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Correcting length-bias in gene set analysis for

DNA methylation data

SHAOYU L1*, TAo HE, IWONA PAWLIKOWSKA, AND TONG LIN

The enrichment analysis of pre-defined gene sets is a
widely used tool to extract functional information in associ-
ation studies. However, traditional methods give biased re-
sults on genome-wide DNA methylation data due to the dif-
ferent number of probes in genes. In this article, we present
MethylSet, a novel two-step procedure which combines gene
based association analysis with logistic regression model for
enrichment analysis to correct bias induced by gene size.
The adjustment of gene size effect is crucial because irrele-
vant gene sets may be identified otherwise. Our simulation
studies showed that MethylSet has a well-controlled type
I error rate and promising statistical power. When applied
to a real DNA methylation data set, MethylSet was able
to obtain meaningful gene sets associated with the studied
disease outcome.

KEYWORDS AND PHRASES: Epigenome-wide Association
Study (EWAS), Length bias, Logistic kernel machine regres-
sion, Gene set analysis.

1. INTRODUCTION

DNA methylation (DNAm) modifications are heritable
and have been long speculated to play important roles in
regulating gene expression. Recent development in high-
throughput biotechnologies has facilitated the genome-wide
DNA methylation profiling and made epigenome-wide asso-
ciation studies (EWASs) feasible, thereby provides a great
opportunity to systematically identify DNA methylation
variations associated with human diseases. Multiple recent
EWASs have demonstrated that DNA methylation varia-
tions can be valuable diagnostic and prognostic biomarkers
for human diseases [1, 2, 3, 4]. Analogous to that of genome-
wide association studies (GWAS), EWAS usually generates
a list of hundreds or even thousands of CpG sites, whose
methylation status is significantly associated with the stud-
ied phenotype. Unfortunately, how to extract biologically in-
terpretable information from the list is not straightforward.

Gene set analysis (GSA) is the most popular way to
study how the identified associated genes relate biologically,
with respect to pre-defined gene sets such as Gene Ontology
(GO) and the Kyoto Encyclopedia of Genes and Genomes
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(KEGG), in determining phenotypic outcomes. The type
of analysis is very important to improve understanding of
the underlying molecular mechanisms of the susceptibil-
ity to human diseases. Especially for translational research,
GSA could be very helpful in terms of identifying novel tar-
get pathways for potential treatments. Although the used
database of gene sets might vary, almost every single report
of EWAS relies on gene set analysis to obtain additional
functional interpretation. GSA was generally implemented
in two steps: (1) find genes associated with the studied phe-
notype and, (2) apply a statistical GSA approach, for ex-
ample, Fisher’s Exact Test (FET), to test the over/under-
representation of a pre-defined gene set among the associ-
ated genes. Traditional approaches identify associated genes
by testing individual probes followed by a post-hoc aggrega-
tion procedure. However, single probe based methods over-
look the higher order interaction between probes within a
gene and therefore could loose power. Besides, one arbi-
trary chosen post-hoc criterion for the aggregation proce-
dure would not be suitable for all genes. More importantly,
many platforms for genomewide DNA methylation profiling
were designed such that the number of probes per gene varies
very much. For example, on the Illumina HumanMehtyla-
tion450 BeadChip, the number of probes per gene varies
from 1 to 1289. Then, in single probe based analysis, genes
with one probe are tested only once and genes with hun-
dreds/thousands of probes are tested hundreds/thousands
of times. Considering a widely used criterion for aggrega-
tion: “call a gene significantly associated when at least one
probe in the gene is significantly associated with the studied
phenotype”, apparently, genes with more probes are more
likely to be called significantly associated just by chance.
This phenomena violates a key assumption of many exist-
ing GSA methods that have been developed for gene expres-
sion data: every single gene is equally likely to be associated
with the phenotype by chance. There are other more sophis-
ticated post-hoc aggregation criteria that have been used to
define significantly associated genes [5, 6], in all cases, genes
with more probes are more likely to meet the criteria em-
ployed. In addition, the mean number of probes per gene is
also very different between gene sets. For example, on the
INlumina HumanMethylation450K BeadChip, mean number
of probes per gene of genes annotated to the KEGG and GO
terms are positively skewed (Figure 1), especially for GO
terms (left panel, Figure 1). The mean number of probes
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Figure 1. The distribution of mean number of probes per
gene for GO terms (left) and KEGG pathways (right).

per gene varies from 3.7 to 160 for GO terms and from 5.2
to 60.9 for the KEGG pathways. It is not hard to imagine
that gene sets that have more long genes, which might not
be biologically relevant, could be falsely identified under the
current analysis scheme.

The correction of gene size/length effect in GSA has been
studied for some other types of “-omics” data. For exam-
ple, RNA sequencing [7, 8, 9, 10] and ChIP sequencing data
[11], gene size/length was referred to as physical length of
a gene in these studies, while, in this article, we refer gene
size/length (interchangeably) as the number of probes in a
gene. The definition is similar to the number of SNPs within
a gene for genotype data [12]. Some previous works have re-
ported pitfalls for current gene set analysis procedures that
overlook the gene size effect in DNA methylation data anal-
ysis [13, 11]. We also observed strong empirical evidence of
the positive relationship between the association identifica-
tion probability (AIP: the probability of a gene being called
significantly associated) and gene size as shown in Figure 2
in the real data set that we considered in this study. The
proportion of significant genes in a bin of 200 genes increases
as the average gene size of the bin increases and approaches
to 1.

In this study, we proposed a novel two-step procedure,
MethylSet, which explicitly accounts for the gene size infor-
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Figure 2. Association ldentification Probability (AIP) as
a function of gene size. Each point represents the
proportion of genes called significant in a bin of 200 genes
plotted against the average gene size of the bin. The fitted
line is the AIP estimated by fitting a logistic regression model.
The pattern that longer genes have higher chance to be
identified is clearly indicated.

mation in GSA for DNA methylation data. A gene based
analysis model was used to identify significant genes. The
model takes care of the joint function of probes within a
gene and is expected to have better performance than a
randomly picked post-hoc aggregation procedure. The gene
size effect in GSA was further addressed by incorporating
gene size as a covariate in a logistic regression model. De-
tailed description of the procedure is given in the following
section.

2. METHODS

2.1 Logistic kernel machine model for
gene-based EWAS

Suppose we have genome-wide DNA methylation profiled
for n samples, including ng normal and n; tumor tissue sam-
ples. Consider one gene at a time, we denote DNA methyla-
tion measurements of L probes in the gene by a L x 1 vector,
zi = (2i1, 212, , %i.1), for the i'" sample, and other covari-
ates by a vector z;, including the intercept. Let the disease
outcome y; = 1 if tumor tissue and y; = 0 if normal tissue.
Model the relationship between m; = P(y; = 1|z;,2;) and
the DNA methylation of the gene and the covariates via the



following logistic regression:

Uy
1—m

(1) log ‘:x§ﬂ+f(zi),z':l,2,~~,n

K3

where (3 is a vector of unknown parameters associated with
the covariates and function f(-) is a nonparametric function
that captures the effect of DNA methylation. The null hy-
pothesis that DNA mehtylation variations have no effect on
the disease outcome can be formulated as Hy : f = 0 and
alternative hypothesis is H, : f # 0. Assuming function f
lies in a reproducing kernel Hilbert space (RKHS), it has
been shown earlier by Liu et al. [14, 15] that testing the null
hypothesis Hy : f = 0 is equivalent to testing the variance
component Hf : 72 = 0 in a generalized linear mixed effects
model:

(2)

= XB+b
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where b ~ N(0,72K), K is a n x n kernel matrix calculated
based on the DNA methylation measurements of the gene.
Specifically, element k; ; = ¢(z;, z;) measures the similarity
between sample points ¢ and j, where ¢ is a semi-positive
definite kernel function associated with the RKHS. We used
the linear kernel function for analysis in this work. A score
type test statistic can be applied to test the null hypothesis
H; within the framework of linear mixed effects model [15,
16):

(3) Q=(y—-mK(y—n)

where 7 is the estimate of 7 under the null hypothesis Hj :
2
74 =0.

2.2 Gene set analysis

Results from the previously described gene-based associ-
ation study can then be summarized by a binary variable
Dgy,g = 1,2,--- N, where N is the total number of an-
notated genes. D, = 1 if gene g is statistically significant
(after multiple testing correction) and Dy = 0 if gene g is
not significant. A membership variable S was defined based
on the membership of a given gene set. And S, = 1 if a gene
is in the set, and Sy = 0 otherwise. Let L, denote gene size.
The binary outcome variable D, depends on the member-
ship variable S; and the gene size L, through the following
logistic regression model:

(4) log =g + @154 + aslogio(Ly)

g
1—py
where pu, = P(Dy = 1|8y, Ly), oo is the intercept, a; is
the effect of the given gene set, which is the coefficient of
interest, and ay denotes the effect of gene size. The linear
relationship between the logarithm of the gene size with
base 10 and the log odds is well supported by the real data
set (Figure 2). However, if nonlinear gene size effect is sug-

gested, then a more general model which replaces the linear
term by a nonparametric smooth function can be built.

(5)
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We conducted inference based on the parametric as well as
a nonparametric model and the obtained results were pretty
similar (data no shown). However, the linear model is about
seven times faster computationally.

The enrichment of a gene set among the associated genes
can be detected by testing the null hypothesis that Hy :
a1 = 0, which means the membership of the gene set is not
related to the odds of genes to be significantly associated
with the phenotypic outcome. Multiple existing test statis-
tics could be used for the purpose, including likelihood ratio
test and Wald’s test. For the analyses included in this arti-
cle, the Wald’s test was applied.

3. SIMULATION AND REAL DATA
ANALYSIS

3.1 Simulation analysis

MethylSet adjusts the effect of gene size in GSA in two
aspects: it applies gene based analysis to identify associ-
ated genes and includes gene size as a covariate in a logistic
regression model to further correct its effect. We therefore
conducted simulation studies to evaluate the statistical per-
formance of the two steps. Due to the unobservable underly-
ing correlation structure between CpG sites, we did not try
to simulate genome-wide DNA methylation profile. Instead,
we simulated DNA methylation data for one gene and com-
pared the empirical type I error rate and power of the gene
and single probe based methods regarding the identification
of associated genes. Besides, we simulated the association
identification probability (AIP) while considering different
effect sizes of gene size and compare the performance of
the proposed method with two other widely used methods:
the Fisher’s Exact Test (FET) and GOseq (a popular GSA
method proposed for RNA sequencing data [7]). Detailed
set up is given in the following section.

Simulate DNA methylation data

Consider one gene with gene size denoted as L, we first gen-
erated M-values, which are the logs ratio of the intensities of
methylated and unmethylated signals from a HumanMethy-
lation450 BeadChip, from a multivariate normal distribu-
tion with mean vector p and autoregressive (order 1) co-
variance structure, AR(1; p). The simulated data (M-values)
were then transformed to [-values, that is the methylation
scores. Specifically,

Moy; ~ MN(07AR(1§P)),i =1,2,-- ,np;
My; ~ MN(u, AR(1;p)),i =1,2,--+ nq;
and
9Mc:
6c¢:m70:0a1ﬂ:1a2,“' y Ne
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Elements of the mean vector u were set to be zeros for
controls and nonzero for cases. We considered six differ-
ent scenarios under the alternative hypothesis: only 1, 1%,
2%, 5%, 10%, and 20% of the L probes are associated
with the phenotype, that is, only the corresponding num-
ber/proportion of elements of the mean vector u were set
to be nonzero (=0.5) and others remain as zero. For ex-
ample, if the gene size L = 100, then 1, 1, 2, 5, 10, and
20 probes were set to be nonzero, respectively, under the
six scenarios considered. The associated probes were ran-
domly designed among the L CpG sites in the gene. DNA
methylation data for 100 samples, 50 case samples and 50
control samples, were simulated. And seven different values
of L(=10,20, 30,40, 50,60,100) were considered. For single
probe based approach, individual p-values were obtained for
all probes in the gene, and a gene was claimed to be sig-
nificant as long as at least one individual p-value was less
than the preset level, as people normally would do in prac-
tice. Both single probe and gene based association test were
applied to analyze the simulated data and empirical type
I error rate (based on 1,000,000 replicates) and statistical
power (based on 1000 replicates) were summarized.

Simulate gene set data

We simulated pseudo gene sets that contain M annotated
genes. Three different cases considering various average
number of probes per gene were investigated. Specifically,
genes were ranked by their sizes and then M genes from
the lower quartile, middle 50%, and upper quartile, re-
spectively, were randomly picked to form a gene set. So
that gene set simulated from the lower quartile/middle
50% has smaller mean number of probes per gene than
a gene set selected from the middle 50%/the upper quar-
tile. We denoted the three gene size level as lower, mid-
dle, and upper. And we considered six different values of
M (10, 20,40, 100, 500, 1000) at each size level. Therefore, a
total of 18 different settings for every scenario that we have
considered. Empirical type I error rate and power were sum-
marized based on 1,000 replicates.

Simulate the association identification probability
For simplicity, instead of generating genomewide DNA
methylation data, we simulated the association identifica-
tion probability (AIP) of every gene via a logistic regression
model:

(6)
log(%) = ag+a15g+aslogio(Ly),g=1,2,---,20261
g

Here, 20261 was used in consistent with the total num-
ber of annotated genes in the real data set we used. Coef-
ficient 1 denotes the effect of a given gene set. By setting
ay = 0, the association identification probabilities were sim-
ulated under the null hypothesis of no gene set effect. Setting
a1 # 0 indicates the gene set affects the AIPs, which im-
plies over/under-representation of the gene set among the
identified associated genes. We set vy = 1 as the alternative
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Table 1. Values of a (coefficients in Equation (6)) used in
the simulation studies

Scenarios (1) (2)
Null (-3.28, 0, 1.03) | (-5.76, 0, 3)
Alternative | (-3.28, 1, 1.03) | (-5.76, 1, 3)

in our simulation studies. Values of ag, ay were set by mim-
icking the coefficient estimates we observed in a real data
set. We considered two scenarios corresponding to (1) gene
based association test; and (2) single probe based associa-
tion analysis + “at least one probe in the gene is significant”
criterion for aggregation. The corresponding as values were
set to be 1.03 and 3, respectively, under the two scenarios
as shown in Table 1. Not surprisingly, the gene size effect
was set to be more severe in the single probe case as what
we observed in a real data analysis. For every single one of
the 20261 annotated genes on the platform, the significance
status was determined through a binomial distribution, with
the probability of success set to be the association identifica-
tion probability calculated via the logistic regression model
(Equation (6)).

3.2 Real data analysis

We further applied the proposed method, MethylSet, to
a data set from Gene Expression Omnibus (GSE29290) [17].
The data set contains Genome-wide DNA methylation pro-
filing of HCT116 WT, HCT116 DNMT1 and DNMT3B dou-
ble KO, and eight archival fresh frozen breast cancer tissue
samples (BC) and eight normal breast tissue samples (N)
by the Infinium Methylation 450K BeadChip. Detailed in-
formation about the samples and DNA methylation profiling
can be found in an earlier report by Dedeurwaerder et al.
[17]. In this study, we used only the data from the eight
breast cancer tissues and the eight normal tissues, a total
of sixteen samples. The raw intensity data, fluorescent sig-
nals of unmethylated and methylated denoted as U and M
respectively, were used to calculate the S-values via

M

(7) b= U+100

The obtained 3 values (methylation scores) for each CpG
site ranged from 0 to 1 on a continuous scale. The constant
offset of 100 added to the denominator was recommended
by Illumina to regularize S-value when both methylated and
unmethylated intensities are low. Data pre-processing were
done using the Bioconductor package ChAMP. Probes
from sex chromosomes were excluded from the analysis.
We carried out gene set analysis using the GO and KEGG
database. The bioconductor packages org.Hs.eg.db and
KEGG.db were used to extract GO term and KEGG path-
way information. GO terms with fewer than 10 genes were
discarded from the analysis.
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Figure 3. Boxplots of number of probes in top ranked genes identified by single probe and gene based methods with (left) and
without (right) outliers.

We conducted both single probe based and gene based
association analysis in the first step. For the single probe
based analysis, we called genes with at least one significant
probe as associated genes. For fair comparison, we chose a
threshold that ended up with approximately the same num-
ber of significant genes as by the gene based method. As
we expected, the list of significant genes called by the two
methods were significantly different in terms of number of
probes per gene (p-value < 2.2 x 10716 by Wilcoxon Test;
Box-plots of number of probes in top ranked genes by the
two approaches (Figure 3) also indicates the difference). Less
than half of the genes identified by the two methods over-
lapped. Therefore, only results from the gene based associa-
tion analysis were used in the second-step for the enrichment
analysis. The Fisher’s Exact Test, GOseq, and the proposed
MethylSet were applied for the purpose. The Fisher’s exact
test and the GOseq analysis were implemented by using the
GOseq package (version 1.16.2) [7].

4. RESULTS

4.1 Simulation results

4.1.1 Comparing gene and single probe based association
test

The empirical type I error rates for association test using
gene and single probe based method were summarized as
in Table (2). The single probe based method led to inflated
type I error rate that bias towards longer genes. For exam-
ple, at nominal level 1.0 x 10~°, the empirical type I error
rates obtained by single probe based test were 1.3 x 10~%
and 1.2 x 1073, respectively, when gene size was set to be
10 and 100. These numbers are roughly 10 and 100 times as
large as the nominal level. On the other hand, the gene based
method kept the type I error rate well controlled at various
levels. However, when the gene size gets sufficiently large,
we did see some inflation (2.2 x 107°). And that motivated
the further correction of gene size in the second step.

Table 2. Empirical type | error rates for the single probe and
gene based analysis at different nominal levels

Nominal Level (7)| Single Probe Based Gene Based
10 100 10 100
0.05 0.3875 0.9925 0.0518 0.0567
0.01 0.0946 0.6284 0.0107 0.0120
0.0001 0.0011 0.0108 0.00013  0.00016
1.0x107°  [1.3x107*1.2x107%1.4x107° 2.2 x107°

We also invested the empirical power of the kernel ma-
chine regression for testing association with different gene
sizes and numbers of truly associated probes. The obtained
results were shown as in Figure 4. When there was only one
truly associated probe, the power decreases as the gene size
increases. While, when the number of signals are propor-
tional to the gene size, empirical power actually increases
as the proportion of true signals increases, even for large
genes. The fluctuated pattern shown in panel (IIT) and (IV)
was due to we rounded up the number of truly associated
probes to integer numbers. For example, 5% of 10, 20, and
30 are 0.5, 1, and 1.5, exactly. When simulated the data,
we actually rounded up these numbers to be 1, 1, and 2,
respectively. So, it is reasonable that the power for the case
with 1 true signal out of 10 probes is higher than the case
when 1 true signal out of 20 probes (panel (III) in Figure 4).
The result was consistent with the results under scenario I.

For the effect of correlation between CpG sites on the
empirical power, we saw consistent negative relationship be-
tween the correlation and power of the test under all circum-
stances. That is to say, when the probes in a gene are more
positively correlated (larger p value), the test has lower sta-
tistical power.

However, we would like to point out that DNA methy-
lation data was only simulated by assuming the AR(1) co-
variance structure, which could be different from the un-
known true correlation pattern between DNA methylation
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Figure 4. Empirical power of gene based association test. Scenarios considered were (1) 1, (1) 1%, (111) 2%, (IV) 5%, (V)

10%, and (VI) 20% of probes in a gene are truly associated with the phenotypic outcome.

probes. Besides, only linear kernel was used in our analysis.
An “optimal” kernel which could reflect the true underlying
similarity structure might have better performance. How to
select the “optimal” kernel could be a very interesting topic
for our future work, while it is beyond the scope of this

paper.
4.1.2 Results for gene set analysis

The empirical type I error rates obtained under the two
scenarios, (1) and (2), were summarized as in Figures 5-6.
For scenario (2), where the AIPs were simulated to mimic
the single probe based association test, the empirical type I
error rates obtained by the FET and GOseq depend on gene
size very much. Gene sets that contain longer genes (selected
from the upper quartile) were more likely to be detected as
significantly enriched. While, gene sets with genes selected
from the lower quartile, the observed empirical type I error
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rates were conservative when there were only few genes in
the set (<20), but became liberal when gene set size became
bigger. For example, when the gene set size reached 1000,
it was almost for sure that the gene set would be falsely
detected as enriched by FET. Although less severe compared
to that of the FET, the empirical type I error rates obtained
by GOseq showed similar pattern: liberal for larger gene sets
with longer genes and too conservative for smaller sets with
shorter genes. Overall, besides the effect of gene size, we also
observed the effect of gene set size affecting the empirical
type I error rate for FET and GOseq.

While, under scenario (1), where the simulated AIPs
mimic the gene based association analysis results, the in-
flation in type I error rates for the FET, especially GOseq
reduced dramatically. However, deviations from the nominal
level of 0.05 were still observed, especially when gene set size
was large (Figure 6).
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Figure 6. Empirical type | error rate (o = 0.05) under scenario (1) (gene based association analysis + enrichment analysis).

In contrast, the empirical type I error rates for our pro-
posed MethylSet procedure were well controlled around the
nominal level 0.05 under all settings. Overall, our proposed
MethylSet approach is robust to gene size and gene set size
for enrichment analysis.

Only empirical power for GOseq and MethylSet were
summarized and compared since FET led to so biased type
I error rate as we have discussed in the previous session.

The empirical statistical power increases as gene set
size increases for both methods (Figures 7-8). Generally,
MethylSet obtained higher power than GOseq, especially
where gene set size were relatively small, and comparable

power when gene set size became large. When gene set size
was 20, for example, the empirical powers were 0.433, 0.555,
and 0.540 for MethlSet comparing to 0.26, 0.355, and 0.42
for GOseq under scenario (1), at the three gene size levels
(lower, middle, upper) respectively. For scenario (2), the cor-
responding empirical powers were 0.207, 0.443, and 0.576 by
MethlSet compared to 0.052, 0.297, and 0.559 for GOseq, at
the three gene size levels (lower, middle, upper) respectively.
The gene based analysis in the first step also helped boost
the power for GOseq in the second step of analysis. The em-
pirical powers obtained under scenario (1) were greater than
the corresponding ones under scenario (2), which indicated
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Table 3. List of significantly enriched KEGG pathways identified by MethylSet at level 0.05 after multiple testing adjustment

1D PATHWAY NAME p-value Set Size MPN
04080 | Neuroactive ligand-receptor interaction 4.07 x 107 1° 253 19.43
04514 | Cell adhesion molecules (CAMs) 2.58 x 107° 125 25.86
04740 | Olfactory transduction 1.64 x 1074 372 5.22
04060 | Cytokine-cytokine receptor interaction 1.71 x 1074 236 13.88
00970 | Aminoacyl-tRNA biosynthesis 3.08 x 1074 41 22.51
04270 | Vascular smooth muscle contraction 5.45 x 1074 113 25.73
00860 | Porphyrin and chlorophyll metabolism 6.84 x 107* 41 15.98
04614 | Renin-angiotensin system 8.75 x 1074 15 15.27
04120 | Ubiquitin mediated proteolysis 1.80 x 1073 127 21.85
03022 | Basal transcription factors 2.03 x 1073 32 21.00
00534 | Glycosaminoglycan biosynthesis - heparan sulfate | 2.04 x 1073 25 24.56
04974 | Protein digestion and absorption 2.06 x 1073 75 31.33
05320 | Autoimmune thyroid disease 2.21 x 1073 41 27.89
03010 | Ribosome 247 x107? 83 16.51
00512 | Mucin type O-Glycan biosynthesis 2.71 x 1073 26 31.04
04020 | Calcium signaling pathway 2,92 x 1073 166 27.89
03013 | RNA transport 2.92 x 1073 133 17.50
05332 | Graft-versus-host disease 3.10 x 1073 37 27.49
MPN: Mean Probe Number
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Figure 7. Empirical power under scenario (2), where analyses
were conducted by single probe based association analysis +
gene set enrichment analysis.
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Figure 8. Empirical power under scenario (1), where analyses
were conducted by gene based association analysis + gene set
enrichment analysis.
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Figure 9. The Venn Diagram of number of enriched KEGG
pathways identified by FET (white), GOseq (gray), and
MethylSet (dark grey). Common pathways were indicated by
the overlap parts.

the advantage of gene based association study in terms of
controlling gene size effect in gene set analysis.

To summarize, our simulation studies demonstrated good
statistical properties of our proposed MethylSet method.

4.2 Real data analysis results

KEGG pathway enrichment analysis results
For the breast cancer data, MethylSet identified 18 enriched
KEGG pathways at level o = 0.05 (Table 3) after multi-
ple testing correction using Benjamini and Hochberg’s ap-
proach [18]. FET and GOseq identified 29 and 22 pathways,
respectively, at the same significance level. The overlap be-
tween the results obtained by the three methods is shown
in Figure 9. 15 pathways were detected by all the three ap-
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Figure 10. Comparision of the GO term enrichment analysis. (a) Boxplot of the average number of probes per gene for GO
terms identified by the FET, GOseq, MethylSet, and all GO terms. (b) Boxplot of the set size of GO terms identified by the
FET, GOseq, MethylSet, and all GO terms.

proaches. Many of the KEGG pathways listed in Table 3
were reported in the literature to be related with human can-
cer or subtypes of breast cancer [19, 20, 21, 22]. In a recent
study by Huan et al., neuroactive ligand-receptor interac-
tion, cytokine-cytokine receptor interaction, and cell adhe-
sion molecules (CAMs) pathway were found to show differ-
ent gene expression in breast cancer cell line MCF-7 treated
with 178-estradiol [23]. The two pathways were at the top
our list (Table 3). For those pathways identified by FET
only (7 of the 29), the mean number of probes is significantly
larger than other identified pathways (p — value = 0.0018
by Wilcoxon Rank Sum test).
GO term enrichment analysis results

2905 GO terms which contain at least 10 genes were used
in our analysis. 102, 83, and 94 GO terms were identified
by the FET, GOseq, and MethylSet, respectively, at level
a = 0.01 after multiple testing correction using Benjamini
and Hochberg’s approach. The average number of probes
per gene of the identified GO terms were compared (Figure
10 (a)). The distribution of the average number of probes
per gene for GO terms identified by FET is larger than that
of GOseq and MethylSet. We also looked at the gene set
size between the top ranked GO terms by FET, GOseq, and
MethylSet (Figure 10 (b)). We compared the mean number
of probes per gene of pathways identified only by FET and
those overlapped with at least one other method, signifi-
cantly larger mean probe number per gene were observed in
pathways identified by FET only (p — value = 6.96 x 1076,
by Wilcoxon Rank Sum test). Similar analysis for comparing
the gene set size of GO terms identified by GOseq and oth-
ers also revealed significant difference (p — value = 0.002841
by Wilcoxon Rank Sum test). These results confirmed what
we have observed in the simulation studies.

5. DISCUSSION

In this study we proposed a two-step procedure,
MethylSet, for gene set analysis especially for DNA methyla-
tion data. To correct the bias caused by calling significantly
associated genes via single probe based test followed by a
post-hoc aggregation procedure, the kernel machine regres-
sion method was applied for gene based association analysis.
DNA methylation measurements within a gene were con-
sidered simultaneously as a unit to study their joint effect
on the disease outcome. We then tested enrichment of pre-
defined gene sets using traditional logistic regression model,
however, the gene size effect were further adjusted by incor-
porating gene size as a covariate in the model. Simulation
studies shown the merits of MethylSet in term of correcting
bias caused by gene size. Beside, MethylSet achieved higher
power than GOseq, which is a widely used method in GSA
for RNA sequencing data analysis nowadays.

Since our focus was gene set analysis in this study, we em-
phasized on gene based analysis association study to have
significance results for all annotated genes ready for the use
in the enrichment analysis. However, if other genomics fea-
tures are of interest, for example, methylation island, the
kernel machine frame work can be generalized without too
much difficulty.

We would also want to point out that the sensitivity of
different kernel functions to gene size varies. Some kernel
functions could be affected by the gene size and make the
test conservative for longer genes (e.g. quadratic kernel).
The linear kernel used in our analysis led to well controlled
type I error rates, but not necessary the best kernel function
for EWAS. Therefore, the selection of an “optimal” kernel
function which can represent the true function of the gene

Correcting length-bias in gene set analysis for DNA methylation data 287



and is invariant to gene size is an interesting area and worth
to be investigated for genomewise DNA methylation data
analysis. There are other existing challenges in epigenome-
wide association study, such as batch effect [24] and cellular
heterogeneity issue [25, 26, 27]. It remains a very active re-
search area where researchers are making efforts to [28]. It
is for sure that more accurate results from the association
analysis would reduce the false discovery rate in the enrich-
ment analysis.

Despite the challenges, many EWASs are already under-
way. And we believe that these studies will shed new lights
on the causes of human diseases. Especially, could be com-
bined with other types of data, such as gene expression,
genotype, and microRNA expression, for a better under-
standing of the disease etiology and the potential develop-
ment of novel therapeutics and diagnostic in the future.
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