thus obtain
the estimated significance levels under H,. The estimated
significance levels for various values of n,, n,, and n, are
provided in Table 1, where apgp is the empirical size esti-
mate for BF test, agw is for KW test, ap, is for ANOVA
F-test with HOV, and ap, is for ANOVA F-test without
HOV; furthermore, Qxw,r is the proportion of agreement
between KW test and ANOVA with HOV, i.e., the num-
ber of times out of 10000 Monte Carlo replicates both KW

test and ANOVA F-test with HOV simultaneously reject
the null hypothesis. Similarly, @xw,r, is the proportion of
agreement between KW test and ANOVA F-test without
HOV, and @, p, is the proportion of agreement between
ANOVA F-tests with and without HOV, @pr, xw is the pro-
portion of agreement between BF test and KW test, apr r,
is the proportion of agreement between BF and ANOVA
F-test with HOV, and @pp p, is the proportion of agree-
ment between BF test and ANOVA F-test without HOV.
Using the asymptotic normality of the proportions, we test
the equality of the empirical size estimates at 0.05 level,
and compare the empirical sizes pairwise. We observe that
all tests are at the desired level (i.e., empirical size esti-
mates are not significantly different from the nominal level
of 0.05; with N, = 10000, empirical size estimates within
[.0464, .0536] are not significantly different from the nominal
level of 0.05). Hence, if the distances are not that different;
i.e., the frequency of distances for each bin and the distances
for each bin are identically distributed for each group, the
inherent spatial correlation does not seem to influence the
significance levels. Moreover, the proportion of agreement
between KW test and ANOVA F-tests with and without
HOV are significantly less than 0.05 and also significantly
less than the smaller of the empirical sizes in each pair (i.e.,
the proportion of agreement between KW test and ANOVA
F-test with HOV is significantly smaller than the smaller
empirical size of these tests). This implies KW test and
ANOVA F-tests have significantly different rejection (and
hence different acceptance) regions. This is in agreement
with the fact that KW and ANOVA F-tests are actually
testing different hypotheses; in fact, KW test is for distribu-
tional equality (based on ranks), while ANOVA F-tests are
for equality of the means. On the other hand, the proportion
of agreement between ANOVA F-tests, &p, r,, is neither sig-
nificantly smaller than 0.05, nor significantly smaller than
the minimum of &, and ap,. Hence, F; and F5 tests have
about the same rejection (and acceptance) regions. That is,
under the simulation of the null case, HOV is retained, hence
ANOVA F-tests with or without HOV have the same em-
pirical size performance, and moreover, F; and F5 basically
test the same hypotheses. In Table 1, we also observe that
proportions of agreement with BF test and other tests (i.e.,
KW, F} and F tests) are all significantly smaller than 0.05
(in fact, they are about 0.005), and also significantly smaller
than the minimum of the empirical sizes in each pair. This
suggests that the rejection and acceptance regions for BF
test and all other tests are very different. In fact, BF test
is testing equality of variances, while the others are tests of
location or distribution (such as equality of means or rank-
ings). Furthermore, the proportions of agreement between
the tests of location is much higher compared to those of
BF test with other tests, as the corresponding rejection or
acceptance regions have different intersection levels. In par-
ticular, the common rejection region for tests of location is
much larger than the common rejection region of BF test
with a test of location or distribution.

Morphometric variability with labeled cortical distance maps 319



For censoring, we use the pooled distances with n, =
ny = n, = 10000. For example for sample X, we partition
the range of generated distances into bins of size § = 0.01,
then we have |d;,, /6| many bins where d;y, is the largest
distance value in D:¥ . At k' censoring step, we only con-
sider the distances less than or equal to 755 = kd. These

distances are denoted as
Cy (k,6):={d € Dyx. N[0, kd]} ={d € D, :d < ké}.

Censored distances for samples ) and Z are obtained sim-
ilarly from Dy, and DZ_ and are denoted as CY (k,§) and
C#% (k,0), respectively. For brevity in notation, we write
Var (Cf (k,6)) as Var(X), Var (C’g] (k,0)) as Var(Y), and
Var (C7 (k,8)) as Var(Z). We repeat the same procedure
Npe = 1000 times. At each censoring step, we record the
p-values for multi-group BF HOV test and KW test of dis-
tributional equality, and pairwise BF HOV tests and pair-
wise WRS tests. We also count the number of times the
null hypothesis is rejected at o = 0.05 level for these tests,
thus obtain the empirical significance levels (i.e., sizes) un-
der H,. The average p-values and empirical size estimates
together with 95% confidence bands for multi-group BF
HOV test are plotted in Figure 2; and for pairwise BF HOV
test for the one-sided alternatives Var(X) < Var(Y) and
Var(X) > Var(Y), the empirical sizes are about 0.05 and
average p-values are about 0.50 for all the tests considered
hence are not presented.

3.2.2 Pairwise size comparisons

In the multi-sample case with three or more samples, the
alternatives are general ones with no direction. However, if
the multi-class omnibus tests (i.e., BF HOV test, and KW
test, ANOVA F-tests for testing the distribution/location
differences) are significant, then the next question of interest
is which pair(s) of the samples exhibit differences and in
which direction. To answer these questions, we can apply the
two-sample versions of these tests, namely, BF test, WRS
test, and Welch’s t-test, as pairwise post-hoc tests. This will
enable us to assess whether the methods/tests detect the
specific direction of difference(s) between the samples which
are present by construction; and if so, whether they detect
these differences with high power.

Remark 1: Two-sample tests can serve as a post-hoc test-
ing procedure, after the multi-sample test being significant.
If there are only two samples in the data set, then these
tests are the two-sample versions of the multi-sample tests.
As post-hoc tests, they may suffer from the type I error in-
flation because the two-sample tests will be performed con-
ditioning on the significant result of the multi-sample tests
when there are three or more classes. However, the condi-
tional size and power estimates (conditional on the multi-
sample test being significant) are only slightly different from
unconditional ones. Hence, we only present the uncondi-
tional size and power estimates in this article. Furthermore,
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Figure 2. The average p-values (top) and empirical size

estimates (bottom) together with 95% confidence bands

versus censoring distance values under the null case for
multi-group BF HOV test.

we omit the Holm’s correction for pairwise comparisons be-
tween groups in our simulations (but in the application to
the example data, Holm’s correction is applied for pairwise
group comparisons) for the same reason and to better com-
pare the proportions of agreement between the two sample
tests. W

We count the number of times the null hypothesis is re-
jected at o = 0.05 for the post-hoc tests (BF test, WRS
test, and ¢-test) and also Lilliefor’s test of normality and
KS test; thereby obtain the empirical size estimates for these
tests. Although we have one type of alternative in the multi-
sample case, for the two-sample case, except for Lilliefor’s
test, there are three types of alternative hypotheses possi-
ble: two-sided, left-sided, and right-sided alternatives. The
estimated significance levels are provided in Table 2, where
apr is the empirical size estimate for BF test, ay is for
WRS test, a; is for t-test, Qi g is for KS test. Furthermore,
aw, is the proportion of agreement between WRS test and
t-test, Qw ks is the proportion of agreement between WRS
test and KS test, and o kg is the proportion of agreement
between the t-test and KS test, appw is the proportion



Table 2. Estimated significance levels (i.e., empirical size
estimates) under H, where r, =1, =1.0 andn, =1, =0
based on Monte Carlo simulation of LCDM-like distances with
two groups Y and Z each with size n, and n., respectively,
with Np,. = 10000 Monte Carlo replicates. Left-sided (resp.
right-sided) tests are for values in ) tending to be smaller
(resp. larger) than those in Z). The sample sizes for the
proportion of agreement rows are same as those for the
empirical size estimates. The size estimates in the same row
are superscripted so that order of significance difference is as
the alphabetical order of the superscripts, and size estimates
with the same superscript are not significantly different from
each other. Superscripts for the proportions of agreement are
as in Table 1

Two-Sided Tests
Empirical size
(nl,ny) aBF aW at aKS
(1000,1000) .0522% .0482% .0488% 04717
(5000,10000) 0512% | .0462%< 0474% | .0460%<
(7500,10000) 04797 05117 .0516% 04797
(10000,10000) .0496% .0476% 0487* | .0447*<
Proportion of agreement
aW,t aW,KS at,KS aBF,W aBF,t aBF,KS
.0392° .0301° .0274° .0055¢ .0082° .0091°
.0378¢ .0276° .0239° .0050° .0084° .0079°
.0414° .0315° .0286° .0048° .0079° .0088°
.0390° .0267° .0241° .0046° .0086° .0079°
Left-Sided Tests
Empirical size
(1000,1000) 0518 | .0435™< | .0453>< | .0432™<
(5000,10000) 05227 04817 .0495% .0485%
(7500,10000) .0525% 05107 .0499* .0478%
(10000,10000) | .0482% 04737 04717 .0460%<
Proportion of agreement
.0363° .0278° .0256° .0044° .0071° .0071°
.0389° .0300° .0277° .0035° .0060° .0063°
.0421° .0326° .0302° .0044° .0065° .0067°
.0399° .0297¢ .0278° .0048° .0074° .0081¢
Right-Sided Tests
Empirical size
(1000,1000) 05072 .0537% 05397 .0508%
(5000,10000) .0513% 04877 04867 04972
(7500,10000) 0461%< .0488* .0501% .0495%
(10000,10000) .0500% 0477% 04817 .0470%
Proportion of agreement
.0436° .0337° .0311° .0048° .0079° .0083°
.0400° .0324° .0304° .0055° .0083° .0087°
.0401° .0322° .0305° .0039° .0062¢ .0075°
.0395° .0304° .0290° .0040° .0067° .0063°

of agreement between BF test and WRS tests, app; is the
proportion of agreement between BF test and the t-test,
and apr ks is the proportion of agreement between BF test
and KS test. We only present comparison of samples ) and

Z, since the sample size combinations for samples X and
Z are included in Y vs Z comparisons. For X vs ) com-
parisons, the sample sizes (1000,1000) and (10000, 10000)
are included in Y vs Z comparisons, and (5000, 5000) and
(5000, 7500) comparisons are omitted for brevity (as they
would not provide anything new to the conclusions). Our
samples are severely non-normal by construction, and nor-
mality is rejected for almost all samples generated, hence we
omit the results of Lilliefor’s test. We observe that under H,,
the empirical significance levels are about the desired level
for all three types of alternatives, although KS test is slightly
conservative. Hence, if the distances are not that different;
i.e., the frequency of distances for each bin and the distances
for each bin are identically distributed for each group, the
inherent spatial correlation does not influence the signifi-
cance levels for these tests. However, WRS, t-test, and KS
tests are used for testing different null hypotheses, so their
acceptance and rejection regions are significantly different
for LCDM distances, since the proportion of agreement for
each pair is significantly smaller than the minimum of the
empirical size estimates for each pair of tests. Among these
tests, the proportion of agreement between KS test and t-
test is smallest. Moreover, we observe that the proportion of
agreement of BF test with each of WRS, ¢, and KS tests is
significantly smaller than 0.05 (in fact, the range of Gppw
is 0.0039 to 0.0055, the range of EJZBF’t is 0.0060 to 0.0088,
and the range of Apr kg is 0.0063 to 0.0091), and these pro-
portions are much smaller than the agreement proportions
for each pair of WRS;, ¢, and KS tests.

3.3 Empirical power comparisons

3.3.1 Multi-sample power comparisons of the pooled dis-
tances

For the alternative hypotheses in the multi-sample
case, we again consider k = 3 groups, namely, X, ),
and Z. Let n be a nonnegative integer and 7,(n) =
(V&) v8(n),...,v%(n)) where v@(n) is the ith value af-
ter the entries |v¢ — 7| are sorted in descending order for
i=0,1,2,...,11 and v15(n) = 11659 — 11 [¢ — n|. Then
we set the probability mass function to

R =i =) =) [ v

Let » > 1 be a real number, then the set of simulated dis-
tances is

{(Jo+U)/2: T, % Py and U, “ 1 (0,r) and

Js and Uy are independent for s =1,2,...,n}.

Then for samples X, Y, and Z, we set r = 7., = N,
T =71y,n =1y, and r = r,,n = 0., respectively and take
n = ng = ny = n, = 10000. In our simulations, sample
X distances are generated as in the null case with r, =
1.0, 7, = 0; i.e., they are similar to distances of HR subject 1.
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Figure 3. Plots of the kernel density estimates of the Monte
Carlo simulated LCDM distances under the null case and
alternatives with n = 0 and r € {1.0,1.4,1.8} (top); null case
and alternatives with r = 1.0 and n € {0,50,100} (bottom).
For the parameters r and n, see Section 3.3.1.

So we have vy ;(n,) = vy, fori =0,1,..., 11 and vy 15(n:) =
0 where vy ; is defined in Section 3.1. Notice also that when
ry = 1, = 1.0 and 0, = n, = 0, we obtain the null case
of distributional equality between samples X', ) and Z. For
practical purposes, we require 7, and 7, to be in [0, 1000]
and ry and r, to be in [0,2), although larger values would
also be conceivable. The alternative cases we consider are

L1: (ry,r2,my,m2) = (1.1,1.0,0,0) ;
L2: (ry,m2,my,m,) = (1.1,1.2,0,0) ;
L3 : (ry,72,my,m,) = (1.0,1.0,10,0) ;
L4 : (ry,r2,my,m.) = (1.0,1.0,10,30) .

()

See Figure 3 for the kernel density estimates of sample dis-
tances under the null case and various alternatives.

Remark 2: Among the alternative parameters, > 1 tends
to make the corresponding samples less variable compared to
the null samples. More specifically, r in (1,2) would make
a mild distance clustering for values around (i + r)/2 for
1=0,1,...,11 and does not increase the range and mean or
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Table 3. The power estimates based on Monte Carlo
simulation of distances under the alternative cases L1 — L4
with three groups, X, Y, and Z each with size n,, ny, and
n,, respectively, with N,,. = 10000 Monte Carlo replicates.

The power estimates in the same row are superscripted so
that order of significance difference is as the alphabetical
order of the superscripts, and power estimates with the same
superscript are not significantly different from each other

L1: (ry,72,my,m-) = (1.1,1.0,0,0)

(0, Ny, M) Ber_ | Brw Bry Bry
(1000,1000,1000) | .0511° | .0778* | .0770* | .0768"
(5000,5000,10000) | .0511° | .2281* | .2137° | .2114"
(5000,7500,10000) 0499 | .2903* | .2698" | .2694°

(10000,10000,10000) | .0482° | .3900* | .3564> | .3559°
L2: (ry,r2,my,m-) = (1.1,1.2,0,0)
(1000,1000,1000) .0516° | .1396* | .1316°® | .1313"
(5000,5000,10000) | .0519° | .6725> | .6315° | .6317°
(5000,7500,10000) | .0513° | .6842* | .6396" | .6401°
(10000,10000,10000) | .0490° | .8410* | .8050° | .8050°
L3: (ry,r2,my,n-) = (1.0, 1.0, 10, 0)
(1000,1000,1000) .0899* | .0574° | .0728" | .0721°
(5000,5000,10000) | .3408* | .0767° | .1930° | .1854°
(5000,7500,10000) | .4378* | .0832° | .2415° | .2360°
(10000,10000,10000) | .5564* | .1006° | .3127° | .3061°
L4 : (ry,72,my,1n2) = (1.0, 1.0, 10, 30)
(1000,1000,1000) 12236 | .0963° | .1519° | .1512°
(5000,5000,10000) | .9255* | .3986° | .7436" | .7537°
(5000,7500,10000) | .9214* | .4191° | .7578" | .7627°
(10000,10000,10000) | .9851* | .5352° | .8842° | .8835°

medians of the distribution, but mostly changes the distri-
bution and ranking of the distances and hence the locations
of the samples. On the other hand, the parameters n > 0
would make the distributions more skewed to the right, and
also modify the underlying probability mass function. That
is, it would change the distribution of the distances, and
increase the variability, mean/median and ranges of the dis-
tances. We observe in our simulations that impact of n > 0
on the variation of the samples is more severe compared to
that on the distribution of the samples (see below). B

The sample generation procedure is repeated N,,. =
10000 times. The empirical power estimates under H, are
obtained as follows: We count the number of times the null
hypothesis is rejected at a = 0.05 for BF HOV test, KW
test of distributional equality, and ANOVA F-tests (with
and without HOV) of equality of mean distances. The em-
pirical power estimates are provided in Table 3, where E BF
is the empirical power estimate for BF test, Sxw is for KW
test, Bp, is for ANOVA F-test with HOV, and B, is for
ANOVA F-test without HOV. Note that as n increases, the
power estimates also increase under these alternative cases.
Using the asymptotic normality of the empirical power esti-
mates, we observe that under alternative cases L1 and L2,



the variances of the distances are not that different, so we
still have power estimates for BF test around .05 (i.e., in
terms of variance differences, these alternatives are not dif-
ferent from the null case). However, under these alternatives,
the distributions of the generated distances are different,
hence the power estimates for the distribution and location
tests (i.e., KW and ANOVA F-tests) are significantly larger
than 0.05. In fact, the larger the r, — 1.0 and 7, — 1.0, the
higher the power estimates for KW and ANOVA F-tests.
Under these alternatives, KW test tends to be more power-
ful than ANOVA F-tests, since such alternatives influence
the distribution (hence ranking) of the distances, more than
the means of the distances. Furthermore, under these alter-
natives, shape differences are more emphasized compared to
size or scale differences; here “size” refers mostly to the dis-
tance with respect to the GM/WM surface. We also note
that ANOVA F-tests (i.e., F} and F3) have about the same
power estimates.

Under alternative cases L3 and L4, the variances of the
distances tend to differ. Hence as n, and 7. deviate more
from 0 in the positive direction, the power estimates for BF
test increase, and so do the power estimates of KW and
ANOVA F-tests. Under these types of alternatives, BF test
tends to be the most powerful of the tests considered, and
ANOVA F-tests tend to be more powerful than KW tests,
since the right skewness (tail) of distances are more em-
phasized, which in turn implies that the differences in the
variances and in the mean distances are emphasized more.
Under these alternatives, both the size or scale and shape
are different. If the GM voxels from the GM/WM surface
are at different distances, BF test is the most sensitive to the
differences in LCDM distances, as these alternatives suggest
more variability in LCDM distances. Furthermore, ANOVA
F-tests are more sensitive to the differences in LCDM dis-
tances compared to KW test as these alternatives suggest
more variability in means compared to the rankings. We also
note that both ANOVA F-tests have about the same power
estimates, which suggests that ANOVA F-test tends to be
robust to deviations from HOV. Therefore, based on our
Monte Carlo analysis, we observe that the spatial correlation
between distances has a mild influence on the results. That
is, the results based on BF HOV test on multiple samples
are still reliable, although the assumption of within sample
independence and normality of the residuals are violated.

3.3.2 Pairwise power comparisons for pooled distances

For the alternative cases L1 — L4, we determine which
pairs of samples exhibit significant differences for the
analysis of pooled distances. Note that in case L1
(ry,r2,my,m=) = (1.1,1.0,0,0), the comparison of X vs
Z correspond to no difference, hence would be same as
the size comparisons; and the same holds for case L3 :
(ry,s72,my,mz) = (1.0,1.0,10,0), hence in these cases we
omit the comparison of X vs Z. In L1 : (ry, 7,7y, 7;) =
(1.1,1.0,0,0) and L2 : (ry,r5,my,m,) = (1.1,1.2,0,0), the

Table 4. The power estimates of the tests for the pairwise
comparisons of the samples based on Monte Carlo simulation
of distances under the alternative cases L2 and L4 with three

groups, X, Y, and Z each with size n,, n,, and n_,
respectively, with N,,. = 10000 Monte Carlo replicates. The
superscripts are as in Table 3

L2: (ry,r2,ny,m:) = (1.1,1.2,0,0)
(X <))

(P2, ny,n2) BBF Bw Bi Bk s
(1000,1000,1000) | .0496" | .1231* | .1187* | .1198*
(5000,5000,10000) | .0591% | .3182° | .2975° | .3907*
(5000,7500,10000) | .05319 | .3445° | .3231° | .4514%

(10000,10000,10000) | .05287 | .4930° | .4618° | .6904*
(X < 2)
(1000,1000,1000) .0531¢ | .2709° | .2602° | .2868"
(5000,5000,10000) | .06659 | .8422° | .8183° | .9753*
(5000,7500,10000) | .06339 | .8415" | .8181° | .9720°
(10000,10000,10000) | .0659% | .9428> | .9277¢ | .9987*
Y<2)
(1000,1000,1000) 05367 | .1368* | .1266° | .1323%P
(5000,5000,10000) | 05877 | .3950° | .3498° | .5084*
(5000,7500,10000) | .05779 | .4785° | .4269° | .6198*
(10000,10000,10000) | .06487 | .5338" | .4709° | .6896"
L4 : (ry,r2,my,1n-) = (1.0, 1.0, 10, 30)
(X <))
(1000,1000,1000) | .1543" [ .0714° [ .1129* | .0601¢
(5000,5000,10000) | .4201%* | .1263° | .2698" | .09717
(5000,7500,10000) | .4731% | .1302° | .2940° | .1019¢
(10000,10000,10000) | .6494> | .1687° | .4137° | .1250¢
(X < 2)
(1000,1000,1000) 4029 | .1798° | .2945° | .14387
(5000,5000,10000) | .9793* | .5770° | .8869° | .8874"
(5000,7500,10000) | .9788* | .5856° | .8895" | .8863"
(10000,10000,10000) | .9975* | .73497 | .9670° | .9947°
Y<Z2)
(1000,1000,1000) 1791 | .1278° | .1562° | .10647
(5000,5000,10000) | .6172* | .3513% | .4914 | .3909°
(5000,7500,10000) | .7098% | .42907 | .5923° | .5511°
(10000,10000,10000) | .7601* | .4740° | .6537° | .6484°

comparison of X vs ) yield the same results, hence L2 is
presented (for L1 and L2); the same holds for the com-
parison of L3 : (ry,7.,my,n.) = (1.0,1.0,10,0) and L4 :
(ry, 72,1y, m2) = (1.0, 1.0, 10, 30), hence L4 is presented (for
L3 and L4). In the alternative cases, we consider BF HOV
test, WRS test, t-test as post-hoc tests for the pairwise anal-
ysis, and also Lilliefor’s test of normality and KS test, and
estimate the empirical powers for these tests. We do not
present the power estimates for Lilliefor’s test of normality,
since our data is severely non-Gaussian by construction, and
so we get power estimates of 1.00 under both null and alter-
native cases. The power estimates are provided in Table 4,
where ﬂ Br is the power estimate for BF test, ﬂw is for WRS
test, Bt is for t-test, BKS is for KS test. We only present the
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power estimates for the left-sided alternatives for X < ),
X < Z,and Y < Z, since by construction, X distances tend
to be smaller than ) and Z distances, ) distances tend to
be smaller than Z distances, and the power estimates in the
reverse directions are virtually zero.

Under alternative case L2, the variances of the distances
are not that different, so we still have power estimates for BF
test around 0.05 (that is, in terms of HOV, these cases are
not significantly different from the null hypothesis). But the
distributions start to differ; so as ry and r, deviate further
away from 1.0 in the positive direction, the power estimates
for WRS, t-test, and KS tests tend to increase. Further-
more, as the sample size, n, increases, the power estimates
for these tests increase as well. As in the multi-sample case,
under these alternatives, WRS test is more powerful than
t-test, since the ranking of the distances are affected more
than the mean distances under these alternatives. But KS
test has the highest power estimates for all sample sizes con-
sidered. Thus, for differences in shape rather than the thick-
ness from the GM/WM surface, KS test and WRS test are
more sensitive (with the former test being more sensitive)
than t-test.

Under alternative case L4, the variances of the distances
tend to differ; as 77, and 7, deviate further away from 0 in the
positive direction, the power estimates for BF test increase,
and so do the power estimates of WRS, t-test, and KS tests.
Note that as n increases, the power estimates also increase
under each alternative case. Under these alternatives, t-test
is more powerful than WRS test, since mean distances are
more affected than the rankings under such alternatives. KS
test has higher power estimates for larger deviations from
the null case with larger sample sizes. Furthermore, BF test
tends to have the highest power estimates under these al-
ternatives. These alternatives imply that the distances of
the GM voxels are at different scales, BF test has the best
performance for small differences, while for large differences,
KS and BF test have about the same performance that is
better than the others.

Therefore, based on our Monte Carlo analysis, the spa-
tial correlation between voxels (hence distances) has a mild
influence, if any, on our results. That is, the results based
on BF HOV test are still reliable, although assumptions of
within sample independence and normality of the residuals
are violated) and the results based on the other tests (WRS
test, t-test, and KS tests) for two samples are still reliable,
although the assumption of within sample independence is
violated (and normality for the ¢-test is also violated). How-
ever, WRS test is more sensitive against the shape differ-
ences of GM of VMPFCs with similar distances from the
GM/WM boundary and BF HOV test cannot detect such
differences, since in this case, the variation of distances are
not sufficiently different between the two groups. On the
other hand, the ¢-test and KS test are more sensitive against
the differences of GM tissue with different distances from
the boundary compared to WRS test; we also notice that
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in this case, BF test has the best performance in detecting
such deviations from the null case. That is, the variation of
distances is more emphasized compared to the differences
in central locations or ranking of the distances, hence the
highest power for BF tests.

3.3.3 Pairwise power comparisons for censored distances

For the censoring distances, we consider the alternative
hypothesis in which we generate sample X as in the null
case. For sample ), we set r, = 1.2 and 1, = 0 and for
sample Z, we set r, = 1.0 and 1, = 50. So the alternative
hypothesis we consider is

(6)

and we use n, = n, = n, = 10000. So, P, is the same
as P,, (which is the null distribution) and P,, (N; =1) =
V;7i(nz) where

L5: (ry,r2,my,m2) = (1.2,1.0,0, 50)

(Vg,o(nz)v’/g,l(nz)» S Vg,lz(nz)) = V,‘f(nz) = (.171, .158,
.146,.138,.121, .104, .065, .051, .031, .008, .003, .003, .001).

Notice that sample ) is generated so that the rankings
of distances are more different than those of sample X
rather than the distances from the GM/WM surface. By
construction, sample ) would have larger variance than
sample X', while sample Z would have larger variance com-
pared to other samples. Furthermore, by construction, sam-
ple Y contains distances that are more accumulated at inter-
vals [0.5,0.6], [1.0,1.1], ...,[5.5,5.6] compared to sample X.
Therefore, at distances around these intervals, the censored
distances for sample X tend to be smaller than censored dis-
tances for sample Y around 7.1, for £ = 50,100, ...,550
(i.e., around k x 0.01 = 0.5,1.0,...,5.5). Also, the variance
of sample ) would be smaller than sample Z around these
intervals provided censoring distances are less than 4.0. On
the other hand, comparing vy ,(n,) with vy, we see that
sample Z is more likely to have distances more than 4.0
compared to those of sample X while sample X is more
likely to have distances less than 4.0 compared to those of
sample Z. Hence, we expect that for distances larger than
4.0, the censored distances for sample X tend to be smaller
than censored distances for sample Z at 7,915 for & > 400
(i.e., .01, > 4.0). The same trend is expected on variances
of these samples. That is, the variance of sample Z would be
larger than the variance of sample X for censoring distances
larger than 4.0.

We repeat the sample generation procedure N,,. = 10000
times. We count the number of times the null hypothesis
is rejected at a = 0.05 for BF test, KW test, and pairwise
WRS tests, thus obtain the empirical power estimates under
H,.

The average p-values together with 95% confidence bands
versus censoring distance values for multi-group BF HOV
test and for multi-group KW test are plotted in Figure 4.
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Figure 4. The average p-values versus censoring distances for
multi-group BF HOV test (top) and multi-group KW test
(bottom) together with the 95% confidence bands (dashed
lines) based on 10000 Monte Carlo replications of censored
X, Y, and Z sets that are generated under the alternative

case L5. Horizontal lines are at 0.05.

Observe that the differences in variance and distribution are
at about the same censoring distances except for the dis-
tances between (2.5,4.0): There are significant differences
between group variances at about v.01,% = 0.5, 1.0,..., 2.5,
and for distance values larger than 4.0. The significant differ-
ences at steps of 0.5 increments is because of the construc-
tion of sample ), and significant differences for distances
larger than 4.0 are due to sample Z. However, for censoring
distances within (2.5, 4.0), the samples seem to satisfy HOV,
but they still tend to exhibit differences in distribution at
about 2.5, 3.0, 3.5, and 4.0.

The average p-values together with 95% confidence bands
versus censoring distance values for BF HOV test for the
one-sided alternatives Var(X) > Var(Y), Var(X) < Var(Z),
and Var(Y) < Var(Z) and for WRS tests for the left-sided
alternatives X < Y (which means X values tend to be
smaller than Y values), X < Z, and Y < Z are plotted
in Figure 5. Based on BF HOV test for Var(X) > Var(Y)
alternative, we observe that censored distances for sample
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Figure 5. The average p-values together with 95% confidence
bands versus censoring distance values under the alternative
case L5 based on 10000 Monte Carlo replications for pairwise
BF HOV test for the one-sided alternatives
Var(X) > Var(Y'), Var(X) < Var(Z), and Var(Y') < Var(Z)
and for pairwise WRS tests for the one-sided alternatives
X<Y, X< Z andY > Z.

X tend to have smaller variance than censored distances
for sample Y around 7,1, for £ = 50 and larger variance
for k = 100,...,250 (i.e., smaller variance around 715 =
0.5 and larger variance around 71 = 1.0,..., 2.5). For
censored distances larger than 3.0, Var(X) and Var(Y') are
not significantly different from each other. Except around
v.01,5 = 0.5, by construction there is moderate clustering
of sample ) distances around 7.1, = 1.0,..., 2.5, which
makes Var(Y') significantly smaller than Var(X). Based on
WRS test for X < Y alternative, we observe that censored
distances for sample X tend to be smaller than censored dis-
tances for sample Y around 7.o1,% for & = 50,100, ...,350
and k > 400 (i.e., around 7,015 = 0.5, 1.0,..., 3.5 and at
v.o1k > 4.0). For censored distances larger than 4.0, the
proportions vy ,(n;) and vy ,(n,) are not large enough for
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samples X and ) to balance the accumulation of distances
around 4.0, 4.5, 5.0, and 5.5 for sample ). Hence, censored
distances for sample ) are significantly larger than those of
sample X for v,15 > 3.5.

Based on BF test for Var(X) < Var(Z) alternative, we
observe that censored distances for sample X’ tend to have
smaller variance than the censored distances for sample Z
at 7v.01,% for k > 400 (i.e., at v.01,5 > 4.0). Because, for cen-
sored distances larger than 4.0, the proportions have larger
weights for sample Z. Hence, Var(Z) is significantly larger
than Var(X) for 71,5 > 4.0. Based on WRS test for ¥ < Z
alternative, we observe that censored distances for sample
X tend to be smaller than censored distances for sample Z
at v.01,5 for k > 400 (i.e., at v.01,5 > 4.0). Because for cen-
sored distances larger than 4.0, the proportions have larger
weights for sample Z. Hence, censored distances for sam-
ple Z are significantly larger than those of sample X for
Y01,k > 4.0. Hence samples X and Z show the same trend
in variance and distribution under this alternative (which
does not occur in general).

Based on BF test for Var(Y) < Var(Z) alternative,
we observe that censored distances for sample ) tend to
have smaller variance than censored distances for sample Z
around .01, for k = 100,...,250 and k > 400 (i.e., around
~.o1,k = 1.0,...,2.5 and v,01,5 > 4.0). Furthermore, censored
distances for sample ) tend to have larger variance than
censored distances for sample Z around 1, for £ = 50
(i.e., around 701 = 0.5). Except around 71,5 = 0.5, by
construction there is moderate clustering of sample ) dis-
tances around 7915 = 1.0,..., 2.5, which makes Var(Y)
significantly smaller than Var(Z). On the other hand, for
censored distances larger than 4.0, the proportions have
larger weights for sample Z. Hence, Var(Z) is significantly
larger than Var(Y') for 7,01, > 4.0. Based on WRS test
for Y > Z alternative, we observe that censored distances
for sample ) tend to be larger than censored distances for
sample Z around 7,91 for £ = 50, 100, ..., 350 (i.e., around
~.o1k = 0.5, 1.0,. .., 3.5). For censored distances larger than
4.0, the proportions are not large enough for sample Z to
make its censored distances larger than those of sample ).
Hence, censored distances for sample Z are not significantly
different from those of sample Y for 91,5 > 4.0. This also
occurs because the proportions have larger weights for dis-
tances less than 4.0, and any parameter affecting these dis-
tances have more influence in censored distance analysis.
Moreover, for distances within (1.0, 3.0) variance differences
and distributional differences are in the opposite direction.
That is, for censoring distance in this interval, variance of
sample ) is significantly smaller than variance of sample Z,
while sample Z distances tend to be larger than sample )
distances at the same censoring distance values.

Remark 3: We omit the assessment of assumption viola-
tions and data aggregation on the censoring distance anal-
ysis via Monte Carlo simulations, because the results are
similar to the pairwise comparisons after the multi-group
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analysis in the multi-sample case in Section 3.2.2. That is,
we have the same conclusions of power comparisons in that
section extended to the two-sample case; i.e., the assumption
violations and data aggregation have negligible influence on
the size and power of the tests under consideration, in par-
ticular, for BF HOV test. B

Remark 4: The Choice of the Reference Subject for
Monte Carlo Simulations: We have chosen left VMPFC
of HR subject 1 as our baseline or reference tissue in our
Monte Carlo simulations. This subject is actually a typical
one and does not seem to be an outlier in VMPFC morphom-
etry, see, e.g., the kernel density estimate of LCDM distances
in Figure 13 (where the reference subject is indicated with
a thicker solid line). In fact, the choice of the reference sub-
ject is not so relevant in the simulations, as in the null case
we generate distances from the distance distribution of this
subject, so they would all be similar (in distances) to each
other satisfying the underlying assumption behind pooling.
Deviations from the null case (i.e., the alternatives) are gen-
erated by modifying the parameters (i.e., entries in the fre-
quency vector ,). Distances resembling other subjects can
also be generated by the same approach. For example, to
generate distances similar to subject 17 in the Ctrl group,
we could have taken the frequency vector to be v, = (2606,
2507, 2405, 2068, 1813, 1513, 1205, 822, 512, 291, 146, 62)
and then could have used it as our reference subject. B

3.4 Comparison of the tests for normal and
skewed data sets

3.4.1 Normal data

One of the main conclusions of this work is that HOV
test is (and other tests are) valid and applicable in practice
for LCDM distances, although some assumptions (such as
within sample independence and normality) are violated.
These tests can be much more powerful when the underlying
assumptions are met by the data sets. In the presence of
assumption violations, these tests might require very large
samples to attain good power, but LCDM data sets tend
to be extremely large by construction (as the voxel sizes
are usually taken at mm or half mm resolution or adjusted
accordingly based on the ROI considered) so sample size
is not an issue for LCDM distances. However, we want to
study and compare the size and power performance of the
tests when the underlying assumptions are met, and thus
consider first the normally distributed data sets that also
satisfy within and between sample independence. We choose
the same sample sizes used for the simulation of the LCDM-
like distances in Sections 3.2 and 3.3.

With k£ = 3 groups, we generate three samples X, ),
and Z each of size n,, ny, and n,, respectively, each from a
normal distribution. In particular, we generate sample X as

(7) {XS @N(uz,ox) fors:1,2,...,nz}.



Table 5. Estimated significance levels (i.e., empirical size
estimates) based on Monte Carlo simulations of normal data
(left) and exponential data (right) with three groups, X, Y,

and Z each with size ng, ny, and n,, respectively, with
Ny = 10000 Monte Carlo replicates. Superscript labeling is

as in Table 1

Table 6. The power estimates for the multi-group tests based
on Monte Carlo simulation of normal data under the given
alternatives N1 — N4 (left) and exponential data under the

alternatives E1 — E4 (right) with samples X, Y, and Z each

with size n, ny, and n., respectively, with Np,. = 10000
Monte Carlo replicates. The superscripts are as in Table 3

Normal Data
(nm,ny,nz) aBF aKW aFl aF2

(1000,1000,1000) .0498% | .0499% | .0503* | .0497%

(5000,5000,10000) | .0486* | .0529* | .0527* | .0522%

(5000,7500,10000) | .0530% | .0498> | .0519* | .0515%
(10000,10000,10000) | .0506* | .0511* | .0492* | .0492%

Exponential Data

(1000,1000,1000) [ .0455>< [ .0519* | .0492°® | .0498%"

(5000,5000,10000) | .0544> | .0500* | .0517* | .0524*

(5000,7500,10000) | .0481% | .0475% | .0463%< | .0465"
(10000,10000,10000) | .0522* | .0531* | .0553*> | .0550*>

Samples ) and Z are generated similarly. For the null case,
we choose pi; = py = p, = 3.35 and o, = 0y = 0, = 2.28;
these choices are made so that the means and standard de-
viations of the normal data (approximately) match those of
the data generated under the null case with (ry, r,,1y,1.) =
(1.0,1.0,0,0) in Section 3.2.

For the alternatives, we use

N1:py = p, =3.35, py =3.39;

Oy = 0y = 0, = 2.28,

N2: pg = 3.35, py = 3.39, p, = 3.40;
Oy =0y =0, = 2.28,

N3:py = p, = 3.35, py = 3.39;

0y =0, =2.28,0y = 2.33,

N4 : pp = 3.35, py = 3.39, p, = 3.42;
0y =2.28,0,=2.33,0, =2.37,

which correspond to cases L1 — L4, respectively. That is, the
means and standard deviations for the normal data in cases
N1 — N4 are chosen so that they (approximately) match
those of the data from cases L1 — L4, respectively.

Under N1 (resp. N2), the samples X and ) (resp. all
samples) are different in mean but same in variance. Under
N3, sample ) is different from the others in location and
variance; and under N4, samples are all different both in
mean and variance. The estimated significance levels based
on N,,. = 10000 Monte Carlo replicates at a = 0.05 level for
the multi-class tests are presented in Table 5 where all the
tests are about the desired level of .05; and the same holds
for the pairwise tests, hence their size estimates are not pre-
sented. So, the methods behave as expected in terms of em-
pirical size when all the assumptions are satisfied. The pro-
portions of agreement between the multi-sample and pair-
wise tests have the similar trend as in Tables 1 and 2 (hence
omitted again).

N1
(na,ny, n=) Bsr | Brw Bry Bry
(1000,1000,1000) .0498" | .0660* | .0645*> | .0652*
(5000,5000,10000) | .0486° | .1411* | .1453* | .1449°
(5000,7500,10000) | .0530° | .1760* | .1827* | .1829°
(10000,10000,10000) | .0506° | .2216* | .2283* | .2277°
N2
(1000,1000,1000) .0498" | .0712* | .0688* | .0682*
(5000,5000,10000) | .0486° | .1836* | .1931* | .1934"
(5000,7500,10000) | .0530° | .1913* | .1940* | .1934"
(10000,10000,10000) | .0506° | .2864" | .2996* | .3000*
N3
(1000,1000,1000) .0948* | .0650° | .0642° | .0648P
(5000,5000,10000) 3342* | 1396° | .1462" | .1423P
(5000,7500,10000) | .4269* | .1741° | .1802" | .1784P
(10000,10000,10000) | .5619* | .2178" | .2258" | .2228"
N4
(1000,1000,1000) .1610* | .0863° | .0860° | .0861°
(5000,5000,10000) | .7543> | .3133° | .3257°° | .3336°
(5000,7500,10000) | .7618* | .3153° | .3231%° | .3313P
(10000,10000,10000) | .9052* | .4546° | .4719" | .4741°
F1
(1000,1000,1000) .0531° | .1410* | .0842° | .0857°
(5000,5000,10000) | .0556° | .6168* | .2811° | .2794°
(5000,7500,10000) | .0528° | .7312* | .3560° | .3574°
(10000,10000,10000) | .0549° | .8617* | .4561° | .4585°
E2
(1000,1000,1000) .0555° | .3456™ | .1620° | .1624°
(5000,5000,10000) | .0707° | .9916* | .7871° | .7877"
(5000,7500,10000) | .0631° | .9922* | .7940° | .7942°
(10000,10000,10000) | .0738° | .9997> | .9252° | .9252P
E3
(1000,1000,1000) .0881* | .0513° | .0722° [ .0722°
(5000,5000,10000) | .2873* | .0657¢ | .1997° | .1906°
(5000,7500,10000) | .3515* | .0684° | .2423" | .2357°
(10000,10000,10000) | .4600* | .0742° | .3159° | .3070°
E4
(1000,1000,1000) 1310* | .0696° | .1100° | .1115°
(5000,5000,10000) | .6317* | .2194° | .5135" | .5270P
(5000,7500,10000) | .6378* | .2340° | .5172° | .5311°P
(10000,10000,10000) | .8214* | .3078° | .6968° | .7010°

Pooled Analysis: For pooled data, we present the power
estimates for the multi-group tests under N1 — N4 in Ta-
ble 6. Notice that and have very similar power for all cases.
Under N1 and N2, BF test has power about the nominal
level of the test (i.e., .05), and ANOVA F-tests tend to be
more powerful compared to KW test for samples larger than
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Table 7. The power estimates for pairwise tests based on
Monte Carlo simulation of normal data under the given
alternatives N2 and N4 with samples X, ), and Z each with
size ng, ny, and n, respectively, with Np,. = 10000 Monte
Carlo replicates. The superscripts are as in Table 3

Normal Data
N2: pg = 3.35, iy = 3.39, p, = 3.40;
Or =0y =0, =2.28
X<y
(Ne, Ny, n2) BBF Bw Bt Brs

(1000,1000,1000) | .0501° | .1008* | .1070* | .0942*
(5000,5000,10000) | .0519° | .2081* | .2144* | .1772P
(5000,7500,10000) | .0497° | .2435* | .2484* | .2062°
(10000,10000,10000) | .0516° | .3325* | .3455% | .2790°

X<z
(1000,1000,1000) | .0523° | .1225* | .1236* | .1121°
(5000,5000,10000) | .0478° | .3430* | .3546% | .2867°
(5000,7500,10000) | .0482° | .3463* | .3562* | .2972P
(10000,10000,10000) | .0507¢ | .4547* | .4660* | .3790°

y<Zz
(1000,1000,1000) | .0529° [ .0619* | .0636* | .0574"
(5000,5000,10000) | .0477° | .0869* | .0884* | .0766"
(5000,7500,10000) | .0479" | .0869* | .0872* | .0825%
(10000,10000,10000) | .0458° | .0919* | .0935* | .0827"

N4 : pg = 3.35, jty = 3.39, 1 = 3.42;
or =228, 0, =233, 0, =237

X<y
(1000,1000,1000) | .1535* | .1001° | .1064® | .0997°
(5000,5000,10000) | .4160* | .2054° | .2128" | .2198P
(5000,7500,10000) | .4694* | .2400° | .2468° | .2642°
(10000,10000,10000) | .6550* | .3280° | .3397° | .3861°

X<Z
(1000,1000,1000) | .3149* | .1592° | .1650° | .1635°
(5000,5000,10000) | .9057* | .52587 | .5451° | .6696°
(5000,7500,10000) | .9074* | 52719 | .5480° | .6768"
(10000,10000,10000) | .9767* | .67227 | .6913° | .8385°

y<Zz
(1000,1000,1000) | .1303* | .0866"° | .0910° | .0822°
(5000,5000,10000) | .3615% | .1847"° | .1930° | .1981°
(5000,7500,10000) | .4287* | .2070° | .2106° | .2255°
(10000,10000,10000) | .4688* | .2302° | .2323° | .2496"

1000. On the other hand, under N3 and N4, BF test has
much higher power compared to other tests, and ANOVA
F-tests are slightly more powerful than KW test for samples
larger than 1000. These results are in agreement with the
fact than under N1 and N2, variances are equal, and means
are different; while under N3 and N4, we have differences
in mean and variance.

We present the power estimates for the pairwise tests
under the alternative cases N1 — N4 in Table 7 where we
only present X < Y, X < Z, and Y < Z alternatives,
as these are the only plausible alternatives by construction
(except for N1 and N2, where variances are equal). Based
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on the same reasoning for presenting L2 and L4 only in
Table 4, we only present cases N2 and N4 here. The pairwise
tests are also performed so as to check whether the correct
direction in the differences is detected for each comparison.
As expected, under N2, power estimates of the BF HOV
test is at about the nominal level of .05 since variances are
equal by construction; ¢-test seems to be most powerful, then
comes WRS test, and then KS test. So under N2, since all
the assumptions (including equality of the variances) are
met, the parametric test of location (i.e., t-test) is more
powerful than the WRS and KS tests. However, under N4,
BF test has the highest power; and for X < ) alternative
WRS, t-test, and KS tests have power estimates as in case
N2, but for X < Z and )Y < Z alternatives these tests
are more powerful compared to the case N2; and as sample
sizes increase, KS test has the highest power (since in this
case, both location and scale are different, and WRS and ¢-
tests are sensitive to location only). Furthermore, under N2
(resp. under N4), the power estimates for X < Z is higher
for WRS, t-test, and KS test (resp. all tests) compared to
other alternative directions, as sample Z is much different
in location (resp. different in location and scale) than other
samples in this case.

Censoring Analysis: In censoring, we truncate the data
at the threshold values, hence the censored data becomes
non-normal for most of the censoring values although the
original data is normal. For example, we generate 1000 iid
samples of size 10000 from data, and perform censoring at
with lowest threshold being —2.3 and highest being 3. Lil-
liefor’s test on these data implies that until about 2.5 stan-
dard deviations above the mean, the censored data is signif-
icantly non-normal, and for larger values censored data can
be deemed to be (not different from) normally distributed.
In censoring the direction of high power can depend on the
censoring threshold. For example, if the standard deviations
are same for two samples from two different normal distri-
butions, the data with the smaller mean will have more vari-
ance for lower censoring values until a certain threshold is
reached. We choose censoring increments as, dyax = 10.5
and censoring starts at 0 (as in the LCDM distances) and
consider the alternative case

N5 : py = 3.35, py = 3.44, p, = 3.47,
0y = 2.28, 0y = 2.26, 0, = 2.40,

which is chosen so that the means and variances (approx-
imately) match those in the alternative case L5. We pro-
vide the average p-values for multi-group comparisons as a
function of the censoring values in Figure 6. Notice that
BF test suggests that significant differences in variation oc-
cur for values larger than 2, and KW test suggests that
significant differences occur for values larger than 8 (while
mildly significant differences occur for values in (3,4)). The
censoring plots for the pairwise comparisons are presented
in Figure 7. BF test implies that variation of samples X
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Figure 6. The average p-values versus censoring distances for
multi-group BF HOV test (top) and multi-group KW test
(bottom) together with the 95% confidence bands (dashed
lines) based on 10000 Monte Carlo replications of censored
X, Y, and Z sets that are generated under the alternative
case N5 for normal data. Horizontal lines are at 0.05.

and Y do not significantly differ at any censoring values
(since by hypothesis, their variances are very close to each
other), but Var(X) < Var(Z) for values larger than 5, and
Var(Y') < Var(Z) for values larger than 1.5; WRS test indi-
cates that censored & values tend to be smaller than cen-
sored Y values for censoring values larger than 5, censored
X values tend to be smaller than censored Z values for val-
ues larger than 7.5, censored ) values tend to be larger than
censored Z values for censoring values in (1,5).

We also perform censoring analysis under N1-N4, and
observe trends that are in line with the above conclusions,
and hence are deferred to the technical report [51].

In summary, when comparing two samples A and B, from
N(pq,04) and N(up, 0p), respectively, the significance of the
differences between the samples at the censoring steps de-
pends on both mean and variance differences, in particular,

BF test for Var(X) > Var(Y) BF test for Var(X) < Var(2)

average p-vaiue
average p-vaiue

T T T T T T T T T T T T
0 2 4 6 8 10 o 2 4 6 8 10
censoring distance censoring distance

BF test for Var(Y) < Var(Z) Wilcoxon test for X <Y

average p-vaiue
average p-vaiue

T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10
censoring distance censoring distance

Wilcoxon test for X <Z Wilcoxon test for Y > Z

average p-vaiue
average p-vaiue

T T T T T T T T T T T T
0 2 4 6 8 10 0 2 4 6 8 10

censoring distance censoring distance
Figure 7. The average p-values together with 95% confidence
bands versus censoring distance values under the alternative
case N5 with normal data based on 10000 Monte Carlo
replications for pairwise BF HOV test for the one-sided
alternatives Var(X) > Var(Y'), Var(X) < Var(Z), and
Var(Y') < Var(Z) and for pairwise WRS tests for the
one-sided alternatives X <Y, X < Z,andY > Z.

on i — 30 values. For example, if u, — 30, < up — 303, then
censored A values will be smaller than censored B values for
lower censoring thresholds, while the variance of censored A
values will be larger than variance of censored B values for
lower censoring thresholds.

3.4.2 Skewed data example: exponential distribution

The LCDM distances are skewed right by construction
and hence the assumption of normality is inherently vi-
olated. Our simulations suggest that this violation has a
negligible effect on the performance of the tests considered.
However, to see how the methods perform for other skewed
data sets which satisfy within and between sample indepen-
dence, we consider exponentially distributed data sets. We
choose the same sample sizes we used for the simulation of
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the LCDM-like distances in Section 3.2.

With k& = 3 groups, we generate three samples X', ), and
Z each of size n, ny, and n,, respectively, so that each one
would be a random sample from an exponential distribution.
In particular, we generate sample X as

8) D¥ = {XS YEXP(\,) for s = 1,2, .. nm}

Samples ) and Z are generated similarly from EXP()\,) and
EXP(),) with generated distances being denoted as DY .
and DZ ., respectively. For the null case, we choose \, =
Ay = A, = XA = 1.0; this choice is made so that the range
of the simulated data approximately matches that of the
LCDM distances. That is, the range of the LCDM distances
is (0,5.5), and for X ~ EXP(1) data.

For the alternatives, we mimic the alternative types we
used for the LCDM distances in Section 3.3. In particu-
lar, we first generate 1000000 data points from EXP(1) dis-
tribution, and divide the range of the distribution into 12
parts as [0,.0.5), [.5,1.0),...,[5.0,00) and count the number
of data points that fall in each interval (or bin) and round
the numbers to the hundredth digit (so that the numbers
are at the same scale as the vectors 7, and 7,(n) in Sec-
tions 3.2 and 3.3). Hence we obtain the vector of frequen-
cies Vexp = (Vexp,0; Vexp,1s - - - » Vexp,11) = (3930, 2385, 1449,
878, 534, 324, 196, 121, 73, 43, 26, 16). For the alterna-
tive hypotheses in the multi-sample case, we again consider
k = 3 groups, namely, X, Y, and Z. Let n be a nonneg-

ative integer and Vexp(n) = (V5 (), v7 2 (n),. .., V550 (1))
where ;P (n) is the " value after the entries |Vexp; — 7|
are sorted in descending order for ¢ = 0,1,2,...,11 and

v3P(n) = 9975 — 21 [Vexp.i — n|. Then we set the proba-
bility mass functions to

12
1%

) =) =) [ ) v,

Let r > 1 be a real number, then the set of simulated dis-
tances is

Poxpn (J =

) {(Je+U)/2: T “ Pogyr and U, LU (0,7) and
Js and Uy are independent for s =1,2,...,n}.

For sample X', we pick r, = 1.0, n, = 0, then we would have
data from EXP(1) distribution. The empirical size estimates
for the multi-group tests are provided in Table 5 for various
values of (ng,ny,n.). We observe that the empirical size
estimates are close to the nominal level of .05, but with
some deviations for BF and F-tests, and no deviation for
KW test. This is due to the fact that for exponential data
normality is violated, and hence nonparametric test of KW
test has better size performance compared to the parametric
tests.

In the alternatives, we generate data based on this distri-
bution with the parameters as in Section 3.3.1, that is, we
choose
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El: (ry,rz,my,n:) = (1.1,1.0,0,0);
E2: (ry,r2,my,n.) = (1.1,1.2,0,0) ;

E3: (ry,72,my,n2) = (1.0,1.0,10,0) ;
E4: (ry,72,ny,n.) = (1.0,1.0,10, 30)..

Pooled Analysis: The power estimates for the multi-group
tests under E£1— F4 are presented in Table 6. As before, and
tests have very similar power for all cases. Under E1, BF
test has power about the nominal level of .05 and under E2
the power is slightly larger than .05, as under E'1 and E2,
r values (which affect the location/ranking) are larger than
1.0. Under E1 and E2, KW test has the highest power and
then come ANOVA F-tests. From E1 to E2 power estimates
increase, since r, increases from 1.0 to 1.2. Under E3 and
E4, BF test has the highest power, then come the F-tests
and then KW test, since under these cases, the parameter
7 (which affect the scale more than location) is larger than
0. In particular, from E3 to E4, power estimates increase
since 7, increases from 0 to 30.

The power estimates for the pairwise tests under the al-
ternative cases E'1 — E4 are presented in Table 8 where
we only present the alternatives X < )Y, X < Z, and
Y < Z, as by construction these are the only sensible al-
ternatives for power estimation (except for E1 and FE2,
where variances are equal). Based on the same reasoning
for presenting only L2 and L4 in Table 4, we only present
cases E2 and E4 here. Under E2, among the comparisons,
tests have highest power for X < Z alternative, and for
each alternative, the ordering of the power estimates is KS
> WRS > ¢t > BF. Under F4, BF test has the highest
power and then comes the t-test; for smaller samples the
power order is WRS > KS and for larger samples KS >
WRS.

Censoring Analysis: For the censoring of the exponential
data, we consider the alternative

E5: (ry,72,my,n2) = (1.2,1.0,0,50)

which has the same parameters as in L5 in Equation (6)
(as in the alternative case for the LCDM-like distances).
For censoring, we use § = .01 and the range of data from
(0,5.5) for both null and alternative cases. The estimated
significance levels for the multi-class tests under the null
cases are at about the desired level for almost all distances
and are not presented.

We provide the average p-values for multi-group compar-
isons as a function of the censoring values in Figure 8. Notice
that BF test suggests that significant differences in variation
occur for values in (1.0,1.4)U(1.8,2.1)U(2.7,3.1)U(5.45,5.5),
and KW test suggests that significant differences occur for
values larger than 1.0. The censoring plots for the pair-
wise comparisons are presented in Figure 9. We observe
that BF test implies that Var(X) < Var(Y) for values in
(1.8,2.1) U (2.6,3.1) U (3.8,4.0) and Var(X) > Var(Y) for



Table 8. The power estimates based on Monte Carlo
simulation of exponential data under the given alternatives
E2 and E4 with samples X, Y, and Z each with size ng, n,,
and n,, respectively, with N,,. = 10000 Monte Carlo
replicates. The superscripts are as in Table 3

Exponential Data
E2: (ry,r2,my,n-) = (1.1,1.2,0,0)
X<y
(e ny, n2) BeF Bw Bi Brs
(1000,1000,1000) | .0587< | .2346° | .1441° | .3246*
(5000,5000,10000) | .0773% | .6650° | .3748° | .9292*
(5000,7500,10000) | .0734% | .7197° | .4077° | .9643"
(10000,10000,10000) | .0813% | .8932> | .5834¢ | .9979°
X<z
(1000,1000,1000) | .0689% | .5530° | .3206° | .8004*
(5000,5000,10000) | .1203% | .9983" | .9129° | 1.000*
(5000,7500,10000) | .1194¢ | .9984" | .9153° | 1.000*
(10000,10000,10000) | .1398° | .9999* | .9808> | 1.000*
Yy< 2z
(1000,1000,1000) | .0619% | .2334" | .1449° | .3181%
(5000,5000,10000) | .0753% | .7689" | .4367° | .9697*
(5000,7500,10000) | .0864% | .8549" | .5329° | .9923*
(10000,10000,10000) | .0906% | .8987° | .5879¢ | .9971%
E4: (ry,rz,my,n.) = (1.0,1.0, 10, 30)
X<y
(1000,1000,1000) .1410* | .0618° | .1189" | .0541¢
(5000,5000,10000) | .3651* | .0957° | .2806° | .0731¢
(5000,7500,10000) | .4081* | .0981° | .3047" | .0751¢
(10000,10000,10000) | .5714> | .1143° | .4338" | .0833¢
X<z
(1000,1000,1000) 2618 | .1326° | .2194° | .1090¢
(5000,5000,10000) | .8352* | .3799 | .7356" | .5354°
(5000,7500,10000) | .8399* | .3783% | .7388" | .5294°
(10000,10000,10000) | .9413* | 49847 | 8689 | .7727°
y<Zz
(1000,1000,1000) .1081% | .1004* | .1072* | .0880°
(5000,5000,10000) | .2795* | .2318° | .2651° | .2547°
(5000,7500,10000) | .3437* | .2848° | .3239" | .3540%
(10000,10000,10000) | .3736" | .3122¢ | .3578° | .4207"

values in (1.0, 1.4); WRS test indicates that censored X val-
ues tend to be smaller than censored ) values for censor-
ing values larger than 1.0. Moreover, BF test implies that
Var(X) < Var(Z) for values in (5.3,5.5), and X and Z val-
ues are not significantly different from each other at any cen-
soring value. BF test implies that Var(Y') < Var(Z) for val-
ues in (1.8,2.1)U(2.6,3.1)U(5.45,5.5) and Var(Y) > Var(Z)
for values in (1.0,1.4); WRS test indicates that censored )
values tend to be larger than censored Z values for censoring
values larger than 1.0.

We also perform the censoring analysis under E1 — F4
(see technical report [51]) and observe trends as in case Eb,
and so are not presented here.
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Figure 8. The average p-values versus censoring distances for
multi-group BF HOV test (top) and multi-group KW test
(bottom) together with the 95% confidence bands (dashed
lines) based on 10000 Monte Carlo replications of censored
X, Y, and Z sets that are generated under the alternative
case E5 for exponential data. Horizontal lines are at 0.05.

3.5 Simultaneous inference for HOV of
censored distances

The HOV analysis of censored distances has been per-
formed pointwise at each censoring step so far. Our Monte
Carlo simulation study indicates that the censoring anal-
ysis correctly provides the ranges of distances at which
there are significant differences between the groups. How-
ever, censored distance analysis is a type of simultaneous
inference when all the threshold values are considered to-
gether (i.e. when inference is performed for all censored dis-
tances), and it is methodologically more reliable to correct
for the multiple testing procedure (in particular, for our sim-
ulations, we have tests conducted at about 600 censoring
threshold values). In statistical literature, there are many
correction procedures for multiple testing. The most com-
mon ones are Bonferroni, Holm, Siddk corrections, Tukey
procedure, Hochberg’s step-up procedure [52], and more re-
cently introduced ones such as Benjamini-Hochberg (BH)
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Figure 9. The average p-values together with 95% confidence
bands versus censoring distance values under the alternative
case E5 with exponential data based on 10000 Monte Carlo

replications for pairwise BF HOV test for the one-sided

alternatives Var(X) > Var(Y'), Var(X) < Var(Z), and
Var(Y') < Var(Z) and for pairwise WRS tests for the
one-sided alternatives X <Y, X < Z,andY > Z.

[41] and Benjamini-Yekutieli (BY) [53] corrections. Among
these procedures, Bonferroni method is the most conserva-
tive (but perhaps most well-known) one and does not re-
quire independence of the tests, Sidék’s procedure is more
powerful than Bonferroni, but requires independence. Also,
Holm’s method is more powerful than Bonferroni, and does
not require independence. Tukey’s method is valid for pair-
wise comparisons only, hence not applicable for our censored
distance analysis. BH procedure is usually about the nom-
inal size for independent tests and in some types of depen-
dence, and BY procedure is more conservative than BH but
works for dependent tests as well. BY procedure employed
in this article is the version suggested for dependent tests in
[63]. BH and BY procedures are designed to control the pre-
specified false discovery rate (FDR) value, while the other
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procedures are designed to control for family-wise error rate
(FWER). The test statistics (hence the p-values) are not in-
dependent in our censored distance analysis, hence Sidék’s
procedure and Hochberg’s step-up procedure are not appro-
priate for our analysis.

Benjamini and Yekutieli demonstrated that BH correc-
tion is also appropriate for test statistics satisfying positive
regression dependency. Our experience suggests that the test
statistics for HOV of censored distances satisfy a form of
positive association (conditionally), and thus satisfies the
positive regression dependency. Considering all these, we
only use Bonferroni correction (as it is one of the most well-
known and common procedures in multiple testing), Holm’s
correction, BH and BY procedure for adjusting p-values in
our simultaneous inference.

We perform these corrections on the p-values for multi-
group BF HOV test provided in Figure 2 which were based
on the simulated data under H,. All corrected p-values ex-
cept BH corrected ones are virtually 1 at each censoring
threshold value and BH corrected p-values are about .80
(hence not presented). Thus, the procedures except BH pro-
cedure are extremely conservative in testing HOV of cen-
sored distances. The trend is similar for the corrected ver-
sions of the p-values of pairwise tests provided in Figure 5,
hence are not presented. We also perform corrections for
the p-values for BF HOV test under the alternatives. In
Figure 10, we present the corrected versions of the p-values
for multi-group BF test in Figure 4 which are generated
under the alternative case L5 in Equation (6). Notice that
Bonferroni and Holm corrections do not detect any devi-
ation from HOV for distances less than 4.0 (as they are
extremely conservative). On the other hand, BY corrected
version captures the general trend, but misses most of the
distance ranges of significant differences and BH corrected
version has the similar trend and catches almost all the dis-
tance ranges of significant differences. The same trend in
the corrected p-values is observed for the pairwise BF tests
under the alternatives, hence are not presented. Our Monte
Carlo simulations suggest that correction for multiple test-
ing for HOV analysis of censored distances seems not to be
a crucial procedure, as without a correction BF test cap-
tures the distance ranges of significant differences correctly
with almost no false discovery. However, for our simulta-
neous inference for ranges of distances to be more reliable,
we recommend the use of BH correction for HOV tests of
censored distances. This recommendation is based on our
Monte Carlo analysis and some theoretical justification for
(conditional) positive association of the tests.

4. CASE STUDY: THE HOV AND
LOCATION/DISTRIBUTION ANALYSIS
OF LCDM DISTANCES OF VMPFCS

In this section, we apply our methodology on our ex-
ample illustrative data set; that is, we analyze the mor-
phometric variability of GM in VMPFCs in subjects with
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Figure 10. Plotted are the average corrected p-values (solid
line) versus censoring distance values for multi-group BF test
together with the 95% confidence bands (dashed lines) based
on 10000 Monte Carlo replications of censored X, Y, and Z
sets that are generated under the alternative hypothesis in
Equation (6). BH stands for Benjamini-Hochberg correction
and BY stands for Benjamini-Yekutieli correction, and “corr.”
stands for correction.
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Figure 11. WRS test statistic for each subject of HR group
compared to HR group (without the particular subject being
tested) and MDD and Ctrl groups.

MDD, subjects with HR of MDD, and healthy subjects by
the HOV and other tests on the LCDM distances. One of
the crucial underlying assumptions behind our analysis is
that the LCDM distances for left (resp. right) VMPFC of
the subjects from the same diagnostic group have similar
morphometry, hence the distances from the left (resp. right)
VMPFCs for subjects in the same diagnostic group come
from the same distribution. We can check validity of this
assumption in various ways. For example, we can compare
each subject’s LCDM distances with respect to each diag-
nostic group by a test, say WRS test, and store the test
statistic for each subject, and compare these test statistics
for the subjects between the diagnostic groups. To make
this approach more concrete, for example, subject in HR
group is compared with the pooled HR group (subject ex-
cluded), and the same subject is compared with the pooled
MDD distances and pooled Ctrl distances. We apply the
same procedure to each subject in each group. For illustra-
tive purposes, we present only the WRS test statistics for the
HR subjects in Figure 11, where we observe that HR sub-
jects are more similar to other HR subjects, and less similar
to MDD subjects and least similar to the Ctrl subjects for
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Figure 12. Kernel density estimates of LCDM distances for
the VMPFCs of the MDD, HR and Ctrl subjects. LCDM
distances for each diagnostic group are plotted together on a
separate panel. Left VMPFC of HR subject 1 highlighted with
a dark solid line.

both left and right VMPFCs. Moreover, one can also use
exploratory means to visually determine whether the sub-
jects in each diagnostic group are similar in morphometry
to each other. Along this line, we plot the kernel density es-
timates of LCDM distances of left (resp. right) VMPFCs for
the subjects in each diagnostic group at a separate plot in
Figure 12. Notice that the subjects in each diagnostic group
have VMPFCs similar in morphometry, except possibly a
few (two to three) morphometric outliers for each diagnos-
tic group. The methodology proposed in this article would
very likely provide more reliable results if the outliers were
detected and handled properly (e.g., they are excluded from
further analysis or distances could be measured again for
better accuracy); however, the issue of (morphometric) out-
lier detection by the use of LCDM distances is not handled
in the current article and is a topic of ongoing research.
The sample sizes, means, medians, and the standard devi-
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Table 9. The sample sizes (n), means, medians, and standard
deviations (SD) of the pooled LCDM distances (in mm) for
left and right VMPFCs categorized by group

Left VMPFC
Group n Mean median SD
MDD 238937 1.62 1.46 1.13
HR 228224 1.61 1.46 1.11
Ctrl 308498 1.66 1.50 1.14
Overall 775659 1.63 1.48 1.13
Right VMPFC
MDD 170534 1.63 1.49 1.10
HR 216978 1.59 1.46 1.08
Ctrl 293479 1.66 1.53 1.12
Overall 680991 1.63 1.50 1.10

ations of the LCDM distances for each group and overall are
presented in Table 9. Notice that the order of the groups are
same in mean, median, and standard deviation of LCDMs
with HR < MDD < Ctrl for both left and right VMPFCs.
This is suggestive of shrinkage in VMPFC due to MDD or
being at HR for MDD, and also morphometric variability
seems to be reduced related to MDD or being at HR for
MDD.

4.1 The HOV analysis of pooled LCDM
distances of VMPFCs

We consider the differences in both location and spread
for the pooled distances (by group). The histograms and
the kernel density estimates (overlaid on the histograms)
of the pooled distances for the left and right VMPFCs are
presented in Figure 13. The left and right pooled distances
for each group are significantly non-normal with p < .0001
based on Lilliefor’s test of normality (see, e.g., [38]), due to
heavy right skewness of the densities. The HOV is rejected
with p < .0001 based on BF test. Hence we perform pairwise
HOV comparisons to determine which pairs violate HOV.
See Table 10 for the corresponding p-values for pairwise com-
parisons adjusted by Holm’s correction method. The order
of the variances is HR < MDD < Ctrl for both left and
right VMPFCs with p < .0001 for all six possible compar-
isons. This implies that the morphometric variation reduces
in left and right VMPFCs due to having MDD or being HR
compared to Ctrl subjects and is smallest for the HR sub-
jects for both left and right VMPFCs. However, most of the
reduction in the morphometric variation is not due to shape
but size; because as the VMPFCs shrink in size, the LCDM
distances tend to have less variation and this size shrinkage
might override or dominate the possible increases in shape
variation (if exists) due to depression or being at HR.

The equality of the distributions of the distances of
left VMPFCs is rejected with KW and ANOVA F-tests
(p < .0001 for all tests). Likewise for right VMPFC dis-
tances (p < .0001 for all tests). Hence, we perform pair-
wise comparisons by WRS test and ¢-test for left (and
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Figure 13. Histograms overlaid with the kernel density
estimates of the pooled LCDM distances for the left and right
VMPFCs.

right) VMPFC distances, using Holm’s correction for mul-
tiple comparisons. The p-values adjusted by Holm’s correc-
tion method for the simultaneous pairwise comparisons for
left and right VMPFC distances are presented in Table 10.
Observe that, with WRS test, MDD-left and HR-left dis-
tances are not significantly different and so are MDD-right
and HR-right distances (p = .6044 for former, p = .1552 for
latter), while both tend to be significantly less than Ctrl-
left distances (p < .0001 for all comparisons). Likewise for
right distances (p < .0001 for all comparisons). Observe also
that WRS test and t¢-test (for location) and BF test (for
variances) yield significant results with the same ordering
between groups (i.e., HR < MDD < Ctrl), which might be
due to cortical thinning among other factors. In Table 2, we
also present the p-values for KS test. Notice that p-values
for the one-sided tests are not complementary of each other
(i.e., the sum of left- and right-sided alternatives do not add
up to 1), since KS test declares significance for the maxi-
mum difference between the two samples, say A and B, and
at one distance value sample A can have cumulative distri-
bution function (cdf) larger than cdf of sample B, and at
another one sample B can have cdf larger than cdf of sample

Table 10. The p-values for the pairwise comparisons of the
pooled distances by WRS test, t-test, and BF HOV test. The
p-values are adjusted by Holm's correction method. (g = first
group is larger than the second and ¢ = first group is smaller
than the second.) The significant p-values are marked with an

asterisk
Left VMPFC
Pair BF HOV test WRS test t-test
MDD, HR <.0001* (g) .3022 (¢) .0383* (g)
MDD, Ctrl <.0001* (¢) <.0001* (¢) <.0001* (¢)
HR, Ctrl <.0001* (¢) <.0001* (¢) <.0001* (¢)
Pair KS test
MDD, HR <.0001* (¢) .0073* (g)
MDD, Ctrl 5362 () <.0001% (g)
HR, Ctrl 4170 (£) <.0001* (g)
Right VMPFC
Pair BF HOV test WRS test t-test
MDD, HR | <.0001* (g) 0776 (g) .0041% (g)
MDD, Ctrl <.0001* (¢) <.0001* (¢) <.0001* (¢)
HR, Ctrl <.0001* (¢) <.0001* (¢) <.0001* (¢)
Pair KS test
MDD, HR .0158* (¢) .6017 (g)
MDD, Ctrl .0069* (¢) <.0001* (g)
HR, Ctrl .0043* (¢) <.0001%* (g)

A. This behavior occurs for comparing MDD vs HR left dis-
tances, MDD vs Ctrl right distances, and HR vs Ctrl right
distances. On the other hand, cdf of each of MDD and HR
left distances is significantly larger than cdf of Ctrl left dis-
tances, and cdf of HR right distances is significantly larger
than cdf of MDD right distances. If cdf of a sample, say
sample A, is larger than cdf of sample B, then it is more
likely for sample A to have smaller values than sample B,
which might imply thinning in the context of VMPFCs.

4.2 The HOV analysis of the censored
LCDM distances of VMPFCs

Recall that at each censoring distance, 75, we have the
distance values in [0.5,7s%] mm. These censored distances
convey shape/size information at the specified s value,
i.e., at distance of 75y or less from the GM/WM surface.
We only consider the comparisons for vs 5 € [0.5,5.5] mm,
due to the confounding effect of negative distances. That
is, the influence of negative distances makes the comparison
for small censoring distance values unreliable, and this con-
founding influence becomes negligible for sufficiently large
vs5,k- Furthermore, at each censoring step k, the censored
distances are severely non-normal, and we obtain p-values
that are virtually zero based on Lilliefor’s test of normality
for each group suggesting severe non-Gaussianity for cen-
sored distances at all censoring steps.

We also perform the tests of homogeneity of variance
(HOV) of censored distances. The variance of censored dis-
tances is a measure of spread of censored distances, but since
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Figure 14. The p-values versus censoring distance values for
multi-group HOV comparison of censored distances of
VMPFCs with BF test (top) and for multi-group comparison
of censored distances with KW test (bottom).

at each censoring distance value, we restrict the spread in
the normal direction from the surface, it measures more of
variation size in the parallel direction (width) and shape.
At each step k, we perform the multi-group BF HOV test,
and store the associated p-value. The corresponding null hy-
pothesis for left censored distances is

H, : Var (Ccﬁl (k,9))

= Var (Cig (k,0)) = Var (053 (k,9))

where Var (C 5

K (k7 5)
tances for group ¢ = 1,2,3. The null hypothesis for right
censored distances is similarly defined.

The alternative has no direction when there are three or
more groups. See Figure 14 for the p-values for multi-group
HOV and KW tests (the results based on ANOVA F'-tests
are similar to the results of KW test, hence are omitted).
Observe that multi-group HOV is rejected at about the same
censoring distance value for both left and right VMPFCs.
For left VMPFCs, there are variance differences in distances
for censoring distance values 2.20 mm and higher, while for

) is the variance of left censored dis-

336 E. Ceyhan et al.

right VMPFCs, variance differences occur for censoring dis-
tance values 2.50 mm and higher. Based on KW test; we
observe that the differences between distributions (means)
of left and right censored distances start to occur at about
the same 75, value. The distributions and means of the dis-
tances are significantly different for s values of 2.00 mm
or larger for left VMPFCs, and 2.20 mm or larger for right
VMPFCs. That is, differences for right VMPFCs start to
occur at a slightly larger distance from the GM/WM sur-
face.

To find out which pairs of groups manifest variance differ-
ences in censored distances, we perform pairwise BF HOV
test. The null hypothesis for left censored distances is

: Var (od L (k, 5)) = Var (ch’2 (k, 8)
and Var (CJ, (k,0)) = Var (C’L (k,0)
and Var (k;, 0)) = Var (053 (k, 6))
For each pair, we conduct BF HOV test for both less-than

and greater-than alternatives. The less-than alternative for
the left censored distances is

Var(C (k,5)<Var( 5 (k 75)
and Var (Cf, (k,0) <Var( 73k 5)
and Var d 5 (k,6)) < Var (C (k, ))

The null and alternative hypotheses for right censored dis-
tances are similar. Then we adjust the p-values for pairwise
HOV tests by Holm’s correction method for both alterna-
tives and plot the p-values against the censoring distance
values. However, we omit the p-values corrected for multiple
testing, because BH correction is the recommended method
that works in our case and the results after BH correction
are almost identical to the uncorrected ones. See Figure 15
for the p-values for the pairwise HOV test and pairwise
WRS test for left VMPFCs. Observe that for left censored
distances, the variance of MDD group is significantly less
than Ctrl group for censoring distance values 2.3 mm and
higher; the variance of HR group is significantly less than
Ctrl group for censoring distance values 2.8 mm and higher;
and the variance of MDD group is less (resp. greater) than
HR group for 5 € [2.00, 3.00] mm (resp. vs, > 3.60 mm).
Based on the plots of the one-sided p-values, we see that
MDD left censored distances tend to be significantly less
than Ctrl left censored distances for v4 (k, §) values of 2 mm
and higher. That is, at distance values of 2 mm or larger
from the GM/WM surface, it is more likely for a voxel to be
in the exterior of GM of MDD left VMPFC compared to that
of Ctrl left VMPFC. In other words, there are fewer GM vox-
els in left VMPFC of MDD group at distance values of 2 mm
and higher compared to left VMPFC of Ctrl group. HR left
censored distances are significantly smaller for v, (k,d) val-
ues of 2.8 mm and higher compared to Ctrl left censored dis-
tances. The interpretation is as above. On the other hand,
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Figure 15. The p-values versus censoring distance values for
pairwise HOV comparisons of left censored distances with BF
test and for pairwise comparisons of left VMPFC distances
with WRS test.

MDD left censored distances are significantly less than HR
left censored distances for v, (k,d) values between 2.2 and
3.2 mm, and larger than HR left censored distances for
va (k, &) values between 4.5 mm and higher. Hence, there
are fewer GM voxels in MDD left VMPFCs at distance
values between 2.2 and 3.2 mm, and more GM voxels at
distance values larger than 4.5 mm compared to HR left
VMPFCs. Notice also the different results for MDD and HR
left distance comparisons: MDD left distances tend to be
larger than HR distances for distances at 5.0 mm or larger,
while mean distance for MDD left VMPFCs is significantly
larger than that of HR left VMPFCs at distances 4.5 mm or
larger.

See Figure 16 for the p-values for the pairwise HOV test
for right VMPFCs. For right censored distances, the vari-
ance of MDD group is significantly less than Ctrl group for
censoring distance values 2.8 mm and higher; the variance of

BF HOV tests for
right censored distances (MDD<Ctrl)

BF HOV tests for
right censored distances (MDD<HR)

- 7 -7 n fv—
@ | @ |
3 3
2 34 3 24
o o
i 1
a 34 o I
o4 o
3 3
o | o o |
° T T T T T T ° T T T T T T
0 1 2 3 4 5 o 1 2 3 4 5
censoring distance (mm) censoring distance (mm)
BF HOV tests for Wilcoxon tests for
right censored distances (HR<Ctrl) right censored distances (MDD<Ctrl)
o o
- - 1A
@ | @ |
3 3
3 2 EE
i i
o I a T4
o o
3 3
o YW —— o ] 'VA;
° T T T T T T ° T T T T T T
0 1 2 3 4 5 0 1 2 3 4 5
censoring distance (mm) censoring distance (mm)
Wilcoxon tests for Wilcoxon tests for
right censored distances (MDD<HR) right censored distances (HR<Ctrl)
o ] o
- r'— -
@ @
3 3
3 47 3 47
g g
a I+ a T4
o o
3 3
o [TY o | |
° T T T T T T ° T T T T T T
o 1 2 3 4 5 o 1 2 3 4 5

censoring distance (mm) censoring distance (mm)

Figure 16. The p-values versus censoring distance values for
pairwise HOV comparisons of right censored distances with
BF test and for pairwise comparisons of right VMPFC
distances with Wilcoxon test.

HR group is significantly less than Ctrl group for censoring
distance values 2.4 mm and higher; and the variance of MDD
group is greater than Ctrl group for v4(k,d) > 2.6mm.
MDD right censored distances are significantly less than Ctrl
right censored distances for v4 (k,0) values of 2.6 mm and
higher. That is, at distance values of 2.6 mm or larger from
the GM/WM surface, it is more likely for a voxel to be in
the exterior of GM of MDD right VMPFC compared to that
of Ctrl right VMPFC. In other words, there are fewer GM
voxels in right VMPFC of MDD group at distance values
of 2.6 mm and higher compared to right VMPFC of Ctrl
group. HR right censored distances are significantly smaller
for vq (k,d) values of 2.2 mm and higher compared to Ctrl
right censored distances. The interpretation is as above. On
the other hand, MDD right censored distances are signifi-
cantly larger than HR right censored distances for 4 (k, §)
values of 2.2 mm or larger. Hence, there are more GM voxels
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in MDD right VMPFC at distance values 2.2 mm or larger
compared to HR right VMPFCs.

Remark 5: Handling Twin Dependence: For the BF
HOV test, we are actually performing ANOVA F-test on
the residuals from the median, which is assuming within
and between sample independence. In our example data set,
the diagnostic groups consist of twin pairs. In particular,
each MDD subject has a cotwin (i.e., the other member of
the twin pair) who is labeled as HR (for MDD), and also,
the Ctrl group consists of 14 twin pairs. Thus, we do not
only have spatial dependence (due to the neighboring vox-
els) in the LCDM distances, but also (genetic) dependence
between the LCDM distances of the cotwins. First observe
that paired sample analysis cannot be performed on the dis-
tances of cotwins, since the number of LCDM distances do
not match for the cotwins, so one cannot take differences of
the distances and then analyze. We can view the distance
measurements on cotwins as repeated measures, but the dis-
tance data is not balanced (that is, the number of distances
(i.e., replications) for each subject is different). However,
one can still account for such dependence by using a linear
mixed effects model. In particular, in the “Ime4” package in
R, one can use “Imer” command with properly declaring the
error structure. For example, let “resid” be residuals from
the median, “lab” stand for the diagnostic labels, and “twin”
for the twin factor (i.e., takes the same value for each twin
pair), then the usual BF HOV test (assuming independence)
would be based on the linear modeling of residuals with the
labels as “anova(Im(resid ~ lab))”. However, to take the twin
dependence into account, we can perform mixed modeling
as “Imer(resid ~ lab +(1[twin))”. In particular, without ac-
counting for twin dependence, BF HOV test yields the test
statistic ' = 216.98, p < .0001, and with the mixed mod-
els approach, we obtain ¢t = —5.66, p < .0001 (which is for
comparing MDD residuals with HR residuals). This com-
parison suggests that although BF HOV test and the distri-
bution/location tests are robust to non-normality and mild
within sample dependence (due to spatial dependence from
nearby voxels), between sample dependence (as in MDD vs
HR) and within sample dependence as in the dependence be-
tween cotwins among Ctrl subjects seem to influence these
tests much more severely. However, our goal in this article
is not to tackle twin or other types of (between) sample de-
pendence structures, but assess the application of the BF
HOV test on the pooled and censored distances. So in our
illustration of the method on the real life data, we ignore
the twin dependence, as the methodology is intended to be
applied to data that satisfies between sample independence.
Yet, for interested readers, we also point out how to address
such dependence in this remark. H

5. DISCUSSION AND CONCLUSIONS

In this article, we use LCDM distances to detect mor-
phometric variability in brain tissues related to diseases.
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The ROI is the GM tissue in Ventral Medial Prefrontal
Cortices (VMPFCs) for three groups of subjects; namely,
subjects with major depressive disorder (MDD), subjects
with high risk (HR) of MDD, and healthy control subjects
(Ctrl). Our study comprises of (MDD, HR) and (Ctrl, Ctrl)
cotwin pairs. Previously, to extract more information from
the LCDM distances, pooling of the LCDM distances by
group was recommended [8]. The pooled distances have been
shown to be a powerful method to detect group differences
in morphometry and stochastic ordering of the distances.
In the same reference, it has also been shown that pooled
LCDM distances are not significantly affected by the as-
sumption violations such as within sample dependence or
non-Gaussianity of the distances. Moreover, to determine
at which distance from GM/WM surface the significant dif-
ferences occur, censoring of LCDM distances was proposed
[20], where it was also shown that the effect of assump-
tion violations and data aggregation (due to censoring) has
negligible effect on the inference based on censored LCDM
distances.

For the current analysis, to test the homogeneity of the
variances (HOV), we employ Brown-Forsythe (BF) test. BF
HOV test is equivalent to applying ANOVA on the abso-
lute difference of each distance (i.e., residuals) from the me-
dian. Hence BF test requires within sample independence
and Gaussianity not for the individual distances, but for
the residuals. However, if the raw distances satisfy these as-
sumptions, so would the residuals. For LCDM data, within
sample independence is violated due to the spatial correla-
tion between LCDM distances that are from close-by voxels
and Gaussianity is violated due to severe right skew of the
distances. However, our Monte Carlo study shows that the
influence of these violations is almost negligible for the BF
test (as is the case for other tests (see [8]).

We demonstrate that HOV analysis of the pooled and
censored LCDM distances yields important complementary
information to the other tests of location (like ANOVA F-
tests, or t-tests) or tests of distribution (like KW test, WRS
test, and KS test) and is a powerful tool to detect morpho-
metric variability. That is, HOV methodology is suggested
as a complementary tool to the analysis as done in [8] and
[20], and it gives information on “morphometric variabil-
ity”; say for two groups A and B, if group A has distances
with less variation than group B, then the morphometry
of group A is closer to each other with more common defin-
ing characteristics. Furthermore, morphometric inference for
group A would be more precise, which would be important
in potential research or clinical applications. The HOV anal-
ysis on LCDM distances indicate that variability of left and
right distances tend to decrease due to MDD or HR and the
morphometric variation is smallest for the HR subjects for
both left and right VMPFCs possibly due to thinning in left
and right VMPFCs. Then the morphometry of MDD and
HR subjects is less variable compared to healthy subjects,
which indicates that statistical inference based on LCDM
distances will be more reliable for these groups.



Using pooled LCDM distances, we can obtain an over-
all assessment of the morphometric variability, but not of
the location of such differences, which could be crucial for
understanding the underlying neurobiology. Hence, we also
use censored LCDM distances for HOV analysis. That is, we
also perform tests of equality of variances (i.e., HOV) of cen-
sored LCDM distances to detect the location (i.e., distance
with respect to the GM/WM surface) of morphometric vari-
ations in cortex for GM start to be significant due to vari-
ous conditions or associated with specific diseases. When the
pooled LCDM distances are censored, we only keep distances
up to censoring distance values 755 € {0.01,0.02,...,5.50}.
The censored distances (i.e., distances in [0.5, v 5] mm) can
be used to determine the distance values (from GM/WM
surface) at which significant group differences in variation
can occur. In addition to the assumption violations for the
pooled distances, there is also the issue of data aggregation
at each censoring step. Our extensive Monte Carlo simu-
lation study suggests that the influences of the assumption
violations and data aggregation on HOV analysis of censored
distances are negligible. We observe that BF HOV test and
the other tests considered have significantly different rejec-
tion and acceptance regions, hence do not provide the same
information. So we recommend BF tests in addition to other
tests (of location or distribution) for censored LCDM dis-
tances, since they can help better understand the effect of
the disease on the tissue in question.

The HOV analysis of the censored distances can be im-
plemented in a pointwise fashion. Although our extensive
Monte Carlo simulation study indicates that it also cap-
tures the distance ranges of significant differences (i.e., dis-
tances at which HOV is significantly violated) correctly.
To have more reliable simultaneous inference, we discuss
and apply various correction procedures for multiple test-
ing. Among the correction methods we demonstrate that
Benjamini-Hochberg (BH) procedure seems to be the most
appropriate, as it maintains the correct conclusions for the
null and alternative cases. The other methods are either ex-
tremely conservative (e.g., Bonferroni or Holm) or require
independence (e.g., Siddk and Hochberg) of the tests per-
formed. BH method also requires independence but is also
valid for a special form of dependence, and there is evidence
that censored LCDM distances satisfy this type of depen-
dence (called positive regression dependency in [53]).

We also apply the methodology on simulated data sets
from normal and exponential distributions. The pooled nor-
mal data satisfy all the assumptions (i.e., normality, within
and between sample independence) and the pooled expo-
nential data satisfy all assumptions except normality. On
the other hand censored data violates normality for all cen-
soring steps for non-normal distributions and except the last
few steps for normal distributions. The pooled analysis on
these data sets yield expected overall results (i.e., reflects
the overall differences by design). However, the censoring
analysis should be carefully interpreted and its local nature

should always be taken into account. We observe that when
more of the assumptions hold parametric tests tend to have
higher power in pooled analysis; however, we also observe
that the alternative parameters (that influence scale and lo-
cation of the data) are more decisive on the performance of
the tests compared to the distribution of the data sets. For
example, at one type of alternatives, the higher power is at-
tained by the exponential data while at another type higher
power is attained by the normal data. In choosing the lowest
(i.e., the first) censoring threshold we recommend the follow-
ing approach. If data supports are bounded and are known,
pick the largest of the infimum of the supports as the first
censoring threshold, if the data support is unbounded below
(as in the normal case), pick the lowest value that guarantees
about 5-10 values for each sample when this value is used
as a threshold, or pick a value close to the largest p — 2.30
values for the samples in the normal case. In practice, when
the data supports are unknown, one can also choose the low-
est value that guarantees about 5-10 values are available for
the data analyses/comparisons. Also for some data there is
a natural choice like the value 0 as in the LCDM data set.

Finally, we emphasize that the methodology used in this
article for analyzing VMPFC shape variation differences is
valid for application in other structures that lend themselves
for measuring LCDM distances.
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LIST OF ABBREVIATIONS

LCDM: Labeled Cortical Distance Map

GM: Gray Matter; WM: White Matter; CSF: Cerebrospinal
Fluid

BF Test: Brown-Forsythe Test

HOV: Homogeneity of Variance

VMPFC: Ventral Medial Prefrontal Cortex

MDD: Major Depressive Disorder; HR: High Risk; Ctrl:
Control or Healthy

CA: Computational Anatomy

MRI: Magnetic Resonance Imaging

ROI: Region of Interest

KW Test: Kruskal-Wallis Test

WRS Test: Wilcoxon Rank Sum Test
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KS Test: Kolmogorov-Smirnov Test
BH Procedure: Benjamini-Hochberg Procedure
BY Procedure: Benjamini-Yekutieli Procedure
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