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Type I multivariate zero-inflated generalized
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Excessive zeros in multivariate count data are often en-
countered in practice. Since the Poisson distribution only
possesses the property of equi-dispersion, the existing Type
I multivariate zero-inflated Poisson distribution (Liu and
Tian, 2015, CSDA) [15] cannot be used to model mul-
tivariate zero-inflated count data with over-dispersion or
under-dispersion. In this paper, we extend the univari-
ate zero-inflated generalized Poisson (ZIGP) distribution to
Type I multivariate ZIGP distribution via stochastic repre-
sentation aiming to model positively correlated multivari-
ate zero-inflated count data with over-dispersion or under-
dispersion. Its distributional theories and associated proper-
ties are derived. Due to the complexity of the ZIGP model,
we provide four useful algorithms (a very fast Fisher-scoring
algorithm, an expectation/conditional-maximization algo-
rithm, a simple EM algorithm and an explicit majorization–
minimization algorithm) for finding maximum likelihood es-
timates of parameters of interest and develop efficient statis-
tical inference methods for the proposed model. Simulation
studies for investigating the accuracy of point estimates and
confidence interval estimates and comparing the likelihood
ratio test with the score test are conducted. Under both AIC
and BIC, our analyses of the two data sets show that Type I
multivariate ZIGP model is superior over Type I multivari-
ate zero-inflated Poisson model.

Keywords and phrases: AIC, BIC, EM algorithm, Fisher
scoring algorithm, MM algorithm, Multivariate zero-inflated
generalized Poisson distribution, Zero-inflated count data.

1. INTRODUCTION

Count data with excessive zeros are frequently encoun-
tered in a number of research fields such as medicine, pub-
lic health, agriculture, ecology, econometrics, manufacturing
and so on. Several distributions of mixture including the
zero-inflated Poisson (ZIP), zero-inflated binomial (ZIB),
zero-inflated negative binomial (ZINB) have been proposed
to handle such count data. For example, Lambert (1992)
[12] introduced a ZIP regression model with an application
to defects in manufacturing; Hall (2000) [7] described a ZIB
regression model and incorporated random effects into ZIP
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and ZIB models; Lee et al. (2001) [13] generalized the ZIP
model by incorporating the extent of individual exposure;
and Minami et al. (2007) [16] proposed the ZINB model and
applied it to model the shark by catch data. Other existing
models in the literature include the hurdle model (Mullahy,
1986) [17], the two-part model (Heibron, 1994) [8], and the
semi-parametric model (Li, 2012) [14].

The equality of mean and variance characterizes the Pois-
son distribution. It has also been observed that in a popu-
lation the probability of the occurrence of an event does
not remain constant and changes with time and/or previ-
ous occurrences, resulting in unequal mean and variance in
the data. As a useful generalization of the standard Pois-
son distribution, the generalized Poisson (GP) distribution
was introduced firstly by Consul and Jain (1973) [1] as a
limiting form of the generalized negative binomial distribu-
tion, implying that there is some changing tendency in the
parameter with successive occurrences by adding an addi-
tional parameter. It is an important competitor to the nega-
tive binomial model when the count data are over-dispersed
since the variance of the GP distribution cpuld be greater
than, equal to or smaller than its mean depending on if
the additional parameter is positive, zero or negative. A
non-negative integer valued random variable X is said to
have a GP distribution with parameter λ ∈ R+ and disper-
sion parameter θ, if its probability mass function (pmf) is
given by (Consul and Jain, 1973 [1]; Consul and Shoukri,
1985 [2])

f(x;λ, θ)(1.1)

=

⎧⎨⎩ λ(λ+ θx)x−1e−λ−θx

x!
, x = 0, 1, . . . ,

0, for x > q when θ < 0,

where max(−1,−λ/q) < θ � 1 and q � 4 is the largest
positive integer for which λ + θq > 0 when θ < 0. We de-
note it by X ∼ GP(λ, θ). When θ = 0, the GP(λ, θ) dis-
tribution reduces to the Poisson(λ) distribution with the
property of equi-dispersion. When θ > 0 (or θ < 0), the
GP(λ, θ) distribution can be used to model count data with
over-dispersion (or under-dispersion). When λ = 0, the
GP(λ, θ) reduces to the degenerate distribution Degener-
ate(0).

Based on (1.1), some researchers developed so-called zero-
inflated generalized Poisson (ZIGP) and zero-adjusted gen-
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eralized Poisson (ZAGP) models as alternatives to ZIP, ZIB
and ZINB models for the analysis of count data with ex-
tra zeros. For example, Gupta et al. (1996) [5] studied gen-
eral zero-adjusted count data models, proposed a ZAGP
distribution and investigated the relative error incurred
by ignoring the adjustment. They also provided real data
sets where the ZAGP distribution fits very well. Gupta et
al. (2004) [6] studied the ZIGP regression model and de-
veloped a score test to determine whether an adjustment
for zero inflation is necessary. Famoye and Singh (2006)
[4] developed a ZIGP regression model to model domestic
violence data. Xie and Wei (2010) [21] extended the ZIP
mixed regression model to the ZIGP mixed regression model
and Xie et al. (2014) [22] provided a Markov chain Monte
Carlo method for dealing with the complexity of the ZIGP
model.

Excessive zeros in multivariate count data are often en-
countered in practice, e.g., when events involve different
types of defects in a manufacturing process near its per-
fect state, the univariate zero-inflated count distributions
are no longer appropriate. To model dependent structure
in multivariate count data, some authors have extended
the univariate ZIP distribution to multivariate ZIP distri-
bution, for example, Liu and Tian (2015) [15] introduced
the Type I multivariate ZIP distribution in order to model
correlated multivariate count data with extra zeros. Since
the Poisson distribution only possesses the property of equi-
dispersion, the existing Type I multivariate ZIP distribution
cannot be used to model multivariate zero-inflated count
data with over-dispersion or under-dispersion. In this pa-
per, we extend the univariate ZIGP distribution to Type
I multivariate ZIGP distribution via stochastic representa-
tion aiming to model positively correlated multivariate zero-
inflated count data with over-dispersion or under-dispersion.
Its distributional theories and associated properties are de-
rived. Due to the complexity of the ZIGP model, we will
provide four useful algorithms (a very fast Fisher-scoring
algorithm, an ECM algorithm, a simple EM algorithm and
an explicit MM algorithm) for finding maximum likelihood
estimates (MLEs) of parameters of interest and will de-
velop efficient statistical inference methods for the proposed
model.

The rest of the paper is organized as follows. In Section 2,
we introduce the Type I multivariate ZIGP distribution, and
study the distributional theories and corresponding proper-
ties. In Section 3, the likelihood-based statistical inferences
about parameters of interest are provided. Simulation stud-
ies for investigating the accuracy of point estimates and con-
fidence interval estimates and comparing the likelihood ratio
test with the score test are conducted in Section 4. In Sec-
tion 5, two real examples are used to illustrate the proposed
methods and to compare with existing methods. A discus-
sion is given in Section 6. Some detailed technical proofs are
put in the Appendices.

2. TYPE I MULTIVARIATE
ZERO-INFLATED GENERALIZED

POISSON DISTRIBUTION

Let Z ∼ Bernoulli(1 − φ), X ∼ GP(λ, θ) and Z ⊥⊥ X.
The random variable Y ∼ ZIGP(φ, λ, θ) has the following
stochastic representation (SR):

(2.1) Y
d
= ZX =

{
0, with probability φ,

X, with probability 1− φ,

where the symbol “
d
=” means that the random variables on

both sides of the equality have the same distribution. When
θ = 0, the ZIGP(φ, λ, θ) reduces to the zero-inflated Poisson
distribution ZIP(φ, λ). Alternative to (2.1), we obtain the
following mixture representation:

Z ∼ Bernoulli(1− φ) and Y |(Z = z) ∼ GP(λz, θ).

From (2.1), we immediately obtain⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E(Y ) =
(1− φ)λ

(1− θ)
,

E(Y 2) =
(1− φ)λ

(1− θ)3
+

(1− φ)λ2

(1− θ)2
,

Var(Y ) =
(1− φ)λ

(1− θ)3
+

φ(1− φ)λ2

(1− θ)2
,

where θ < 1.
Motivated by the SR (2.1) of the univariate ZIGP dis-

tribution, we can extend it to the multivariate version by
means of an SR in a vector form with a common Z to char-
acterize the correlation structure among the components, as
shown in the following definition.

Definition 1. Let Z ∼ Bernoulli (1 − φ), x =
(X1, . . . , Xm)�, Xi ∼ GP(λi, θi) for i = 1, . . . ,m,
and (Z,X1, . . . , Xm) are mutually independent. An m-
dimensional discrete random vector y = (Y1, . . . , Ym)� is
said to have a Type I multivariate ZIGP distribution if

(2.2) y
d
= Z x =

{
00, with probability φ,

x, with probability 1− φ,

where φ ∈ [0, 1), λ = (λ1, . . . , λm)� ∈ Rm
+ , θ =

(θ1, . . . , θm)�, max(−1,−λi/qi) < θi � 1 and qi � 4
is the largest positive integer for each λi + θiqi > 0
when θi < 0. We write y ∼ ZIGP(I)

m (φ,λ,θ) or y ∼
ZIGP(I)(φ;λ1, . . . , λm, θ1, . . . , λm) and call x the base vector
of the y. ¶

2.1 Joint pmf and joint cumulative
distribution function

The joint pmf of y ∼ ZIGP(I)
m (φ,λ,θ) is denoted by

f(y|φ,λ,θ) = Pr(y = y) = Pr(ZXi = yi, 1 � i � m).
If y = 00m, we have
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f(y|φ,λ,θ)
= Pr(ZXi = 0, 1 � i � m)

= Pr(Z = 0) + Pr(Z = 1, Xi = 0, 1 � i � m)

= φ+ (1− φ)e−λ+ ,(2.3)

where λ+ =
∑m

i=1 λi. If y �= 00m, we have

f(y|φ,λ,θ)
= Pr(Z = 1, Xi = yi, 1 � i � m)

= (1− φ)e−λ+−
∑m

i=1 θiyi

m∏
i=1

λi(λi + θiyi)
yi−1

yi!

=̂ (1− φ)a,(2.4)

By combining (2.3) with (2.4), we obtain

f(y|φ,λ,θ)
= [φ+ (1− φ)e−λ+ ]I(y = 00) + (1− φ)aI(y �= 00)(2.5)

= φPr(ξ = y) + (1− φ) Pr(x = y),

where ξ = (ξ1, . . . , ξm)� and {ξi}mi=1
iid∼ Degenerate(0).

Let y ∼ ZIGP(I)
m (φ,λ,θ). For any non-negative real vec-

tor y = (y1, . . . , ym)�, the joint cumulative distribution func-
tion of y is given by

Pr(y � y)

= φPr(ξ = 00) + (1− φ) Pr(x � y)

= φ+ (1− φ)
m∏
i=1

Pr(Xi � yi)

= φ+ (1− φ)

m∏
i=1

[
yi∑

ki=0

λi(λi + θiki)
ki−1e−λi−θiki

ki!

]

for y1, . . . , ym � 0.

2.2 Mixed moments and moment generating
function

From (2.2), it is not difficult to obtain⎧⎪⎨⎪⎩
E(y) = (1− φ)α,

E(yy�) = (1− φ)[diag(β) +αα�],

Var(y) = (1− φ)[diag(β) + φαα�],

where α = (α1, . . . , αm)�, αi = λi/(1 − θi), β =
(β1, . . . , βm)�, βi = λi/(1 − θi)

3, θi < 1 for i = 1, . . . ,m.
Thus we have

Corr(Yi, Yj)

=

√
λiλj(1− θi)(1− θj)

[(1− θi)λi + 1/φ][(1− θj)λj + 1/φ]

for i �= j. In particular, when λi = λj = λ and θi = θj = θ,
we obtain

Corr(Yi, Yj) =
φλ(1− θ)

1 + φλ(1− θ)
, i �= j.

By using the formula of E(ξ) = E[E(ξ|η)], we
can obtain the moment generating function of y ∼
ZIGP(I)(φ;λ1, . . . , λm, θ1, . . . , θm), given by

My(t) = E[exp(t�y)] = E[exp(Z · t�x)]

= E
{
E[exp(Zt�x)|Z]

}
= E

[
m∏
i=1

MXi(tiZ)

]

= φ

m∏
i=0

MXi(0) + (1− φ)

m∏
i=1

MXi(ti),

where

MXi(0) = exp

{
−λi

θi

[
W (−θie

−θi) + θi

]}
and

MXi(ti) = exp

{
−λi

θi

[
W (−θie

−θi+ti) + θi

]}
for i = 1, . . . ,m; the Lambert W (·) function is defined by
W (x) exp[W (x)] = x, for more details about this function
see Corless et al. (1996) [3].

2.3 Marginal distributions

Let y ∼ ZIGP(I)(φ;λ1, . . . , λm, θ1, . . . , θm). Partition y
into two parts

y =

(
y(1)

y(2)

)
, where y(1) =

⎛⎜⎝Y1

...
Yr

⎞⎟⎠, y(2) =

⎛⎜⎝Yr+1

...
Ym

⎞⎟⎠ .

We can partition x in the same fashion. According to Defi-
nition 1, we obtain
(2.6){

y(1) d
= Zx(1) ∼ZIGP(I)(φ;λ1, . . . , λr, θ1, . . . , θr) and

y(2) d
= Zx(2) ∼ZIGP(I)(φ;λr+1, . . . , λm, θr+1, . . . , θm).

In fact, for any positive integers i1, . . . , ir satisfying 1 � i1 <
· · · < ir � m, we have⎛⎜⎝Yi1

...
Yir

⎞⎟⎠ d
= Z

⎛⎜⎝Xi1
...
Xir

⎞⎟⎠
∼ ZIGP(I)(φ;λi1 , . . . , λir , θi1 , . . . , θir).(2.7)

2.4 Conditional distributions

2.4.1 Conditional distribution of y(1)|y(2)

From (2.5) and (2.6), the conditional distribution of
y(1)|y(2) is given by

Pr(y(1) = y(1)|y(2) = y(2)) =
f(y|φ,λ,θ)

Pr(y(2) = y(2))
(2.8)
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=
[φ+ (1− φ)e−λ+ ]I(y = 00) + (1− φ)aI(y �= 00)[
φ+(1− φ)e−λ

(2)
+

]
I(y(2)=00)+(1− φ)a2I(y(2) �=00)

,

where a is defined by (2.4), λ
(2)
+ =

∑m
i=r+1 λi = λ+ − λ

(1)
+ ,

and

(2.9) a2 = e−λ
(2)
+ −

∑m
i=r+1 θiyi

m∏
i=r+1

λi(λi + θiyi)
yi−1

yi!
.

We consider two cases. Case I: y(2) �= 00. Under Case I, it
is obvious that y �= 00. From (2.8) and (2.9), it is easy to
obtain

Pr(y(1) = y(1)|y(2) = y(2))

=

r∏
i=1

λi(λi + θiyi)
yi−1e−λi−θiyi

yi!
=

a

a2
=̂ a1.(2.10)

This implies y(1)|(y(2) = y(2) �= 00)
d
= x(1), not depending on

Z. In other words, given y(2) �= 00, (Y1, . . . , Yr) are mutually

independent and Yi|(y(2) = y(2) �= 00)
d
= Xi ∼ GP(λi, θi),

being free from φ.

Case II: y(2) = 00. Under Case II, it is possible that y(1) =
00 or y(1) �= 00. When y(1) = 00, from (2.8), we obtain

Pr(y(1) = 00|y(2) = 00) =
φ+ (1− φ)e−λ+

φ+ (1− φ)e−λ
(2)
+

= φ∗ + (1− φ∗)e−λ
(1)
+ ,(2.11)

where φ∗ =̂φ eλ
(2)
+ /(φ eλ

(2)
+ + 1 − φ). When y(1) �= 00, from

(2.8), we have

Pr(y(1) = y(1)|y(2) = 00)(2.12)

=
(1− φ)e−λ+−

∑ r
i=1 θiyi

∏r
i=1 λi(λi + θiyi)

yi−1/yi!

φ+ (1− φ)e−λ
(2)
+

=
(1− φ)e−λ

(1)
+ −

∑ r
i=1 θiyi

∏r
i=1 λi(λi + θiyi)

yi−1/yi!

φ eλ
(2)
+ + (1− φ)

= (1− φ∗)e−λ
(1)
+ −

∑ r
i=1 θiyi

r∏
i=1

λi(λi + θiyi)
yi−1

yi!

(2.10)
= (1− φ∗)a1.

By combining (2.11) with (2.12), we obtain

Pr(y(1) = y(1)|y(2) = 00)

=
[
φ∗ + (1− φ∗)e−λ

(1)
+

]
I(y(1) = 00)

+ (1− φ∗)a1I(y
(1) �= 00),

i.e., y(1)|(y(2) = 00) ∼ ZIGP(I)(φ∗;λ1, . . . , λr, θ1, . . . , θr).

2.4.2 Conditional distribution of Z|y

Since Z ∼ Bernoulli(1 − φ), Z only takes the value 0 or
1. Note that

Pr(Z = 1|y = y) =
Pr(Z = 1,x = y)

f(y|φ,λ,θ)
(2.4)
=

(1− φ) a

f(y|φ,λ,θ)

(2.5)
=

⎧⎨⎩
(1− φ)e−λ+

φ+ (1− φ)e−λ+
, if y = 00,

1, if y �= 00.

Therefore,

(2.13) Z|(y = y) ∼
{

Bernoulli(ψ), if y = 00,

Degenerate(1), if y �= 00,

where

(2.14) ψ =̂
(1− φ)e−λ+

φ+ (1− φ)e−λ+
.

2.4.3 Conditional distribution of x|y

If y = 00, we have

Pr(x = x|y = 00) =
Pr(x = x,y = 00)

Pr(y = 00)

=
Pr(x = 00,y = 00)

f(00|φ,λ,θ) I(x = 00)

+
Pr(x = x, Z = 0)

f(00|φ,λ,θ) I(x �= 00)

=
Pr(x = 00)

f(00|φ,λ,θ)I(x = 00) +
φPr(x = x)

f(00|φ,λ,θ) I(x �= 00)

(2.5)
=

e−λ+

φ+ (1− φ)e−λ+
I(x = 00)

+
φ
∏m

i=1 λi(λi + θixi)
xi−1e−λi−θixi/xi! · I(x �= 00)

φ+ (1− φ)e−λ+

(2.14)
= [ψ + (1− ψ)e−λ+ ]I(x = 00)

+

[
(1− ψ)

m∏
i=1

λi(λi + θixi)
xi−1e−λi−θixi

xi!

]
I(x �= 00),

i.e.,

(2.15) x|(y = 00) ∼ ZIGP(I)(ψ;λ1, . . . , λm, θ1, . . . , θm).

If y �= 00, we have

Pr(x = x|y = y) =
Pr(x = x,y = y)

Pr(y = y)

=
Pr(x = y, Z = 1)

f(y|φ,λ,θ) = 1.
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Thus, given y = y �= 00, (X1, . . . , Xm) are independent and

(2.16) Xi|(y = y �= 00) ∼ Degenerate(yi), i = 1, . . . ,m.

2.4.4 Conditional distribution of Xi|(Yi = yi = 0), i =
1, . . . ,m

From (2.7), we have Yi ∼ ZIGP(φ, λi, θi). Thus,

Pr(Xi = xi|Yi = 0) =
Pr(Xi = xi, Yi = 0)

Pr(Yi = 0)

=
Pr(Xi = 0, Yi = 0)

f(0|φ, λi, θi)
I(xi = 0)

+
Pr(Xi = xi, Z = 0)

f(0|φ, λi, θi)
I(xi > 0)

=
Pr(Xi = 0)

f(0|φ, λi, θi)
I(xi = 0) +

φPr(Xi = xi)

f(0|φ, λi, θi)
I(xi > 0)

=
e−λi

φ+ (1− φ)e−λi
I(xi = 0)

+
φ

φ+ (1− φ)e−λi

λi(λi + θixi)
xi−1e−λi−θixi

xi!
I(xi > 0)

= [φ∗
i + (1− φ∗

i )e
−λi ]I(xi = 0)

+ (1− φ∗
i )
λi(λi + θixi)

xi−1e−λi−θixi

xi!
I(xi > 0),

i.e., Xi|(Yi = 0) ∼ ZIGP(I)(φ∗
i , λi, θi), where

φ∗
i =

(1− φ)e−λi

φ+ (1− φ)e−λi
.

2.4.5 Conditional distribution of Xi|(Yi = yi > 0), i =
1, . . . ,m

Since

Pr(Xi = xi|Yi = yi) =
Pr(Xi = xi, Yi = yi)

Pr(Yi = yi)

=
Pr{Xi = yi, Z = 1}

f(yi|φ, λi, θ)
= 1,

we obtain Xi|(Yi = yi > 0) ∼ Degenerate(yi).

3. LIKELIHOOD-BASED STATISTICAL
INFERENCES

Suppose that y1, . . . ,yn is a random sample of
size n from the Type I m-dimensional ZIGP distri-
bution ZIGP(I)(φ;λ1, . . . , λm, θ1, . . . , θm), where yj =
(Y1j , . . . , Ymj)

� for j = 1, . . . , n. Let yj = (y1j , . . . , ymj)
�

denote the realization of the random vector yj , and Yobs =
{y1, . . . ,yn} be the observed data. Furthermore, Let J0 =
{j|yj = 00, j = 1, . . . , n} and n0 =

∑n
j=1 I(yj = 00) de-

note the number of elements in J0. Then, the observed-data
likelihood function

L(φ,λ,θ|Yobs)

∝ [φ+ (1− φ)e−λ+ ]n0(1− φ)n−n0e−(n−n0)λ+

×
n∏

j=1

m∏
i=1

λi(λi + θiyij)
yij−1e−θiyij ,(3.1)

so that the log-likelihood function is


 = 
(φ,λ,θ|Yobs)

= n0 log[φ+ (1− φ)e−λ+ ]

+ (n− n0) log(1− φ)− (n− n0)λ+

+

n∑
j=1

m∑
i=1

[log λi + (yij − 1) log(λi + θiyij)− θiyij ].

3.1 MLEs via the Fisher scoring algorithm

In this subsection, the Fisher scoring algorithm is em-
ployed to calculate the MLEs of φ, λ and θ. The score vector
∇
 and the Hessian matrix ∇2
 are given by

∇
 =

(
∂


∂φ
,

∂


∂λ�
,
∂


∂θ�

)�
and

∇2
 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

∂2


∂φ2

∂2


∂φ∂λ�
∂2


∂φ∂θ�

∂2


∂λ∂φ

∂2


∂λ∂λ�
∂2


∂λ∂θ�

∂2


∂θ∂φ

∂2


∂θ∂λ�
∂2


∂θ∂θ�

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

respectively, where

∂


∂φ
=

n0(1− e−λ+)

φ+ (1− φ)e−λ+
− n− n0

1− φ
,

∂


∂λi
= − n0(1− φ)e−λ+

φ+ (1− φ)e−λ+
− (n− n0)

+

n∑
j=1

(
1

λi
+

yij − 1

λi + θiyij

)
,

∂


∂θi
=

n∑
j=1

[
yij(yij − 1)

λi + θiyij
− yij

]
,

∂2


∂φ2
= − n0(1− e−λ+)2

[φ+ (1− φ)e−λ+ ]2
− n− n0

(1− φ)2
,

∂2


∂λ2
i

=
n0φ(1− φ)e−λ+

[φ+ (1− φ)e−λ+ ]2

−
n∑

j=1

[
1

λ2
i

+
yij − 1

(λi + θiyij)2

]
,

∂


∂θ2i
= −

n∑
j=1

y2ij(yij − 1)

(λi + θiyij)2
,

∂2


∂λi∂φ
=

n0e
−λ+

[φ+ (1− φ)e−λ+ ]2
,
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∂2


∂λi∂λk
=

n0φ(1− φ)e−λ+

[φ+ (1− φ)e−λ+ ]2
,

∂2


∂λi∂θi
= −

n∑
j=1

yij(yij − 1)

(λi + θiyij)2
,

∂2


∂λi∂θk
=

∂2


∂θi∂θk
=

∂2


∂θi∂φ
= 0,

for i, k = 1, . . . ,m and i �= k. By replacing n0,{
yij − 1

(λi + θiyij)2

}m

i=1

,

{
y3ij − y2ij

(λi + θiyij)2

}m

i=1

,{
y2ij − yij

(λi + θiyij)2

}m

i=1

in the above second partial derivatives with their expecta-
tions (see Appendix A)
(3.2)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

E

⎡⎣ n∑
j=1

I(yj = 00)

⎤⎦ = n[φ+ (1− φ)e−λ+ ],

E

[
Yij − 1

(λi + θiYij)2

]
=

1− φ

λi
− 1

λ2
i

− θi(1− φ)

λi + 2θi
,

E

[
Y 3
ij − Y 2

ij

(λi + θiYij)2

]
=

λi(1− φ)

1− θi
+

2λi(1− φ)

λi + 2θi
,

E

[
Y 2
ij − Yij

(λi + θiYij)2

]
=

λi(1− φ)

λi + 2θi
,

we can calculate the Fisher information matrix

J(φ,λ,θ) = E[−∇2
(φ,λ,θ|Yobs)].

Let (φ(0),λ(0),θ(0)) be the initial values of the MLEs

(φ̂, λ̂, θ̂). If (φ(t),λ(t),θ(t)) denote the t-th approximations

of (φ̂, λ̂, θ̂), then their (t+ 1)-th approximations can be ob-
tained by the following Fisher scoring algorithm:⎛⎝ φ(t+1)

λ(t+1)

θ(t+1)

⎞⎠ =

⎛⎝ φ(t)

λ(t)

θ(t)

⎞⎠
+ J−1(φ(t),λ(t),θ(t))∇
(φ(t),λ(t),θ(t)|Yobs).(3.3)

The standard errors of the MLEs (φ̂, λ̂, θ̂) are the square
roots of the diagonal elements Jkk of the inverse Fisher in-
formation matrix J−1(φ̂, λ̂, θ̂). Thus the (1−α)100% asymp-
totic Wald confidence intervals (CIs) of φ, {λi}mi=1 and
{θi}mi=1 are given by
(3.4)[

φ̂− zα/2
√
J11, φ̂+ zα/2

√
J11

]
,[

λ̂i − zα/2
√
J i+1,i+1, λ̂i + zα/2

√
J i+1,i+1

]
,[

θ̂i − zα/2
√
J i+m+1,i+m+1, θ̂i + zα/2

√
J i+m+1,i+m+1

]
,

for i = 1, . . . ,m, respectively, where zα denotes the α-th
upper quantile of the standard normal distribution.

3.2 MLEs via two EM-type algorithms

Although we derive the Fisher scoring algorithm to es-
timates the parameters in the Type I multivariate ZIGP
model, it is sensitive to the choice of initial values. In other
words, the Fisher scoring algorithm may be divergent if a
poor initial value is chosen. Thus in this subsection we de-
velop two EM-type algorithms: the first one is an ECM al-
gorithm and the second one is an EM algorithm.

3.2.1 An ECM algorithm based on SR

For each yj = (y1j , . . . , ymj)
� with j ∈ {1, . . . , n}, based

on the SR (2.2) we introduce independent latent variables
Zj ∼ Bernoulli(1 − φ), Xij ∼ GP(λi, θi) for i = 1, . . . ,m.
We denote the latent/missing data by Ymis = {zj ,xj}nj=1

such that yj = zjxj and the complete data are Ycom =

{Yobs, Ymis} = Ymis, where xj = (x1j , . . . , xmj)
�, zj and

xij denote the realizations of Zj and Xij , respectively. The
complete-data likelihood function is

L1(φ,λ,θ|Ycom)

=

n∏
j=1

[
(1− φ)zjφ(1−zj)

m∏
i=1

λi(λi + θixij)
xij−1e−λi−θixij

xij !

]
,

so that the complete-data log-likelihood function is

�1(φ,λ, θ|Ycom)

= c1 +
n∑

j=1

[
zj log(1− φ) + (1− zj) log(φ)

]
+

n∑
j=1

m∑
i=1

[
log λi + (xij − 1) log(λi + θixij)− λi − θixij

]
.

Then, the complete-data MLEs of φ and {λi}mi=1 are given
by

(3.5) φ =
n−

∑n
j=1 zj

n
and λi =

∑n
j=1 xij

n
(1− θi),

for i = 1, . . . ,m, while the complete-data MLE of θi is the
root of the equation

Hi(θi|λi) =

n∑
j=1

x2
ij − xij

λi + θixij
−

n∑
j=1

xij = 0,(3.6)

for i = 1, . . . ,m. The E-step is to replace {zj}nj=1, {xij}nj=1

and

{
x2
ij − xij

λi + θixij

}n

j=1

in (3.5)–(3.6) by their conditional ex-

pectations:

E(Zj |Yobs, φ,λ,θ)(3.7)

(2.13)
= ψI(yj = 00) + I(yj �= 00),
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E(Xij |Yobs, φ,λ,θ)(3.8)

(2.15) & (2.16)
=

(1− ψ)λi

1− θi
I(yj = 00) + yijI(yj �= 00),

E

(
X2

ij −Xij

λi + θiXij

∣∣∣∣∣Yobs, φ,λ,θ

)
(3.9)

=
(1− ψ)λi

1− θi
I(yj = 00) +

y2ij − yij

λi + θiyij
I(yj �= 00),

where ψ is defined by (2.14) and the proof of (3.9) is given
in Appendix B.

By combining (3.5)–(3.9), we have the following ECM

iterations: Let t = 0 and given φ(t) and {λ(t)
i }mi=1,

M-Step 1: From (3.7) and the first formula of (3.5), we
calculate

(3.10) φ(t+1) =
n0(1− ψ(t))

n
,

where

ψ(t) =
(1− φ(t)) e−λ

(t)
+

φ(t) + (1− φ(t)) e−λ
(t)
+

,

λ
(t)
+ =

∑m
i=1 λ

(t)
i and n0 =

∑n
j=1 I(yj = 00).

CM-Step 2: From (3.9), (3.8) and (3.6), we calculate

θ
(t+1)
i , which is the root of the equation
(3.11)

Hi(θi) =

n∑
j=1

y2ij − yij

λ
(t)
i + θiyij

−
n∑

j=1

yij = 0,

for i = 1, . . . ,m.
CM-Step 3: From (3.8) and the second formula of (3.5),

we calculate

(3.12) λ
(t+1)
i = λ

(t)
i φ(t+1) + (1− θ

(t+1)
i )ȳi·,

where

(3.13) ȳi· =
1

n

n∑
j=1

yij , i = 1, . . . ,m.

3.2.2 A simple EM algorithm by introducing only one latent
variable

In the previous subsection, we proposed an ECM algo-
rithm by introducing n(1 + m) latent variables. It is well
known that an ECM algorithm generally converges much
slower than the corresponding EM algorithm. Thus in this
subsection, we will provide a simple EM algorithm by intro-
ducing only one latent variable.

Note that the observed zero vectors from a Type I mul-
tivariate ZIGP distribution can be classified into two cat-
egories: One is called the extra zero vectors resulted from

degenerate distribution at point zero because of population
variability; while the other is called the structural zero vec-
tors came from the independent ordinary GP distributions.
Thus, we can partition

J0 = {j|yj = 00, j = 1, . . . , n}

as the union of Jextra and Jstructural. The major obstacle
for obtaining explicit solutions of MLEs of parameters from
(3.1) is the first term of (3.1). To overcome this difficulty,
we augment Yobs with a latent variable W that denotes the
number of Jextra to split n0 into W and n0 −W . The resul-
tant conditional predictive distribution of W given Yobs and
(φ,λ,θ) is

W |(Yobs, φ,λ,θ) ∼ Binomial

(
n0,

φ

φ+ (1− φ)e−λ+

)
= Binomial(n0, 1− ψ),

where ψ is defined by (2.14). The complete-data likelihood

L2(φ,λ,θ|Ycom)

∝ φw[(1− φ)e−λ+ ]n0−w(1− φ)n−n0e−(n−n0)λ+

×
n∏

j=1

m∏
i=1

λi(λi + θiyij)
yij−1e−θiyij

= φw(1− φ)n−we−(n−w)λ+

×
n∏

j=1

m∏
i=1

λi(λi + θiyij)
yij−1e−θiyij ,

so that the complete-data log-likelihood function is


2(φ,λ,θ|Ycom)

= w log φ+ (n− w) log(1− φ)− (n− w)λ+

+

n∑
j=1

m∑
i=1

[
log λi + (yij − 1) log(λi + θiyij)− θiyij

]
.

Hence, the complete-data MLEs of φ and {λi}mi=1 are given
by

(3.14) φ =
w

n
, λi =

nȳi·(1− θi)

n− w
, i = 1, . . . ,m,

where ȳi· is defined by (3.13), and complete-data MLE of θi
is the root of the equation

(3.15) Hi(u) =

n∑
j=1

yij(yij − 1)(n− w)

nȳi·(1− u) + uyij(n− w)
− nȳi· = 0,

for i = 1, . . . ,m. Thus, the E-step is to replace w in the
above expressions by its conditional expectation

(3.16) E(W |Yobs, φ,λ, θ) =
n0φ

φ+ (1− φ)e−λ+
= n0(1− ψ).
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3.3 MLEs via the MM algorithm

Although the proposed two EM-type algorithms provided
relatively simple iterations to find the MLEs of parame-
ters in the Type I multivariate ZIGP distribution, we have
to solve the root of m one-dimensional nonlinear equations
specified by (3.11) or (3.15) at each step by employing the
Newton’s method, whose convergence depends on the choice
of initial values. The situation becomes much complicated
when such EM-type algorithms are utilized to calculate the
confidence intervals of parameters via bootstrap methods
as shown in the next subsection. In other words, we do not
know how to specify so many initial values in these Newton’s
methods such that they can converge. In this subsection, we
will develop a novel MM algorithm with explicit expressions
at each iteration through constructing a Q function to sep-
arate the parameters φ, λ and θ.

For convenience, we first define

J0 = {j|yj = 00, j = 1, . . . , n},

n0 =
n∑

j=1

I(yj = 00) = #{J0},

J = {j|yj �= 00, j = 1, . . . , n},
Ji = {j|yij �= 0, j = 1, . . . , n}, i = 1, . . . ,m,

Ji0 = {j|yij = 0, yj �= 00, j = 1, . . . , n}, ni0 = #{Ji0}.

Then, we have #{J} = n− n0 and

#{Ji} = #{J} −#{Ji0} = n− n0 − ni0.

The observed-data likelihood function can be rewritten as

L(φ,λ,θ|Yobs)

= [φ+ (1− φ)e−λ+ ]n0(1− φ)n−n0

×
∏
j∈J

m∏
i=1

λi(λi + θiyij)
yij−1e−λi−θiyij

yij !

∝ [φ+ (1− φ)e−λ+ ]n0(1− φ)n−n0

×
m∏
i=1

∏
j∈J

λi(λi + θiyij)
yij−1e−λi−θiyij

= [φ+ (1− φ)e−λ+ ]n0(1− φ)n−n0

×
m∏
i=1

e−ni0λi

∏
j∈Ji

λi(λi + θiyij)
yij−1e−λi−θiyij ,

so that the log-likelihood function is


(φ,λ,θ|Yobs)

= n0 log[φ+ (1− φ)e−λ+ ] + (n− n0) log(1− φ)−
m∑
i=1

ni0λi

+

m∑
i=1

∑
j∈Ji

[
log(λi) + (yij − 1) log(λi + θiyij)− λi − θiyij

]

=̂ 
0(φ,λ,θ) + 
1(φ,λ) +

m∑
i=1

∑
j∈Ji


ij(λ,θ),

where
(3.17)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�0(φ,λ, θ) = (n− n0) log(1− φ)−
m∑
i=1

(
∑

j∈Ji
yij)θi

+

m∑
i=1

[
(n− n0 − ni0) log(λi)− (n− n0)λi

]
,

�1(φ,λ) = n0 log[φ+ (1− φ)e−λ+ ],

�ij(λ, θ) = (yij − 1) log(λi + θiyij), j ∈ Ji, i = 1, . . . ,m.

For any concave function f(·), Jensen’s inequality implies
that

(3.18) f

⎛⎝ n∑
j=1

αjhj(x)

⎞⎠ �
n∑

j=1

αjf(hj(x)),

where αj � 0 and
∑n

j=1 αj = 1. For 
1(φ,λ) in (3.17), we
apply (3.18) to n0 log(·) and can construct a Q1 function as
follows:

Q1(φ,λ|φ(t),λ(t))

= C1 +
n0φ

(t)

β(t)
log(φ) +

n0(β
(t) − φ(t))

β(t)
log(1− φ)

− n0(β
(t) − φ(t))

β(t)
λ+

� 
1(φ,λ),

where C1 is a constant not involving (φ,λ), and

β(t) = φ(t) + (1− φ(t))e−λ
(t)
+ .

Similarly, for 
ij(λ,θ) in (3.17), we can construct a Qij func-
tion as follows:

Qij(λ,θ|λ(t),θ(t)) = C2 +
λ
(t)
i (yij − 1)

λ
(t)
i + θ

(t)
i yij

log(λi)

+
θ
(t)
i yij(yij − 1)

λ
(t)
i + θ

(t)
i yij

log(θi)

� 
ij(λ,θ),

Hence, we can construct the Q function for 
(φ,λ,θ|Yobs)
as follows:

Q(φ,λ,θ|φ(t),λ(t),θ(t))

= 
0(φ,λ,θ) +Q1(φ,λ|φ(t),λ(t))

+

m∑
i=1

∑
j∈Ji

Qij(λ,θ|λ(t),θ(t))

= C +Q(I)(φ|φ(t),λ(t),θ(t)) +Q(II)(λ|φ(t),λ(t),θ(t))

+ Q(III)(θ|φ(t),λ(t),θ(t)),
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where the parameters φ, λ, θ are separated, C is a constant
not involving (φ,λ,θ), and⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Q(I)(φ|φ(t),λ(t),θ(t))

=
n0φ

(t)

β(t)
log(φ) +

(
n− n0φ

(t)

β(t)

)
log(1− φ),

Q(II)(λ|φ(t),λ(t),θ(t))

= −n0(β
(t) − φ(t))

β(t)
λ++

m∑
i=1

∑
j∈Ji

(yij − 1)λ
(t)
i

λ
(t)
i + θ

(t)
i yij

log(λi)

+

m∑
i=1

[
(n− n0 − ni0) log(λi)− (n− n0)λi

]
,

Q(III)(θ|φ(t),λ(t),θ(t))

=

m∑
i=1

∑
j∈Ji

[
θ
(t)
i yij(yij − 1)

λ
(t)
i + θ

(t)
i yij

log(θi)− θiyij

]
.

Therefore, the explicit MM iterations are given by

(3.19)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

φ(t+1) =
n0φ

(t)

nβ(t)
,

λ
(t+1)
i =

n− n0 − ni0 +
∑
j∈Ji

(yij − 1)λ
(t)
i

λ
(t)
i + θ

(t)
i yij

n− nφ(t+1)
,

θ
(t+1)
i =

∑
j∈Ji

θ
(t)
i yij(yij − 1)

λ
(t)
i + θ

(t)
i yij∑

j∈Ji
yij

,

for i = 1, . . . ,m.

3.4 Bootstrap confidence intervals for small
sample sizes

The Wald confidence interval (CI) of φ specified by (3.4)
may fall outside the unit interval [0, 1]. The Wald CIs of
{λi}mi=1 and {θi}mi=1 given by (3.4) are reliable only for large
sample sizes. For small sample sizes, the bootstrap method
is a useful tool to find CI for an arbitrary function of φ,
{λi}mi=1 and {θi}mi=1, say, ϑ = h(φ, λ1, . . . , λm, θ1, . . . , θm).

Let ϑ̂ = h(φ̂, λ̂1, . . . , λ̂m, θ̂1, . . . , θ̂m) denote the MLE of ϑ,

where φ̂, {λ̂i}mi=1 and {θ̂i}mi=1 represent the respective MLEs
of φ, {λi}mi=1 and {θi}mi=1 calculated by means of the second
EM algorithm (3.14)–(3.16) or the MM algorithm (3.19).

Based on the obtained MLEs φ̂, {λ̂i}mi=1 and {θ̂i}mi=1, we
can generate

y∗
1, . . . ,y

∗
n

iid∼ ZIGP(I)(φ̂; λ̂1, . . . , λ̂m, θ̂1, . . . , θ̂m).

Having obtained Y ∗
obs = {y∗

1, . . . ,y
∗
n}, we can calculate

the bootstrap replication φ̂∗, {λ̂∗
i }mi=1 and {θ̂∗i }mi=1 and get

ϑ̂∗ = h(φ̂∗, λ̂∗
1, . . . , λ̂

∗
m, θ̂∗1 , . . . , θ̂

∗
m). Independently repeating

this process G times, we obtain G bootstrap replications
{ϑ̂∗

g}Gg=1. Consequently, the standard error, se(ϑ̂), of ϑ̂ can

be estimated by the sample standard deviation of the G
replications, i.e.,
(3.20)

ŝe(ϑ̂) =

{
1

G− 1

G∑
g=1

[ϑ̂∗
g − (ϑ̂∗

1 + · · ·+ ϑ̂∗
G)/G]2

}1/2

.

If {ϑ̂∗
g}Gg=1 is approximately normally distributed, the first

(1− α)100% bootstrap CI for ϑ is

(3.21)
[
ϑ̂− zα/2 · ŝe(ϑ̂), ϑ̂+ zα/2 · ŝe(ϑ̂)

]
.

Alternatively, if {ϑ̂∗
g}Gg=1 is non-normally distributed, the

second (1− α)100% bootstrap CI of ϑ can be obtained as

(3.22) [ϑ̂L , ϑ̂U ],

where ϑ̂L and ϑ̂U are the 100(α/2) and 100(1 − α/2) per-

centiles of {ϑ̂∗
g}Gg=1, respectively.

3.5 Testing hypotheses for large
sample sizes

3.5.1 Likelihood ratio test for zero inflation

Suppose we want to test the null hypothesis

(3.23) H0: φ = 0 against H1: φ > 0.

Under H0, the likelihood ratio test (LRT) statistic (Jansakul
and Hinde, 2002, p. 78 [9]; Joe and Zhu, 2005, p. 225 [10])

T1 = −2{
(0, λ̂0, θ̂0|Yobs)− 
(φ̂, λ̂, θ̂|Yobs)}(3.24)
.∼ 0.5χ2(0) + 0.5χ2(1),

where λ̂0 and θ̂0 are the MLEs of λ and θ underH0, (φ̂, λ̂, θ̂)
are the unconstrained MLEs of (φ,λ,θ), and χ2(0) denotes
the degenerate distribution with all mass at zero. The cor-
responding p-value is

(3.25) pv1 = Pr(T1 > t1|H0) =
1

2
Pr{χ2(1) > t1},

where t1 is the realization of the LRT statistic T1.

3.5.2 Score test for zero inflation

In this subsection, we will develop a score test for testing
zero inflation in the Type I multivariate ZIGP model by
reparametrization. Let

(3.26) γ =
φ

1− φ
,

then, testing H0 specified by (3.23) is equivalent to testing
H∗

0 : γ = 0. The observed-data log-likelihood function now
becomes


∗ = 
(γ,λ,θ|Yobs)
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= n0 log(γ + e−λ+)− n log(1 + γ)− (n− n0)λ+

+

n∑
j=1

m∑
i=1

[log λi + (yij − 1) log(λi + θiyij)− θiyij ] .

The score vector is

U(γ,λ,θ) =

(
∂
∗

∂γ
,
∂
∗

∂λ
,
∂
∗

∂θ

)�
and the Fisher information matrix is

J(γ,λ,θ) = (Jik) = E[I(γ,λ,θ|Yobs)],

see Appendix C.
Under H∗

0 , the score test statistic

T2 = U�(γ̂0, λ̂0, θ̂0)J
−1(γ̂0, λ̂0, θ̂0)U(γ̂0, λ̂0, θ̂0)(3.27)

.∼ χ2(1),

where γ̂0 = 0, λ̂0 and θ̂0 denote the MLEs of λ and θ under
H∗

0 , The corresponding p-value is given by

(3.28) pv2 = Pr(T2 > t2|H0) = Pr{χ2(1) > t2},

where t2 is the realization of the score test statistic T2.

3.5.3 Likelihood ratio test for testing equality of all λi’s

Suppose we want to test the null hypothesis

(3.29) H0: λ1 = · · · = λm = λ vs H1: H0 is not true.

Under H0, the LRT statistic

T3 = −2{
(φ̂0, λ̂0, θ̂0|Yobs)− 
(φ̂, λ̂, θ̂|Yobs)}(3.30)
.∼ χ2(m− 1),

where (φ̂0, λ̂0, θ̂0) are the MLEs of (φ, λ,θ) under H0, and

(φ̂, λ̂, θ̂) are the unconstrained MLEs of (φ,λ,θ). The cor-
responding p-value is given by
(3.31)

pv3 =

{
2min{Pr(T3 > t3|H0), Pr(T3 � t3|H0)}, if m > 3,

Pr(T3 > t3|H0), if m = 2, 3,

where t3 is the realization of the LRT statistic T3. When
pv3 > α, we cannot reject the null hypothesis H0 at the α
level of significance. However, if H0 specified by (3.29) is re-
jected, we could consider to test H ′

0: λi = λj for a fixed pair
(i, j), where i, j = 1, . . . ,m; i �= j, and the corresponding
test statistic follows χ2(1).

3.5.4 Score test for testing equality of all λi’s

Let γ be defined by (3.26), then, we apply score test to
test H0 specified by (3.29). Under H0, the score test statistic

T4 = U�(γ̂0, λ̂0, θ̂0)J
−1(γ̂0, λ̂0, θ̂0)U(γ̂0, λ̂0, θ̂0)(3.32)

.∼ χ2(m− 1),

where λ̂0 = λ̂11m, and (γ̂0, λ̂, θ̂0) are the MLEs of (γ, λ,θ)
under H0. Hence, the p-value is
(3.33)

pv4 =

{
2min{Pr(T4 > t4|H0), Pr(T4 � t4|H0)}, if m > 3,

Pr(T4 > t4|H0), if m = 2, 3,

where t4 is the realization of the score test statistic T4.

3.5.5 Likelihood ratio test for testing equality of all θi’s

Suppose we want to test the null hypothesis

(3.34) H0: θ1 = · · · = θm = θ vs H1: H0 is not true.

Under H0, the LRT statistic

T5 = −2{
(φ̂0, λ̂0, θ̂0|Yobs)− 
(φ̂, λ̂, θ̂|Yobs)}(3.35)
.∼ χ2(m− 1),

where (φ̂0, λ̂0, θ̂0) are the MLEs of (φ,λ, θ) under H0, and

(φ̂, λ̂, θ̂) are the unconstrained MLEs of (φ,λ,θ). The cor-
responding p-value is given by
(3.36)

pv5 =

{
2min{Pr(T5 >t5|H0), Pr(T5 � t5|H0)}, if m > 3,

Pr(T5 > t5|H0), if m = 2, 3,

where t5 is the realization of the LRT statistic T5. When
pv5 > α, we cannot reject the null hypothesis H0 at the
α level of significance. If H0 specified by (3.34) cannot be

rejected and θ = 0, we can say this ZIGP(I) model reduced to
ZIP(I) model. However, if H0 specified by (3.34) is rejected,
we could consider to test H ′

0: θi = θj for a fixed pair (i, j),
where i, j = 1, . . . ,m; i �= j, and the corresponding test
statistic follows χ2(1).

3.5.6 Score test for testing equality of all θi’s

Let γ be defined by (3.26), then, we apply score test to
test H0 specified by (3.34). Under H0, the score test statistic

T6 = U�(γ̂0, λ̂0, θ̂0)J
−1(γ̂0, λ̂0, θ̂0)U(γ̂0, λ̂0, θ̂0)(3.37)

.∼ χ2(m− 1),

where θ̂0 = θ̂11m, and (γ̂0, λ̂0, θ̂) are the MLEs of (γ,λ, θ)
under H0. Hence, the p-value is

pv6

(3.38)

=

{
2min{Pr(T6 >t6|H0), Pr(T6 � t6|H0)}, if m > 3,

Pr(T6 > t6|H0), if m = 2 or 3,

where t6 is the realization of the score test statistic T6.
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Table 1. MLEs and bootstrap CIs of parameters for m = 2

Parameter True Value MLE Width CP True Value MLE Width CP

φ 0.1 0.1001 0.1280 0.937 0.2 0.1998 0.1571 0.953
λ1 2 2.0285 0.8970 0.960 3 3.0551 1.2652 0.942
λ2 2 2.0437 0.9021 0.941 3 3.0396 1.2692 0.940
θ1 0.3 0.2881 0.2604 0.933 0.4 0.3875 0.2359 0.929
θ2 0.3 0.2834 0.2602 0.925 0.4 0.3891 0.2353 0.932

Note: MLE is the mean of the 1000 point estimates via the EM algorithm (3.14)–(3.16); width and CP are the average width and
coverage proportion of 1000 bootstrap CIs.

Table 2. MLEs and bootstrap CIs of parameters for m = 3

Parameter True Value MLE Width CP True Value MLE Width CP

φ 0.1 0.1004 0.1150 0.937 0.2 0.1994 0.1559 0.925
λ1 2 2.0218 0.8579 0.941 3 3.0389 1.2772 0.936
λ2 4 4.0471 1.4900 0.941 5 5.0745 1.9290 0.929
λ3 6 6.1214 2.1171 0.930 7 7.1299 2.5927 0.940
θ1 0.3 0.2898 0.2555 0.920 0.2 0.1867 0.2871 0.916
θ2 0.5 0.4926 0.1865 0.934 0.4 0.3919 0.2213 0.920
θ3 0.7 0.6911 0.1197 0.928 0.6 0.5912 0.1557 0.923

Note: MLE is the mean of the 1000 point estimates via the EM algorithm (3.14)–(3.16); width and CP are the average width and
coverage proportion of 1000 bootstrap CIs.

4. SIMULATION STUDIES

To evaluate the performance of the proposed statistical
methods in Section 3 for the Type I multivariate ZIGP dis-
tribution, we first investigate the accuracy of point estimates
and confidence interval estimates for different parameter set-
tings via simulation studies. Second, we assess the perfor-
mance of the LRT with the score test by comparing their
type I error rates and powers.

4.1 Accuracy of point estimates and
interval estimates

In this subsection, we compare the accuracy of point
estimates and confidence intervals by considering both
cases of two-dimensional (i.e., m = 2) and three-
dimensional (i.e., m = 3). When m = 2, the pa-
rameters (φ, λ1, λ2, θ1, θ2) are set to be (0.1, 2, 2, 0.3, 0.3)
and (0.2, 3, 3, 0.4, 0.4). When m = 3, the parameters
(φ, λ1, λ2, λ3, θ1, θ2, θ3) are set to be (0.1, 2, 4, 6, 0.3, 0.5, 0.7)
and (0.2, 3, 5, 7, 0.2, 0.4, 0.6). For each parameter configura-
tion, we generate

{yj}nj=1
iid∼ ZIGP(I)

m (φ,λ,θ)

with n = 100, and calculate the MLEs via the second EM
algorithm (3.14)–(3.16) and the 95% bootstrap CIs with
G = 1,000. Here, we independently repeat this process 1,000
times and report the corresponding mean of the MLEs, the
average width and the coverage probability (CP) of the boot-
strap CIs in Tables 1 and 2, respectively.

4.2 Comparison of the LRT with the
score test

4.2.1 Tests for zero inflation

In this subsection, we compare the corresponding type I
error rates (with H0: φ = 0) and powers (with H1: φ > 0)
between the LRT and the score test for various sample sizes
via simulations, where the values of φ in H1 are chosen to be
0.01, 0.03, 0.05, 0.07, 0.10, 0.15. For a given pair of (n, φ),
we first draw

Z
(l)
1 , . . . , Z(l)

n
iid∼ Bernoulli(1− φ)

for l = 1, . . . , L (L = 1,000), and then independently gener-
ate

X
(l)
11 , . . . , X

(l)
1n

iid∼ GP(λ1, θ1)

and

X
(l)
21 , . . . , X

(l)
2n

iid∼ GP(λ2, θ2),

where only λ1 = 5, θ1 = 0.4 and λ2 = 3, θ2 = 0.6 are consid-
ered. Finally, we set

y
(l)
j =

(
Y

(l)
1j

Y
(l)
2j

)
= Z

(l)
j

(
X

(l)
1j

X
(l)
2j

)
, j = 1, . . . , n.

All hypothesis testings are conducted at the significant level
α = 0.05. Let rk denote the number of rejecting the null
hypothesis H0: φ = 0 by the test statistics Tk (k = 1, 2)
given by (3.24) and (3.27), respectively. Hence, the actual
significance level can be estimated by rk/L with φ = 0 and
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Figure 1. Comparison of type I error rates between the LRT
(solid line) and the score test (dotted line).

the power of the test statistic Tk can be estimated by rk/L
with φ > 0.

Figure 1 shows that the comparison of type I error rates
between the LRT and the score test. In general, we can see
the LRT test have a explicitly better performance in con-
trolling its type I error rates around the pre-chosen nominal
level.

Figure 2 gives the comparison of powers between the LRT
and the score test for different values of φ > 0. It is not
difficult to find that there is no significant difference between
the powers of the two tests when φ is larger than 0.03. But
when φ = 0.01, the score test is slightly more powerful than
the LRT.

4.2.2 Tests for equality of λ1 and λ2

In this subsection, we compare the respective type I error
rates (with H0: λ1 = λ2) and powers (with H1: λ1 �= λ2)
between the LRT and the score test for various sample sizes
and different combinations of (λ1, λ2) via simulations, where
the values of (λ1, λ2) are set to be (4, 4) and (5, 8). For a
given combination of (n, λ1, λ2), we first generate

Z
(l)
1 , . . . , Z(l)

n
iid∼ Bernoulli(1− φ)

for l = 1, . . . , L (L = 1,000), and then independently gener-
ate

X
(l)
11 , . . . , X

(l)
1n

iid∼ GP(λ1, θ1)

and

X
(l)
21 , . . . , X

(l)
2n

iid∼ GP(λ2, θ2),

Figure 2. Comparison of powers between the LRT (solid line)
and the score test (dotted line).

where only φ = 0.5, θ1 = 0.4, θ2 = 0.6 are considered. Then,
we have

y
(l)
j =

(
Y

(l)
1j

Y
(l)
2j

)
= Z

(l)
j

(
X

(l)
1j

X
(l)
2j

)
, j = 1, . . . , n.

All hypothesis testings are conducted at the significant level
α = 0.05. Let rk denote the number of rejecting the null
hypothesis H0: λ1 = λ2 by the statistics Tk (k = 3, 4) given
by (3.30) and (3.32), respectively. Hence, the actual signifi-
cance level can be estimated by rk/L with λ1 = λ2 and the
power of the test statistic Tk can be estimated by rk/L with
λ1 �= λ2.

Figure 3 shows that some comparison of type I error rates
between the LRT and the score test. In general, there is no
significance difference between the two tests’ performances
in controlling their type I error rates around the pre-chosen
nominal level.

Figure 4 gives the comparison of powers between the LRT
and the score test for one case with λ1 �= λ2. It is not difficult
to find that the LRT almost has the same power as the score
test is, no matter the sample size is small or large.

4.2.3 Tests for equality of θ1 and θ2

In this subsection, we compare the respective type I error
rates (with H0: θ1 = θ2) and powers (with H1: θ1 �= θ2)
between the LRT and the score test for various sample sizes
and different combinations of (θ1, θ2) via simulations, where
the values of (θ1, θ2) are set to be (0.6, 0.6) and (0.3, 0.7).
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Figure 3. Comparison of type I error rates between the LRT
(solid line) and the score test (dotted line).

For a given combination of (n, θ1, θ2), we first generate

Z
(l)
1 , . . . , Z(l)

n
iid∼ Bernoulli(1− φ)

for l = 1, . . . , L (L = 1,000), and then independently gener-
ate

X
(l)
11 , . . . , X

(l)
1n

iid∼ GP(λ1, θ1)

and

X
(l)
21 , . . . , X

(l)
2n

iid∼ GP(λ2, θ2),

where only φ = 0.5, λ1 = 5, λ2 = 8 are considered. Then, we
have

y
(l)
j =

(
Y

(l)
1j

Y
(l)
2j

)
= Z

(l)
j

(
X

(l)
1j

X
(l)
2j

)
, j = 1, . . . , n.

All hypothesis testings are conducted at the significant level
α = 0.05. Let rk denote the number of rejecting the null
hypothesis H0: θ1 = θ2 by the statistics Tk (k = 3, 4) given
by (3.35) and (3.37), respectively. Hence, the actual signifi-
cance level can be estimated by rk/L with θ1 = θ2 and the
power of the test statistic Tk can be estimated by rk/L with
θ1 �= θ2.

Figure 5 shows that some comparison of type I error rates
between the LRT and the score test. In general, there is no
significance difference between the two tests’ performances
in controlling their type I error rates around the pre-chosen
nominal level.

Figure 6 gives the comparison of powers between the LRT
and the score test for one case with θ1 �= θ2. It is not difficult

Figure 4. Comparison of powers between the LRT (solid line)
and the score test (dotted line).

to find that the LRT almost has the same power as the score
test is, no matter the sample size is small or large.

5. TWO REAL EXAMPLES

In this section, two real data sets are used to illustrate
the proposed methods, where the Newton–Raphson algo-
rithm for finding the MLEs of parameters does not work
for the two examples because the corresponding observed
information matrices are nearly singular, while the Fisher-
scoring algorithm is always sensitive to the initial values.
Unfortunately, the first EM algorithm does not work in
the second example. As expected, the second EM algo-
rithm and the MM algorithm work well in the two exam-
ples.

5.1 The children’s absenteeism data
in Indonesia

In a survey of Indonesian family life conducted by Strauss
et al. (2004) [18], the participants included 7,000 households
sampled from 321 communities randomly selected from 13 of
the nation’s 26 Provinces, in which 83% of the Indonesian
population lived. Among those households with one child
per household, 437 household heads were asked questions
about the health of their children. Let Y1 denote the number
of days the children missed their primary activities due to
illness in the last four weeks and Y2 denote the number of
days the children spent in bed due to illness in the last four
weeks. Table 3 shows the children’s absenteeism data from
this survey.
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Figure 5. Comparison of type I error rates between the LRT
(solid line) and the score test (dotted line).

Table 3. The children’s absenteeism data in the Indonesian
family life survey (Cheung and Lam, 2006)

Y1\Y2 0 1 2 3 4 5 6 7 Total

0 323 0 0 0 0 0 0 0 323

1 10 8 0 0 0 0 0 0 18

2 22 0 9 0 0 0 0 0 31

3 19 1 3 6 0 0 0 0 29

4 3 3 3 0 0 0 0 0 9

5 0 0 0 0 0 1 0 0 1

6 0 0 0 1 0 0 1 0 2

7 12 0 1 2 0 0 0 5 20

8 0 0 0 0 0 0 0 0 0

9 0 0 0 0 0 0 0 0 0

10 2 0 0 0 0 0 0 0 2

11 0 0 0 0 0 0 0 0 0

12 0 0 0 0 0 0 0 0 0

13 0 0 0 0 0 0 0 0 0

14 0 0 0 0 0 0 0 1 1

15 0 0 0 1 0 0 0 0 1

Total 391 12 16 10 0 1 1 6 437

5.1.1 Likelihood-based inferences

Let y1, . . . ,yn
iid∼ ZIGP(I)(φ;λ1, λ2, θ1, θ2), where

yj = (Y1j , Y2j)
� for j = 1, . . . , n (n = 437). To

find the MLEs of (φ, λ1, λ2, θ1, θ2), we randomly choose

(φ(0), λ
(0)
1 , λ

(0)
2 , θ

(0)
1 , θ

(0)
2 ) = (0.5, 5, 5, 0.5, 0.5) as their initial

values of the two EM algorithms and MM algorithm, and

carefully choose initial values (φ(0), λ
(0)
1 , λ

(0)
2 , θ

(0)
1 , θ

(0)
2 ) =

Figure 6. Comparison of powers between the LRT (solid line)
and the score test (dotted line).

(0.5, 1, 1, 0.2, 0.2) for the Fisher-scoring algorithm. The

MLEs of (φ, λ1, λ2, θ1, θ2) converged to (φ̂, λ̂1, λ̂2, θ̂1, θ̂2) as
shown in the second column of Table 4 in 13 iterations
for the Fisher-scoring algorithm (3.3), in 105 iterations for
the first EM algorithm (3.10)–(3.12), in 17 iterations for
the second EM algorithm (3.14)–(3.16) and in 89 itera-
tions for the MM algorithm (3.19). The standard errors of

the MLEs (φ̂, λ̂1, λ̂2, θ̂1, θ̂2) are given in the third column
and 95% asymptotic Wald CIs (i.e., (3.4)) of the five pa-
rameters are listed in the fourth column of Table 4. With
G = 10,000 bootstrap replications, the two 95% bootstrap
CIs of (φ, λ1, λ2, θ1, θ2) are shown in the sixth and seventh
columns of Table 4.

Suppose that we want to test the null hypothesis H0: φ =
0 against the alternative hypothesis H1: φ > 0. According to
(3.24) and (3.27), we calculate the values of the LRT statistic
and score test statistic, which are given by t1 = 182.6755 and
t2 = 178.9367, respectively. Then from (3.25) and (3.28), we
have pv1 = pv2 ≈ 0 
 α = 0.05. Thus, we should reject H0.

If we want to test the null hypothesis H0: λ1 = λ2 against
the alternative hypothesis H1: λ1 �= λ2. According to (3.30)
and (3.32), we calculate the values of the LRT statistic and
score test statistic, which are given by t3 = 96.44369 and
t4 = 85.29277, respectively. Then from (3.31) and (3.33),
we have pv3 = pv4 ≈ 0 
 0.05. As a result, the H0 should
be rejected.

Suppose that we want to test the null hypothesis H0:
θ1 = θ2 against the alternative hypothesis H1: θ1 �= θ2.
According to (3.35) and (3.37), we calculate the values of
the LRT statistic and score test statistic, which are given
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Table 4. MLEs and CIs of parameters for the children’s absenteeism data in Indonesia

Parameter MLE stdF 95% Wald CI stdB 95% CI† 95% CI‡

φ 0.7252 0.0225 [0.6811, 0.7693] 0.0147 [0.6964, 0.7538] [0.6961, 0.7536]
λ1 2.4618 0.2563 [1.9595, 2.9642] 0.1708 [2.1420, 2.8117] [2.1553, 2.8269]
λ2 0.5208 0.0758 [0.3721, 0.6694] 0.0501 [0.4247, 0.6210] [0.4285, 0.6259]
θ1 0.2772 0.0581 [0.1633, 0.3911] 0.0389 [0.1965, 0.3489] [0.1932, 0.3448]
θ2 0.5076 0.0708 [0.3688, 0.6464] 0.0477 [0.4087, 0.5957] [0.4047, 0.5896]

stdF: The square roots of the diagonal elements of the inverse Fisher information matrix J−1(φ̂, λ̂, θ̂). stdB: The sample standard
deviation of the boostrap samples, cf. (3.20). CI†: Normal-based bootstrap CI, cf. (3.21). CI‡: Non-normal-based bootstrap CI,

cf. (3.22).

Table 5. Comparisons for Type I multivariate ZIGP
distribution and the Type I multivariate ZIP distribution

Model
Criterion

AIC BIC

Type I multivariate ZIGP distribution 1324.855 1345.255
Type I multivariate ZIP distribution 1435.731 1447.971

by t5 = 7.086542925 and t6 = 7.914848236, respectively.
Then from (3.36) and (3.38), we have pv1 = 0.007766492 <
0.05, pv2 = 0.004903069 < 0.05. Thus, we should reject H0.

5.1.2 Model comparison

Now we focus on the comparison between the Type I
multivariate ZIGP model with the Type I multivariate ZIP
model under AIC and BIC based on the full likelihood func-
tion. In Table 5, we can find that both AIC and BIC of the
Type I multivariate ZIGP model are less than those of the
Type I multivariate ZIP model, indicating that the proposed
Type I multivariate ZIGP model is more appropriate to fit
the data set.

5.2 Voluntary and involuntary job
changes data

Jung and Winkelmann (1993) [11] provided data on both
the numbers of voluntary and involuntary job changes of
males during ten period 1974–1984. The samples contain
2124 males who started their working career before or in
1974 and did not retire before 1984. The cross tabulation is
given in Table 6.

5.2.1 Likelihood-based inferences

Let y1, . . . ,yn
iid∼ ZIGP(I)(φ;λ1, λ2, θ1, θ2), where

yj = (Y1j , Y2j)
� for j = 1, . . . , n (n = 2124). To

find the MLEs of (φ, λ1, λ2, θ1, θ2), we randomly choose

(φ(0), λ
(0)
1 , λ

(0)
2 , θ

(0)
1 , θ

(0)
2 ) = (0.5, 5, 5, 0.5, 0.5) as their initial

values of the second EM algorithm and MM algorithm, and

carefully choose initial values (φ(0), λ
(0)
1 , λ

(0)
2 , θ

(0)
1 , θ

(0)
2 ) =

(0.2, 1, 1, 0.1, 0.1) for the Fisher-scoring algorithm. The

MLEs of (φ, λ1, λ2, θ1, θ2) converged to (φ̂, λ̂1, λ̂2, θ̂1, θ̂2) as
shown in the second column of Table 7 in 12 iterations
for the Fisher-scoring algorithm (3.3), in 180 iterations for

Table 6. Cross tabulation of voluntary and involuntary job
changes (Jung and Winkelmann, 1993)

Y1\Y2 0 1 2 3 4 5 6 7 8 9 10 12 Total

0 1227 319 109 27 20 5 1 2 1 0 2 0 1713
1 150 83 23 10 1 3 2 1 0 1 0 0 274
2 34 16 6 6 2 2 1 1 0 0 0 1 69
3 20 5 1 0 2 0 0 0 0 0 0 0 28
4 8 2 0 2 0 0 0 0 0 0 1 0 13
5 6 2 0 0 0 0 0 0 0 0 0 0 8
6 2 0 0 0 0 0 0 0 0 1 0 0 3
7 2 0 0 0 0 0 0 0 0 0 0 0 2
8 3 0 0 0 0 0 0 0 0 0 0 0 3
9 3 0 0 0 0 0 0 0 0 0 0 0 3
10 7 0 0 0 0 0 0 0 0 0 0 0 7
15 1 0 0 0 0 0 0 0 0 0 0 0 1

Total 1463 427 139 45 25 10 4 4 1 2 3 1 2124

the second EM algorithm (3.14)–(3.16) and in 219 itera-
tions for the MM algorithm (3.19). The standard errors of

the MLEs (φ̂, λ̂1, λ̂2, θ̂1, θ̂2) are given in the third column
and 95% asymptotic Wald CIs (i.e., (3.4)) of the five pa-
rameters are listed in the fourth column of Table 7. With
G = 10,000 bootstrap replications, the two 95% bootstrap
CIs of (φ, λ1, λ2, θ1, θ2) are shown in the sixth and seventh
columns of Table 7.

Suppose that we want to test the null hypothesis H0: φ =
0 against the alternative hypothesis H1: φ > 0. According to
(3.24) and (3.27), we calculate the values of the LRT statistic
and score test statistic, which are given by t1 = 15.02807 and
t2 = 16.98990, respectively. Then from (3.25) and (3.28), we
have pv1 = 0.000106 
 0.05, pv2 = 0.000019 
 α = 0.05.
Thus, we should reject H0.

If we want to test the null hypothesis H0: λ1 = λ2 against
the alternative hypothesis H1: λ1 �= λ2. According to (3.30)
and (3.32), we calculate the values of the LRT statistic and
score test statistic, which are given by t3 = 85.2319 and
t4 = 85.99736, respectively. Then from (3.31) and (3.33),
we have pv3 = pv4 ≈ 0 
 0.05. As a result, the H0 should
be rejected at the level of α = 0.05.

Suppose that we want to test the null hypothesis H0:
θ1 = θ2 against the alternative hypothesis H1: θ1 �= θ2.
According to (3.35) and (3.37), we calculate the values of
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Table 7. MLEs and CIs of parameters for the voluntary and involuntary job changes data

Parameter MLE stdF 95% Wald CI stdB 95% CI† 95% CI‡

φ 0.1937 0.0434 [0.1087, 0.2788] 0.0943 [0.0388, 0.4083] [0.0918, 0.4796]
λ1 0.2680 0.0208 [0.2272, 0.3089] 0.0539 [0.1814, 0.3929] [0.2211, 0.4467]
λ2 0.4738 0.0360 [0.4032, 0.5444] 0.2031 [0.1455, 0.9415] [0.3956, 1.1850]
θ1 0.3928 0.0254 [0.3430, 0.4426] 0.0396 [0.3074, 0.4628] [0.3024, 0.4594]
θ2 0.2690 0.0219 [0.2260, 0.3120] 0.1493 [-0.0688, 0.5165] [-0.2428, 0.3255]

stdF: The square roots of the diagonal elements of the inverse Fisher information matrix J−1(φ̂, λ̂, θ̂). stdB: The sample standard
deviation of the boostrap samples, cf. (3.20). CI†: Normal-based bootstrap CI, cf. (3.21). CI‡: Non-normal-based bootstrap CI,

cf. (3.22).

Table 8. Comparisons for Type I multivariate ZIGP
distribution and the Type I multivariate ZIP distribution

Model
Criterion

AIC BIC

Type I multivariate ZIGP distribution 7182.795 7211.100
Type I multivariate ZIP distribution 7894.818 7911.801

the LRT statistic and score test statistic, which are given
by t5 = 15.7782 and t6 = 16.94288, respectively. Then from
(3.36) and (3.38), we have pv1 = 0.000071 
 0.05, pv2 =
0.000038 
 0.05. Thus, we should reject H0 at 0.05 level of
significance.

5.2.2 Model comparison

Now we focus on the comparison between the Type I
multivariate ZIGP model with the Type I multivariate ZIP
model under AIC and BIC based on the full likelihood func-
tion. In Table 8, we can see that both AIC and BIC of the
Type I multivariate ZIGP model are less than that of the
Type I multivariate ZIP model, indicating that the data set
is fitted more appropriately by using the proposed Type I
multivariate ZIGP model compared with the Type I multi-
variate ZIP model.

6. DISCUSSION

In this paper we have introduced a multivariate ZIGP
distribution, called the Type I multivariate ZIGP model,
and developed the distribution theory and its important
properties. We have also investigated the efficient likelihood
inference approaches via four different algorithms concern-
ing the model parameters. Two data sets in literature have
been used to illustrate the applications. For the likelihood
inference, actually, the MLE procedure for the ZIGP model
is difficult especially when the dimension is large. For the
propose model, however, the MLEs, the confidence inter-
vals and the bootstrap method can be easily calculated via
the four proposed algorithms: from Fisher scoring to two
EM algorithms, to MM algorithm, thus offering substantial
computational advantages.
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Appendix A: The derivation of (3.2)

Since y1, . . . ,yn
iid∼ ZIGP(I)

m (φ,λ,θ), we have

E
[∑n

j=1 I(yj = 00)
]

= nE[I(y1 = 00)] = nPr(y1 = 00)

(2.3)
= n[φ+ (1− φ)e−λ+ ],

which implies the first formula of (3.2). In the follows, we
assume that Y ∼ ZIGP(φ, λ, θ) and only need to prove

(A.1)

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

E

[
Y − 1

(λ+ θY )2

]
=

1− φ

λ
− 1

λ2
− θ(1− φ)

λ+ 2θ
,

E

[
Y 3 − Y 2

(λ+ θY )2

]
=

λ(1− φ)

1− θ
+

2λ(1− φ)

λ+ 2θ
,

E

[
Y 2 − Y

(λ+ θY )2

]
=

λ(1− φ)

λ+ 2θ
.

Let

s =

∞∑
y=0

(λ+ θy)y−1e−(λ+θy)

y!
.

Because

λ× s =
∞∑
y=0

λ(λ+ θy)y−1e−(λ+θy)

y!
= 1,

then we obtain s = 1/λ. On the one hand, we have

s =

∞∑
y=0

(λ+ θy)y−1e−(λ+θy)

y!

=
∞∑
y=0

λ(λ+ θy)y−2e−(λ+θy)

y!

+

∞∑
y=0

θy(λ+ θy)y−2e−(λ+θy)

y!
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= λ

∞∑
y=0

(λ+ θy)y−2e−(λ+θy)

y!

+ θ

∞∑
y=1

[λ+ θ + θ(y − 1)]y−1−1e−[λ+θ+θ(y−1)]

(y − 1)!

= λ
∞∑
y=0

(λ+ θy)y−2e−(λ+θy)

y!

+ θ

∞∑
y=0

[λ+ θ + θy]y−1e−[λ+θ+θy]

y!

= λ

∞∑
y=0

(λ+ θy)y−2e−(λ+θy)

y!
+

θ

λ+ θ

=̂ λ× s1 +
θ

λ+ θ
,

so that

(A.2) s1 =
1

λ2
− θ

λ(λ+ θ)
.

On the other hand,

s1 =

∞∑
y=0

(λ+ θy)y−2e−(λ+θy)

y!

=

∞∑
y=0

λ(λ+ θy)y−3e−(λ+θy)

y!

+

∞∑
y=0

θy(λ+ θy)y−3e−(λ+θy)

y!

= λ
∞∑
y=0

(λ+ θy)y−3e−(λ+θy)

y!

+ θ

∞∑
y=1

[λ+ θ + θ(y − 1)]y−1−2e−[λ+θ+θ(y−1)]

(y − 1)!

= λ

∞∑
y=0

(λ+ θy)y−3e−(λ+θy)

y!

+ θ

∞∑
y=0

[λ+ θ + θy]y−2e−[λ+θ+θy]

y!

= λ

∞∑
y=0

(λ+ θy)y−3e−(λ+θy)

y!

+ θ

[
1

(λ+ θ)2
− θ

(λ+ θ)(λ+ 2θ)

]
=̂ λ× s2 + θ

[
1

(λ+ θ)2
− θ

(λ+ θ)(λ+ 2θ)

]
,

that is,

1

λ2
− θ

λ(λ+ θ)

(A.2)
= s1

= λ× s2 + θ

[
1

(λ+ θ)2
− θ

(λ+ θ)(λ+ 2θ)

]
,

so that

(A.3) s2 =
1

λ3
− θ

λ2(λ+ θ)
− θ

λ(λ+ θ)2
+

θ2

λ(λ+ θ)(λ+ 2θ)
.

Based on (A.3) and (A.2), we can obtain

E

[
1

(λ+ θY )2

]
=

φ

λ2
+ (1− φ)

∞∑
y=0

1

(λ+ θy)2
· λ(λ+ θy)y−1e−(λ+θy)

y!

=
φ

λ2
+ λ(1− φ)

∞∑
y=0

(λ+ θy)y−3e−(λ+θy)

y!

(A.3)
=

φ

λ2
+ λ(1− φ)

[
1

λ3
− θ

λ2(λ+ θ)

− θ

λ(λ+ θ)2
+

θ2

λ(λ+ θ)(λ+ 2θ)

]
=

1

λ2
− θ(1− φ)

λ(λ+ θ)
− θ(1− φ)

(λ+ θ)2
+

θ2(1− φ)

(λ+ θ)(λ+ 2θ)
,(A.4)

and

E

[
Y

(λ+ θY )2

]
=(1− φ)

∞∑
y=0

y

(λ+ θy)2
· λ(λ+ θy)y−1e−(λ+θy)

y!

= (1− φ)
∞∑
y=0

yλ(λ+ θy)y−3e−(λ+θy)

y!

= (1− φ)λ

∞∑
y=1

[λ+ θ + θ(y − 1)]y−1−2e−[λ+θ+θ(y−1)]

(y − 1)!

= (1− φ)λ

∞∑
y=0

(λ+ θ + θy)y−2e−(λ+θ+θy)

y!

[Let λ+ θ = λ∗]

(A.2)
= (1− φ)λ·

[
1

(λ+ θ)2
− θ

(λ+ θ)(λ+ 2θ)

]

=
λ(1− φ)

(λ+ θ)2
− λθ(1− φ)

(λ+ θ)(λ+ 2θ)
.

(A.5)

By combining (A.4) with (A.5), we immediately obtain the
first formula of (A.1). Next,

E

[
Y 2

(λ+ θY )2

]
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=(1− φ)

∞∑
y=0

y2

(λ+ θy)2
· λ(λ+ θy)y−1e−(λ+θy)

y!

= (1− φ)λ

∞∑
y=1

y[λ+ θ + θ(y − 1)]y−1−2e−[λ+θ+θ(y−1)]

(y − 1)!

= (1− φ)λ
∞∑
y=0

(y + 1)(λ+ θ + θy)y−2e−(λ+θ+θy)

y!

= (1− φ)λ

∞∑
y=0

y(λ+ θ + θy)y−2e−(λ+θ+θy)

y!

+ (1− φ)λ

∞∑
y=0

(λ+ θ + θy)y−2e−(λ+θ+θy)

y!

= (1− φ)λ

∞∑
y=1

[λ+ 2θ + θ(y − 1)]y−1−1e−[λ+2θ+θ(y−1)]

(y − 1)!

+ (1− φ)λ

[
1

(λ+ θ)2
− θ

(λ+ θ)(λ+ 2θ)

]
=

λ(1− φ)

λ+ 2θ
+

λ(1− φ)

(λ+ θ)2
− λθ(1− φ)

(λ+ θ)(λ+ 2θ)
,

(A.6)

By combining (A.5) with (A.6), we immediately obtain the
third formula of (A.1). To obtain E[Y 3/(λ+ θY )2], we need
to calculate

c1 =

∞∑
y=0

y2(λ+ θ + θy)y−2e−(λ+θ+θy)

y!

and

c2 =
∞∑
y=0

y(λ+ θ + θy)y−2e−(λ+θ+θy)

y!
.

In fact,

c1 =
∞∑
y=0

y2(λ+ θ + θy)y−2e−(λ+θ+θy)

y!

=

∞∑
y=1

y[λ+ 2θ + θ(y − 1)]y−1−1e−[λ+2θ+θ(y−1)]

(y − 1)!

=

∞∑
y=0

(y + 1)(λ+ 2θ + θy)y−1e−(λ+2θ+θy)

y!

=

∞∑
y=0

y(λ+ 2θ + θy)y−1e−(λ+2θ+θy)

y!

+

∞∑
y=0

(λ+ 2θ + θy)y−1e−(λ+2θ+θy)

y!

=

∞∑
y=1

[λ+ 3θ + θ(y − 1)]y−1e−[λ+3θ+θ(y−1)]

(y − 1)!
+

1

λ+ 2θ

=
1

1− θ
+

1

λ+ 2θ
,

and

c2 =

∞∑
y=0

y(λ+ θ + θy)y−2e−(λ+θ+θy)

y!

=

∞∑
y=1

[λ+ 2θ + θ(y − 1)]y−1−1e−[λ+2θ+θ(y−1)]

(y − 1)!

=
∞∑
y=0

(λ+ 2θ + θy)y−1e−(λ+2θ+θy)

y!

=
1

λ+ 2θ
.

Thus, we have

E

[
Y 3

(λ+ θY )2

]
= (1− φ)

∞∑
y=0

y3

(λ+ θy)2
· λ(λ+ θy)y−1e−(λ+θy)

y!

= (1− φ)λ

∞∑
y=0

y3(λ+ θy)y−3e−(λ+θy)

y!

= (1− φ)λ

∞∑
y=1

y2[λ+ θ + θ(y − 1)]y−1−2e−[λ+θ+θ(y−1)]

(y − 1)!

= (1− φ)λ

∞∑
y=0

(y + 1)2(λ+ θ + θy)y−2e−(λ+θ+θy)

y!

= (1− φ)λ

∞∑
y=0

y2(λ+ θ + θy)y−2e−(λ+θ+θy)

y!

+ 2(1− φ)λ

∞∑
y=0

y(λ+ θ + θy)y−2e−(λ+θ+θy)

y!

+ (1− φ)λ
∞∑
y=0

(λ+ θ + θy)y−2e−(λ+θ+θy)

y!

= (1− φ)λ· c1 + 2(1− φ)λ· c2

+(1− φ)λ·
[

1

(λ+ θ)2
− θ

(λ+ θ)(λ+ 2θ)

]
,

= λ(1− φ)·
[

1

1− θ
+

1

λ+ 2θ

]
+

2λ(1− φ)

λ+ 2θ

+ λ(1− φ)·
[

1

(λ+ θ)2
− θ

(λ+ θ)(λ+ 2θ)

]
=

λ(1− φ)

1− θ
+

3λ(1− φ)

λ+ 2θ
+

λ(1− φ)

(λ+ θ)2
− λθ(1− φ)

(λ+ θ)(λ+ 2θ)
.

By combining (A.6) with the above formula, we immediately
obtain the second formula of (A.1).

Appendix B: The derivation of (3.9)

From (2.16), since Xi|(y = y �= 00) ∼ Degenerate(yi) for
i = 1, . . . ,m, we obtain that when y = y �= 00,
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E

(
X2

ij −Xij

λi + θiXij

∣∣∣∣∣Yobs, φ,λ,θ

)
=

y2ij − yij

λi + θiyij
.

From (2.15), we know that when y = y = 00, Xi|(y =
00) ∼ ZIGP(ψ;λi, θi). To obtain (3.9), we assume that X ∼
ZIGP(ψ, λ, θ) and only need to prove

(B.1) E

(
X2 −X

λ+ θX

)
=

(1− ψ)λ

1− θ
.

Note that

E

(
X

λ+ θX

)

= (1− ψ)

∞∑
x=0

x

λ+ θx
· λ(λ+ θx)x−1e−(λ+θx)

x!

= (1− ψ)λ
∞∑
x=1

[λ+ θ + θ(x− 1)]x−1−1e−[λ+θ+θ(x−1)]

(x− 1)!

= (1− ψ)λ

∞∑
x=0

(λ+ θ + θx)y−1e−(λ+θ+θx)

x!

=
(1− ψ)λ

λ+ θ
,

and

E

(
X2

λ+ θX

)

= (1− ψ)

∞∑
x=0

x2

λ+ θx
· λ(λ+ θx)x−1e−(λ+θx)

x!

= (1− ψ)λ

∞∑
x=1

x[λ+ θ + θ(x− 1)]x−1−1e−[λ+θ+θ(x−1)]

(x− 1)!

= (1− ψ)λ
∞∑
x=0

(x+ 1)(λ+ θ + θx)x−1e−(λ+θ+θx)

x!

= (1− ψ)λ

∞∑
x=0

x(λ+ θ + θx)x−1e−(λ+θ+θx)

x!

+
(1− ψ)λ

λ+ θ

= (1− ψ)λ

∞∑
x=1

[λ+ 2θ + θ(x− 1)]x−1e−[λ+2θ+θ(x−1)]

(x− 1)!

+
(1− ψ)λ

λ+ θ

= (1− ψ)λ

∞∑
x=0

(λ+ 2θ + θx)xe−(λ+θ+θx)

x!
+

(1− ψ)λ

λ+ θ

= λ(1− ψ)(λ+ 2θ)

∞∑
x=0

(λ+ 2θ + θx)x−1e−(λ+2θ+θx)

x!

+
λθ(1− ψ)

1− θ
+

(1− ψ)λ

λ+ θ

= λ(1− ψ) +
(1− ψ)λ

λ+ θ
+

λθ(1− ψ)

1− θ

=
(1− ψ)λ

λ+ θ
+

λ(1− ψ)

1− θ
.

By combining the two formulae, we obtain (B.1).

Appendix C: The score vector and Fisher
information matrix in Section 3.5.2

The elements in the score vector U(γ,λ,θ) and observed
information matrix I(γ,λ,θ|Yobs) are

∂
∗

∂γ
= − n

1 + γ
+

n0

γ + e−λ+
,

∂
∗

∂λi
= −ne−λ+ + (n− n0)γ

γ + e−λ+

+

n∑
j=1

(
1

λi
+

yij − 1

λi + θiyij

)
,

∂
∗

∂θi
=

n∑
j=1

[
yij(yij − 1)

λi + θiyij
− yij

]
,

∂2
∗

∂γ2
=

n

(1 + γ)2
− n0

(γ + e−λ+)2
,

∂2
∗

∂λ2
i

=
n0γe

−λ+

(γ + e−λ+)2

−
n∑

j=1

[
1

λ2
i

+
yij − 1

(λi + θiyij)2

]
,

∂2
∗

∂θ2i
= −

n∑
j=1

y2ij(yij − 1)

(λi + θiyij)2
,

∂2
∗

∂λi∂γ
=

n0e
−λ+

(γ + e−λ+)2
,

∂2
∗

∂λi∂λk
=

n0γe
−λ+

(γ + e−λ+)2
,

∂2
∗

∂λi∂θi
=

n∑
j=1

− yij(yij − 1)

(λi + θiyij)2
,

∂2
∗

∂λi∂θk
=

∂2
∗

∂θi∂θk
=

∂2
∗

∂θi∂γ
= 0,

for i, k = 1, . . . ,m and i �= k. By using (3.2), we can cal-
culate the Fisher information matrix J(γ,λ,θ), whose ele-
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ments are given by

J11 = −E

(
∂2
∗

∂γ2

)
= − n

(1 + γ)2
+

n

(1 + γ)(γ + e−λ+)
,

Ji+1, i+1 = −E

(
∂2
∗

∂λ2
i

)

= − nγe−λ+

(1 + γ)(γ + e−λ+)
+

n

(1 + γ)(λi + θi)

− nθi
(1 + γ)(λi + 2θi)

+
nθi

λi(λi + θi)(1 + γ)
,

Ji+m+1, i+m+1 = −E

(
∂2
∗

∂θ2i

)
=

nλi

(1− θi)(1 + γ)
+

2nλi

(λi + 2θi)(1 + γ)
,

J1, i+1 = −E

(
∂2
∗

∂γ∂λi

)
= − ne−λ+

(1 + γ)(γ + e−λ+)
,

J1, i+m+1 = −E

(
∂2
∗

∂γ∂θi

)
= 0,

Ji+1, k+1 = −E

(
∂2
∗

∂λi∂λk

)
= − nγe−λ+

(1 + γ)(γ + e−λ+)
,

Ji+1, k+m+1 = −E

(
∂2
∗

∂λi∂θk

)
= 0,

Ji+m+1, k+m+1 = −E

(
∂2
∗

∂θi∂θk

)
= 0,

Ji+1, i+m+1 = −E

(
∂2
∗

∂λi∂θi

)
=

nλi

(λi + 2θi)(1 + γ)
,

for i, k = 1, . . . ,m and i �= k.
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