
Statistics and Its Interface Volume 10 (2017) 267–277

Testing for gene-gene interaction in case-control
GWAS

Zhongxue Chen

Detecting gene-gene interaction is an important but chal-
lenging task in genome-wide association studies (GWASs).
To this end, many statistical methods have been proposed in
the literature. However, powerful yet robust approaches are
yet to be developed. In this paper we study the gene-gene
interaction tests for case-control GWASs. A number of pow-
erful tests can be constructed for given situations. We also
discuss some tests for the main effects and the overall tests
for association between genotype and phenotype. A simula-
tion study is conducted to compare some of the proposed
tests with existing methods. A real data application is also
conducted to illustrate the use of the proposed tests.

Keywords and phrases: Asymptotically independent,
Combining p-values, Odds ratio, Single nucleotide polymor-
phism.

1. INTRODUCTION

In the past decade, hundreds of genome-wide association
studies (GWASs) have been successfully conducted; thou-
sands of single nucleotide polymorphisms (SNPs) which are
significantly associated with common complex diseases have
been identified [Hindorff, et al.]. However, those genetic
markers can only explain a small portion of the variabili-
ties in phonotypes, indicating the missing heritability is yet
to be uncovered [Manolio, et al. 2009]. A partial solution
of finding the missing heritability is to identify gene-gene
interaction in GWASs. In the literature, a large number of
statistical tests have been proposed to detect the gene-gene
interaction effects [Barhdadi and Dubé 2010; Hu, et al. 2014;
Jiao, et al. 2012; Song and Nicolae 2009; Ueki 2014; Van-
derWeele and Laird 2011; Wu, et al. 2008; Yang, et al. 2009;
Yu, et al. 2015].

Many current statistical tests for gene-gene interaction
were constructed based on certain assumptions. For exam-
ple, the fast-epistasis test in PLINK [Purcell, et al. 2007],
which collapses the 3 × 3 genotype counts tables for case
and control into 2× 2 tables, respectively, assumes additive
main and interaction effects. Ueki and Cordell have shown
that the variance formula in that test underestimates the
variance and, therefore, results in inflated type I error rate
[Ueki and Cordell 2012]. Ueki and Cordell further proposed a
joint test for detecting gene-gene interaction. However, their

test is only valid when at most one SNP has main effect [Yu,
et al. 2015].

In general, for case-control GWAS data, the likelihood
ratio test (LRT) based on the logistic regression performs
well and is recommended [Hu, et al. 2014; Yu, et al. 2015].
Although LRT is a robust test, under some situations, its
power can be very low due to its large number (4) of degrees
of freedom (df) [Song and Nicolae 2009]; several tests with
only 1 df have been proposed in the literature [Barhdadi and
Dubé 2010; Jiao, et al. 2012; VanderWeele and Laird 2011].
Another disadvange of the LRT test is that it doesn’t have
a closed form and may require a large amount of computing
time. To overcome this limitation, recently, some Wald test
based methods have been developed [Yu, et al. 2015]. Fur-
thermore, under the assumption of additive interaction, a
more powerful Wald test with 1 df can be constructed [Yu,
et al. 2015].

Studies have shown that there is no uniformly most pow-
erful gene-gene interaction test [Hu, et al. 2014]. Some meth-
ods may work better than others under some assumptions.
However, if the assumptions are not met, those methods
may perform poorly. Therefore, it is important to choose
an appropriate method for a given situation. On the other
hand, if the prior information about the genetic models is
unavailable, robust methods are preferred.

In this paper, we propose some gene-gene interaction
tests, which have closed forms and are easy to be computed.
The test statistics are obtained through combining informa-
tion from four asymptotically independent test statistics.
Therefore, it is easy to incorporate the prior information
about the genetic models to construct a powerful test. With-
out prior information, robust tests will be obtained. We also
propose some statistical tests for the main effects. We show
that the interaction tests and the main effect tests proposed
in this paper are asymptotically independent. Based on this
fact, an overall test for the association between the genotype
and phenotype is developed via the technique of combining
p-values. We compare the proposed interaction tests and the
overall test with some commonly used methods through a
simulation study and a real data application.

2. METHODS

In this section, we will review some existing gene-gene
interaction tests and then describe the proposed ones. In this
paper, we use A, a, and B, b to denote the two alleles for the
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Table 1. Date structure (cases, controls) of a pair of SNPs in
a case-control GWAS

Genotype SNP 2
BB (h1) Bb (h2) bb (h3)

AA (g1) r1, s1 r2, s2 r3, s3
SNP 1 Aa (g2) r4, s4 r5, s5 r6, s6

aa (g3) r7, s7 r8, s8 r9, s9

two SNPs, respectively. We also use gi and hj (i, j = 1, 2, 3)
to denote the genotypes of the two SNPs. For instance, we
assume g1 = AA, h2 = Bb. The data from a pair of SNPs
can be summarized in the above Table 1, where rk and sk
are the counts of cases and controls for genotype gihj , where
k = 3(i− 1) + j.

There are two different null hypotheses that are of in-
terest in GWASs. The first one is about the interaction be-
tween the two SNPs, H01: there is not interaction effect;
and the second one is on the overall association, H02: there
is no association between the disease status and any of the
two SNPs. The alternatives of those two null hypotheses
are: the respective null hypothesis is not true. It should be
pointed out that many existing gene-gene interaction tests
are actually based on the null hypothesis of H02, instead
of H01.

2.1 Some existing methods

For the data in Table 1 (a 2×9 table), the commonly used
Pearson’s overall chi-square test can be applied to test the
null hypothesis of H02. To test the null hypothesis of H01,
Yang et al. proposed a chi-square partition based method
[Yang, et al. 2009]. However, it has been shown that under
the null hypothesis of H01 their test statistic may not have a
chi-square distribution with 4 df as claimed by the authors
[Plackett 1962; Yu, et al. 2015]. Therefore, it may have in-
flated type I error rates under some conditions [Hu, et al.
2014].

Another commonly used test for H01 with the data in Ta-
ble 1 is the LRT test, which is based on the following logistic
regression models. We use g and h to denote the genotype
for SNP 1 and SNP 2, respectively; and for each SNP, we
code the common homozygote as 1, the heterozygote as 2,
and the rare homozygote as 3. We consider the full model,
M1:

logit (πgh) = μ+ α1I (g = 2) + α2I (g = 3) + α3I (h = 2)
(1)

+ α4I (h = 3) + β1I (g = 2) I (h = 2)

+ β2I (g = 2) I (h = 3) + β3I (g = 3) I (h = 2)

+ β4I (g = 3) I (h = 3) .

And the reduced model M0:

logit (πgh) = μ+ α1I (g = 2)
(2)

Table 2. Frequency distributions of two SNPs in a
case-control GWAS

Genotype AA AA AA Aa Aa Aa aa aa aa Total
BB Bb bb BB Bb bb BB Bb bb

Case p1 p2 p3 p4 p5 p6 p7 p8 p9 r
control q1 q2 q3 q4 q5 q6 q7 q8 q9 s

+ α2I (g = 3) + α3I (h = 2) + α4I (h = 3) .

Denote LM1 and LM0 the loge (i.e., ln) of the estimated
maximum likelihood values from the models M1 and M0,
respectively. The test statistic is defined as:

(3) TL = −2(LM0 − LM1).

Under the null hypothesis of H01, TL has an asymptotic
chi-square distribution with 4 df.

Denote θ = (β̂1, β̂2, β̂3, β̂4)
T , where β̂i is the MLE for

βi (i = 1, 2, 3, 4) in the model M1, and Σθ the estimated
covariance matrix for θ, then under the null hypothesis of
H01, the following Wald test statistic, denoted by W , has an
asymptotic chi-square distribution with 4 df [Plackett 1962;
Yu, et al. 2015].

(4) W = θTΣ−1
θ θ.

If we know the relationship among those βi’s, a more
powerful modified Wald test with 1 degree of freedom can be
obtained. For instance, if we assume θ = λA1 with known
matrix A, where 1 = (1, 1, 1, 1)T , then we can define the
following modified Wald test with 1 df [Yu, et al. 2015]:

(5) W1 =
(1TAΣ−1

θ θ)2

1TAΣ−1
θ A1

.

For additive interaction, A = diag (1, 2, 2, 4) [Yu, et al.
2015].

2.2 The proposed methods

For the data in Table 1, we assume both cases and
controls follow independent multinomial distributions with
probabilities described in Table 2. In other words, Let
R = (R1, R2, R3, R4, R5, R6, R7, R8, R9)

T the random num-
bers of subjects with genotypes AABB, AABb, . . . , aabb,
out of r cases, then R follows a multinomial distribu-
tion: R ∼ MN(r, p = (p1, p2, p3, p4, p5, p6, p7, p8, p9)). Sim-
ilarly, for S = (S1, S2, S3, S4, S5, S6, S7, S8, S9)

T , the ran-
dom numbers of subjects with genotypes AABB, AABb,
. . . , aabb, out of s controls, then S ∼ MN(s, q =
(q1, q2, q3, q4, q5, q6, q7, q8, q9)).

For the main effect of SNP 1, we define the following two
statistics:

T1 = (r4 + r5 + r6) (s1 + s2 + s3)

− (r1 + r2 + r3) (s4 + s5 + s6)
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T2 = (r7 + r8 + r9) (s1 + s2 + s3 + s4 + s5 + s6)

− (r1 + r2 + r3 + r4 + r5 + r6) (s7 + s8 + s9) .

For the main effect of SNP 2, we define the other two statis-
tics:

T3 = (r2 + r5 + r8) (s1 + s4 + s7)

− (r1 + r4 + r7) (s2 + s5 + s8)

T4 = (r3 + r6 + r9) (s1 + s4 + s7 + s2 + s5 + s8)

− (r1 + r4 + r7 + r2 + r5 + r8) (s3 + s6 + s9) .

Under the null hypothesis of no main effects, it can be shown
(see Appendix A for more details) that E(Ti) = 0 for i =
1, 2, 3, 4.

Under the null hypothesis of H02, it can be shown that
asymptotically the following equalities hold

(6)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

E
[
ln

(
r1r5s2s4
r2r4s1s5

) ]
= 0 (i)

E
[
ln

(
(r1+r2)r6s3(s4+s5)
r3(r4+r5)(s1+s2)s6

) ]
= 0 (ii)

E
[
ln

(
(r1+r4)r8(s2+s5)s7
(r2+r5)r7(s1+s4)s8

) ]
= 0 (iii)

E
[
ln

(
(r1+r2+r4+r5)r9(s3+s6)(s7+s8)
(r3+r6)(r7+r8)(s1+s2+s4+s5)s9

) ]
= 0 (iv)

.

Similarly, we have the following results.
(7)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

E[r1r5s2s4 − r2r4s1s5] = 0 (i)
E[(r1 + r2)r6s3(s4 + s5)
−r3(r4 + r5)(s1 + s2)s6] = 0 (ii)

E[(r1 + r4)r8(s2 + s5)s7
−(r2 + r5)r7(s1 + s4)s8] = 0 (iii)

E[(r1 + r2 + r4 + r5)r9(s3 + s6)(s7 + s8)
−(r3 + r6)(r7 + r8)(s1 + s2 + s4 + s5)s9] = 0 (iv)

.

The test statistics for interaction effects can be based on
either (6) or (7). For example, based on (7), we define the
following statistics:
(8)⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

T5 = r1r5s2s4 − r2r4s1s5
T6 = (r1 + r2)r6s3(s4 + s5)− r3(r4 + r5)(s1 + s2)s6
T7 = (r1 + r4)r8(s2 + s5)s7 − (r2 + r5)r7(s1 + s4)s8
T8 = (r1 + r2 + r4 + r5)r9(s3 + s6)(s7 + s8)

−(r3 + r6)(r7 + r8)(s1 + s2 + s4 + s5)s9

.

Under the null hypothesis of H02, it is easy to see that
E(Ti) = 0 for i = 5, 6, 7, 8 (use the facts listed in
Appendix A). It is not difficult to obtain the variance-
covariance matrix of the above four statistics, T5, T6, T7,
and T8 (see Appendix A). We define the following test statis-
tics:

(9)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

Z5 = T5√
v̂5

Z6 = T6√
v̂6

Z7 = T7√
v̂7

Z8 = T8√
v̂8

,

where v̂i (i = 5, 6, 7, 8) is the estimated variance for Ti, and

v̂5 = r(4)s(3)
[
p̂21p̂

2
5q̂2q̂4 (q̂2 + q̂4) + p̂22p̂

2
4q̂1q̂5 (q̂1 + q̂5)

]
+ r(3)s(4)

[
p̂1p̂5 (p̂1 + p̂5) q̂

2
2 q̂

2
4 + p̂2p̂4 (p̂2 + p̂4) q̂

2
1 q̂

2
5

]
,

v̂6 = r(4)s(3)
[
(p̂1 + p̂2)

2p̂26q̂3 (q̂4 + q̂5) (q̂3 + q̂4 + q̂5)

+ p̂23(p̂4 + p̂5)
2 (q̂1 + q̂2) q̂6 (q̂1 + q̂2 + q̂6)

]
+ r(3)s(4)

[
(p̂1 + p̂2)p̂6 (p̂1 + p̂2 + p̂6) q̂

2
3(q̂4 + q̂5)

2

+ p̂3(p̂4 + p̂5) (p̂3 + p̂4 + p̂5) (q̂1 + q̂2)
2q̂26

]
,

v̂7 = r(4)s(3)
[
(p̂1 + p̂4)

2p̂28q̂2q̂7 (q̂2 + q̂5 + q̂7)

+ (p̂2 + p̂5)
2p̂27(q̂1 + q̂4)q̂8 (q̂1 + q̂4 + q̂8)

]
+ r(3)s(4)

[
(p̂1 + p̂4)p̂8 (p̂1 + p̂4 + p̂8) (q̂2 + q̂5)

2q̂27

+ (p̂2 + p̂5)p̂7 (p̂2 + p̂5 + p̂7) (q̂1 + q̂4)
2q̂28

]
,

v̂8 = r(4)s(3)
[
(p̂1 + p̂2 + p̂4 + p̂5)

2p̂29(q̂3 + q̂6)(q̂7 + q̂8)

× (q̂3 + q̂6 + q̂7 + q̂8) + (p̂3 + p̂6)
2(p̂7 + p̂8)

2

× (q̂1 + q̂2 + q̂4 + q̂5) q̂9 (q̂1 + q̂2 + q̂4 + q̂5 + q̂9)
]

+ r(3)s(4)
[
(p̂1 + p̂2 + p̂4 + p̂5)p̂9

× (p̂1 + p̂2 + p̂4 + p̂5 + p̂9) (q̂3 + q̂6)
2(q̂7 + q̂8)

2

+ (p̂3 + p̂6)(p̂7 + p̂8) (p̂3 + p̂6 + p̂7 + p̂8)

× (q̂1 + q̂2 + q̂4 + q̂5)
2
q̂29
]
.

Here, p̂i = ri
r , q̂i = si

s for i = 1, 2, . . . , 9, r(k) =

r (r − 1) . . . (r − k + 1), s(k) = s (s− 1) . . . (s − k + 1) for
k = 3, 4.

The above test statistics have the following properties.

Theorem 1. Under the null hypothesis of H02, asymptoti-
cally, ZI = (Z5, Z6, Z7, Z8)

T follows a multivariate normal
distribution, ZI ∼ MVN(0, I4), where I4 is the 4×4 identity
matrix.

The proof of Theorem 1 is given in the Appendix A. The-
orem 1 indicates that under the null hypothesis of H02,
Z5, Z6, Z7, Z8 are asymptotically independent. Many test
statistics for detecting gene-gene interaction effects can be
constructed based on this fact. Some possible tests are dis-
cussed as follows.

2.2.1 Robust test without any assumption about the struc-
ture of the four interaction terms

If we don’t know the relationship among the 4 interaction
effects, we can use a chi-square test to combine the infor-
mation obtained from the four asymptotically independent
tests statistics Z5, Z6, Z7, Z8. We define the following test
[Chen and Nadarajah 2014]:

(10) χ2
4 = Z2

5 + Z2
6 + Z2

7 + Z2
8 .

It is easily seen that the above test χ2
4 has an asymptotic

chi-square distribution with 4 df under the null hypothe-
sis of H02 as the four terms in the right side of (8) are
asymptotically independently and identically distributed as
a chi-square distribution with 1 df.
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2.2.2 Weighted Z test when only the directions of the 4
interaction terms are known

If we know the signs (positive or negative) of the inter-
action effects, we can construct a potentially more powerful
test based on the following weighted Z test.

(11) ZD = (Iβ1>0Z5 + Iβ2>0Z6 + Iβ3>0Z7 + Iβ4>0Z8)/2,

where Iβi>0 equals 1 if βi > 0 and −1 otherwise (i =
1, 2, 3, 4). The right-sided p-value of ZD can be calculated
based on the standard normal distribution, which is the
asymptotic null sampling distribution of ZD under the null
hypothesis of H02.

2.2.3 Robust test if all the 4 interaction effects have the
same but unknown direction

If the four interaction coefficients have the same but un-
known direction, we can use a chi-square test with 1 df.

(12) χ2
1 =

(
Z5 + Z6 + Z7 + Z8

2

)2

.

Under the null hypothesis of H02, χ
2
1 has an asymptotic chi-

square distribution with 1 df.
Alternatively, a more robust test can be constructed

based on Fisher’s method of combining independent p-
values [Fisher 1932; Owen 2009]:

(13) W = max(W1,W2),

where W1 = −2 ln(Φ(Z5)Φ(Z6)Φ(Z7)Φ(Z8)), W2 =
−2 ln(Φ(−Z5)Φ(−Z6)Φ(−Z7)Φ(−Z8)). The p-value of W
can be approximated by [Chen 2013; Chen 2014; Chen, et
al. 2013a; Chen, et al. 2014a; Chen, et al. 2012a; Chen, et
al. 2013b; Chen, et al. 2014b; Chen, et al. 2012b; Chen and
Ng 2012; Chen, et al. 2014c; Owen 2009] min(1, 2χ2

8(W )),
where χ2

8() is the cumulative density distribution (CDF) of
the chi-square distribution with 8 df. The test W in (13) is
more robust than the test χ2

1 in (12), especially when some
of the Zi’s have small effects.

2.2.4 Powerful test when both the directions and magni-
tudes of the 4 interaction effects are known

If the directions and magnitudes of all of the 4 interaction
coefficients in model (1) are known, a powerful weighted Z
test with weights equal to the effect sizes can be constructed
for this ideal situation. For instance, under the assumption
of additive interaction effects [VanderWeele and Laird 2011;
Yu, et al. 2015], we can construct the following test statistic:

(14) ZA =
Z5 + 2Z6 + 2Z7 + 4Z8

5
.

Under the null hypothesis ofH02, asymptotically, ZA follows
the standard normal distribution. Furthermore, if the signs
of βi’s are known (e.g., all positive or all negative), an even

more powerful one-sided test can be used to calculate the
p-value; otherwise, the equivalent chi-square test of (ZA)2

will be used to calculate the two-sided p-value for ZA in
(14).

In general, under the ideal situation that the signs and the
relative magnitudes of the four interaction terms in model
(1) are known, a powerful test statistic can be obtained.
Suppose β1 : β2 : β3 : β4 = 1 : γ1 : γ2 : γ3, the test statistic
is constructed as follows:
(15)

ZI =
Iβ1>0Z5 + Iβ2>0γ1Z6 + Iβ3>0γ2Z7 + Iβ4>0γ3Z8√

1 + γ2
1 + γ2

2 + γ2
3

.

Under the null hypothesis of H01, Z
I asymptotically follows

the standard normal distribution, and its p-value can be
calculated based on the right-sided test. It is easily seen
that when γ1 = γ2 = γ3 = 1, (15) becomes (11).

2.3 Interaction tests based on LOR

The above interaction tests are based on (7), the dif-
ferences of the product of proportions. Alternatively, those
tests can be constructed based on (6), the log odds ratios
(LOR).

(16)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

TLOR
5 = ln

(
r1r5s2s4
r2r4s1s5

)
TLOR
6 = ln

(
(r1+r2)r6s3(s4+s5)
r3(r4+r5)(s1+s2)s6

)
TLOR
7 = ln

(
(r1+r4)r8(s2+s5)s7
(r2+r5)r7(s1+s4)s8

)
TLOR
8 = ln

(
(r1+r2+r4+r5)r9(s3+s6)(s7+s8)
(r3+r6)(r7+r8)(s1+s2+s4+s5)s9

)
.

The estimate of the variance-covariance matrix of the above
statistics can be obtained using the delta method. We define
the following test statistics based on LOR.

(17)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ZLOR
5 =

TLOR
5√
v̂LOR
5

ZLOR
6 =

TLOR
6√
v̂LOR
6

ZLOR
7 =

TLOR
7√
v̂LOR
7

ZLOR
8 =

TLOR
8√
v̂LOR
8

,

where v̂LOR
5 = 1

r1
+ 1

r2
+ 1

r4
+ 1

r5
+ 1

s1
+ 1

s2
+ 1

s4
+ 1

s5
, v̂LOR

6 =
1

r1+r2
+ 1

r3
+ 1

r4+r5
+ 1

r6
+ 1

s1+s2
+ 1

s3
+ 1

s4+s5
+ 1

s6
, v̂LOR

7 =
1

r1+r4
+ 1

r2+r5
+ 1

r7
+ 1

r8
+ 1

s1+s4
+ 1

s2+s5
+ 1

s7
+ 1

s8
, and

v̂LOR
8 = 1

r1+r2+r4+r5
+ 1

r3+r6
+ 1

r7+r8
+ 1

r9
+ 1

s1+s2+s4+s5
+

1
s3+s6

+ 1
s7+s8

+ 1
s9
.

For the above statistics, we have the following results.

Theorem 2. Under the null hypothesis of H02, asymp-
totically the random vector ZLOR

I = (ZLOR
5 , ZLOR

6 , ZLOR
7 ,

ZLOR
8 )T follows a multivariate normal distribution, e.g.,

ZLOR
I ∼ MVN(0, I4).

The proof of Theorem 2 is given in the Appendix B.
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Many test statistics discussed before can be constructed
based on ZLOR

I , instead of ZI . In fact, ZLOR
I and ZI are

highly correlated. We have the following results.

Theorem 3. ZLOR
I ≈ ZI if βi (i = 1, 2, 3, 4) in model (1)

are small.

The proof of Theorem 3 is given in the Appendix C. When
βi are large, or the sample sizes are small, the variance esti-
mates for ZI are more accurate than those for ZLOR

I , there-
fore, in this paper we focus on the interaction tests based
on ZI only.

2.4 Testing for the main effects

For a single SNP in a case-control GWAS, many robust
association tests have been proposed in the literature [Chen
2011b; Chen and Ng 2012; Zang, et al. 2010; Zheng and
Ng 2008]. Recently, we proposed a robust association test
based on the generalized genetic model (GGM) [Chen and
Ng 2012], which includes the commonly assumed dominant,
recessive, and additive models as special cases. GGM as-
sumes that, under the alternative, the relative risk of g2 to
g1 is between one and the relative risk of g3 to g1. This im-
plies that under the alternative hypothesis of main effects
present, T1 and T2 have the same sign and so for T3 and T4.

The statistics, T1, T2, T3, and T4, defined in the sub-
section of the proposed methods are asymptotically inde-
pendent under the null hypothesis of H02. Their variances
vi (i = 1, 2, 3, 4) can be estimated and we define the follow-
ing test statistics.

(18)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Z1 = T1√
v̂1

Z2 = T2√
v̂2

Z3 = T3√
v̂3

Z4 = T4√
v̂4

.

For the above defined test statistics, we have the following
properties.

Theorem 4. Under the null hypothesis of H02, asymptot-
ically, the random vector ZM = (Z1, Z2, Z3, Z4)

T follows a
multivariate normal distribution, e.g., ZM ∼ MVN(0, I4),
where

v̂1 = rs
(
p̂1 + p̂2 + p̂3

) (
p̂4 + p̂5 + p̂6

)
×
[
(n− 2)

(
p̂1 + p̂2 + p̂3 + p̂4 + p̂5 + p̂6

)
+ 2

]
,

v̂2 = nrs
(
p̂1 + p̂2 + p̂3 + p̂4 + p̂5 + p̂6

)(
p̂7 + p̂8 + p̂9

)
,

v̂3 = rs
(
p̂1 + p̂4 + p̂7

) (
p̂2 + p̂5 + p̂8

)
×
[
(n− 2)

(
p̂1 + p̂4 + p̂7 + p̂2 + p̂5 + p̂8

)
+ 2

]
,

v̂4 = nrs
(
p̂1 + p̂4 + p̂7 + p̂2 + p̂5 + p̂8

)(
p̂3 + p̂6 + p̂9

)
,

p̂i =
ri+si
r+s is the estimate of pi =

rpi+sqi
r+s .

The proof of Theorem 4 is given in the Appendix D. To
test for the main effect of SNP 1, we assume GGM and de-

note W1 = max(W11,W12), where W11 = (χ2
1)

−1(Φ(Z1)) +
(χ2

1)
−1(Φ(Z2)), W12 = (χ2

1)
−1(Φ(−Z1)) + (χ2

1)
−1(Φ(−Z2)),

(χ2
1)

−1() is the inverse of the CDF of the chi-square distri-
bution with 1 df. The p-value for W1 can be approximated
by P1 = 2χ2

2(W1) [Chen and Nadarajah 2014; Chen and
Ng 2012; Owen 2009]. Similarly, the p-value for testing the
main effect of SNP 2 can be approximated by P2 = 2χ2

2(W2),
where W2 = max(W21,W22), and W21 = (χ2

1)
−1(Φ(Z3)) +

(χ2
1)

−1(Φ(Z4)), W22 = (χ2
1)

−1(Φ(−Z3)) + (χ2
1)

−1(Φ(−Z4)).
It should be pointed out that, if the GGM assumption is
slightly violated, the main effect tests mentioned above are
robust and still have reasonable powers.

2.5 The relationship between the main and
the interaction tests and the overall
association test

It can be shown that Cov(T1, T5) = (p1p5q2q4 −
p2p4q1q5)[r

(2)s(3)((q1+q2+q3)−(q4+q5+q6))−r(3)s(2)((p1+
p2+p3)−(p4+p5+p6))]. If the null hypothesis of no interac-
tion, i.e., H01, is assumed, then Cov(T1, T5) = 0. In general,
under the null hypothesis of no interaction, ZI and ZM are
independent. Therefore, the above interaction tests based
on ZI and the main effects tests based on ZM are asymp-
totically independent under the null hypothesis of H02.

Since the current gene-gene interaction tests are based
on different definitions of interaction effects, it is difficult
to directly compare their performances. In addition, many
times, with data in Table 1, we are interested in testing
for the overall association, i.e., for the null hypothesis of
H02. We can use the above proposed interaction tests and
the main effect tests to obtain an overall test through the
techniques of combining independent p-values [Chen 2011a;
Chen and Nadarajah 2014; Chen, et al. 2014d; Fisher 1932;
Owen 2009]. Suppose the p-value from the interaction test
(any one from section 2.2) is P3. Since those two p-values,
P1, P2, obtained from the two main effect tests, and P3

are asymptotically independent under the null hypothe-
sis of H02, many techniques of combining independent p-
values can be applied. If any information about the main
effects and the interaction effect is available, it should be
used. In general, the following robust chi-square test can be
used:

(19) W =
(
χ2
df1

)−1
(P1) +

(
χ2
df2

)−1
(P2) +

(
χ2
df3

)−1
(P3) .

Under the null hypothesis of H02, W can be approximated
by a chi-square distribution with df df = df1 + df2 + df3;
therefore, its p-value can be approximated by po = χ2

df (w).
Since in GWAS, the effects of interaction are usually rel-
atively small, it is preferable to assign a relatively small
number for df3. Without prior information, we may choose
df1 = df2 = df3 = 1.

3. SIMULATION STUDY

In this section, we conduct a simulation study to com-
pare the proposed tests with some existing methods. As
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Table 3. Frequencies for genotypes under the assumptions of HWE and LE

Genotype AA Aa aa

BB p2Ap
2
B 2pA(1− pA)p

2
B (1− pA)

2p2B
Bb 2p2ApB(1− pB) 4pA(1− pA)pB(1− pB) 2(1− pA)

2pB(1− pB)
bb p2A(1− pB)

2 2pA(1− pA)(1− pB)
2 (1− pA)

2(1− pB)
2

mentioned early, under different assumptions, test statis-
tics with more power can be constructed accordingly. How-
ever, in most situation, we don’t know the truth and ro-
bust tests are preferred. In this simulation study, we only
consider robust tests of our proposed methods and some
commonly used robust methods recommended in the liter-
ature [Hu, et al. 2014]. Specifically, for the proposed tests,
we include the interaction test (IT) in (10), the overall test
(OT) in (19) with df1 = df2 = df3 = 1; for existing tests,
we consider the LRT for interaction, or the logistic regres-
sion based interaction test (LI), in (3), the overall chi-square
test (CS), and the LRT for testing for the overall associa-
tion (LO), which compares the model (1) and the null model
logit (πgh) = μ.

We denote pA = Pr (allele A for SNP 1), the probability
of having the allele A for the first SNP 1, pB = Pr (allele
B for SNP 2), the frequencies for the 9 combinations of
genotypes are determined as shown in Table 3 when Hardy-
Weinberg equilibrium (HWE) and linkage equilibrium (LE)
are assumed.

In the simulation study, we assume HWE and LE hold
for controls, therefore the frequencies for controls will be
determined by pA, and pB . As mentioned in the subsection
of the proposed methods, we assume the random vectors of
cases, R, and controls, S, both follow multinomial distribu-
tion, R ∼ MN(r, p = (p1, p2, p3, p4, p5, p6, p7, p8, p9)), and
S ∼ MN(s, q = (q1, q2, q3, q4, q5, q6, q7, q8, q9)).

We denote relative risks r1 = Pr(case|Aa)
Pr(case|AA) , r2 =

Pr(case|aa)
Pr(case|AA) , r11 = Pr((case|Bb)|AA)

Pr((case|BB)|AA) , r12 = Pr((case|bb)|AA)
Pr((case|BB)|AA) ,

r21 = Pr((case|Bb)|Aa)
Pr((case|BB)|Aa) , r22 = Pr((case|bb)|Aa)

Pr((case|BB)|Aa) , r31 =
Pr((case|Bb)|aa)
Pr((case|BB)|aa) , and r32 = Pr((case|bb)|aa)

Pr((case|BB)|aa) . Note that r1 and

r2 are the marginal relative risks of genotypes Aa and aa to
AA; ri1 and ri2 (i = 1, 2, 3) are the conditional relative risks
of genotypes Bb and bb to BB when the genotype for SNP
1 is AA, Aa, and aa, respectively. Given the above relative
risks and the frequencies for controls, the frequencies for
cases can be determined.

Denote p01 = p1 + p2 + p3, p02 = p4 + p5 + p6, p03 = p7 +
p8+p9, q01 = q1+q2+q3, q02 = q4+q5+q6, q03 = q7+q8+q9,
then we have [Chen and Ng 2012]⎧⎪⎨

⎪⎩
p01 = q01

q01+r1q02+r2q03

p02 = r1q02
q01+r1q02+r2q03

p03 = r2q03
q01+r1q02+r2q03

.

Further, denote

⎧⎪⎨
⎪⎩
p11 = p1

p01

p12 = p2

p01

p13 = p3

p01

,

and ⎧⎪⎨
⎪⎩
q11 = q1

q01

q12 = q2
q01

q13 = q3
q01

,

then we have ⎧⎪⎨
⎪⎩
p11 = q11

q11+r11q12+r12q13

p12 = r11q12
q11+r11q12+r12q13

p13 = r12q13
q11+r11q12+r12q13

,

or⎧⎪⎨
⎪⎩
p1 = p01

q11
q11+r11q12+r12q13

= q01
q01+r1q02+r2q03

q1
q1+r11q2+r12q3

p2 = p01
r11q12

q11+r11q12+r12q13
= q01

q01+r1q02+r2q03

r11q2
q1+r11q2+r12q3

p3 = p01
r12q13

q11+r11q12+r12q13
= q01

q01+r1q02+r2q03

r12q3
q1+r11q2+r12q3

.

Similarly, we have the following results⎧⎪⎨
⎪⎩
p4 = p02

q21
q21+r21q22+r22q23

= r1q02
q01+r1q02+r2q03

q4
q4+r21q5+r22q6

p5 = p02
r21q22

q21+r21q22+r22q23
= r1q02

q01+r1q02+r2q03

r21q5
q4+r21q5+r22q6

p6 = p02
r22q23

q21+r21q22+r22q23
= r1q02

q01+r1q02+r2q03

r22q6
q4+r21q5+r22q6

,

and⎧⎪⎨
⎪⎩
p7 = p03

q31
q31+r31q32+r32q33

= r2q03
q01+r1q02+r2q03

q7
q7+r31q8+r32q9

p8 = p03
r31q32

q31+r31q32+r32q33
= r2q03

q01+r1q02+r2q03
r218

q7+r31q8+r32q9

p9 = p03
r32q33

q31+r31q32+r32q33
= r2q03

q01+r1q02+r2q03

r22q9
q7+r31q8+r32q9

.

In the simulation study, we assume HWE hold in controls
for both SNPs with minor allele frequency (MAF) equals 0.3
and 0.5. For the relative risks of SNP 1, we assume r2 = 1.4
and r1 takes values 1, 1.1, 1.2, 1.3, 1.4. For the relative
risks of SNP 2 at each genotype of SNP 1, we assume ri2 =
1.4, and ri1 = 1, 1.2, or 1.4, for i = 1, 2, 3. We simulate
5000 cases and 5000 controls and estimate the empirical type
I error rate using 1000 replicates and significance level of
0.05. To make the comparisons appreciable, when estimate
the empirical powers of the interaction tests and the overall
association tests, we use significance level of 0.05 and 10−16,
respectively.

Table 4 reports the empirical type I error rate for each
of the methods compared when the null hypothesis of no
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Table 4. Empirical type I error rates for the interaction and
the overall association tests under the null hypothesis of H02

based on 1000 replicates with 5000 cases and 5000 controls,
and the nominal significance level of 0.05

pA, pB IT LI OT CS LO

0.3, 0.3 0.054 0.054 0.061 0.052 0.053
0.3, 0.5 0.046 0.048 0.047 0.047 0.047
0.5, 0.5 0.059 0.058 0.053 0.054 0.054

Table 5. Empirical type I error rates of the interaction tests
(use significance level of 0.05) and powers of the overall
association tests (use significance level of 1e-16) when no

interaction but only one main effect presents with
r1 = 1, 1.2, 1.4, and r2 = 1.4

pA, pB r1, r2 IT LI OT CS LO

0.3, 0.3 1, 1.4 0.045 0.047 0.552 0.180 0.187
0.3, 0.3 1.2, 1.4 0.048 0.052 0.000 0.000 0.000
0.3, 0.3 1.4, 1.4 0.046 0.050 0.000 0.000 0.000
0.3, 0.5 1, 1.4 0.044 0.046 0.225 0.045 0.047
0.3, 0.5 1.2, 1.4 0.043 0.046 0.001 0.000 0.000
0.3, 0.5 1.4, 1.4 0.042 0.046 0.056 0.010 0.012
0.5, 0.5 1, 1.4 0.062 0.064 0.233 0.050 0.053
0.5, 0.5 1.2, 1.4 0.055 0.057 0.001 0.000 0.001
0.5, 0.5 1.4, 1.4 0.041 0.046 0.059 0.024 0.024

Table 6. Empirical type I error rates of the interaction tests
(use significance level of 0.05) and powers of the overall
association tests (use significance level of 1e-16) when no
interaction but two main effect present with pA = 0.5,

pB = 0.5, r1 = 1, 1.2, 1.4, r2 = 1.4, ri1 = 1, 1.2, 1.4, and
ri2 = 1.4

r1, r2 ri1, ri2 IT LI OT CS LO

1, 1.4 1, 1.4 0.039 0.044 0.940 0.900 0.904
1, 1.4 1.2, 1.4 0.035 0.039 0.716 0.599 0.612
1, 1.4 1.4, 1.4 0.049 0.056 0.916 0.835 0.836
1.2, 1.4 1, 1.4 0.051 0.059 0.739 0.630 0.638
1.2, 1.4 1.2, 1.4 0.050 0.050 0.332 0.212 0.218
1.2, 1.4 1.4, 1.4 0.041 0.042 0.554 0.414 0.417
1.4, 1.4 1, 1.4 0.048 0.051 0.882 0.822 0.828
1.4, 1.4 1.2, 1.4 0.056 0.058 0.587 0.454 0.457
1.4, 1.4 1.4, 1.4 0.042 0.043 0.805 0.673 0.682

overall association, H02, is assumed. It shows that under
this assumption all methods control type I error rate.

When only the main effect of SNP 1 (Table 5), or both
main effects (Table 6), but no interaction effects present,
the empirical type I error rates for the interaction tests (IT,
LI) and the empirical powers for the overall association tests
(OT, CS, and LO) are listed in Table 5 and Table 6, respec-
tively. It can be seen that both interaction tests control type
I error rate quite well. Furthermore, in these situations, the
proposed overall association test is usually more powerful
than the other two overall association tests.

Table 7. Empirical powers of the interaction tests (use
significance level of 0.05) and the overall association tests
(use significance level of 1e-16) when interaction effects

present with pA = 0.5, pB = 0.5, and ri2 = 1.4

r1, r2 r11, r21, r31 IT LI OT CS LO

1, 1 1, 1.2, 1.4 0.657 0.652 0.007 0.004 0.004
1, 1.4 1, 1.2, 1.4 0.660 0.667 0.827 0.757 0.766
1.2, 1.4 1, 1.2, 1.4 0.630 0.646 0.415 0.342 0.346
1.4, 1.4 1, 1.2, 1.4 0.614 0.626 0.666 0.597 0.604

Table 8. (Number of cases)/(Number of controls) in each of
the two-locus genotypes, data were from Sha et al. [Sha, et

al. 2009]

Genotype
SNP 1

TT TC CC

SNP 2
AA 11/23 14/37 3/7
AG 29/50 73/56 29/11
GG 23/45 65/24 28/16

SNP 3
CC 33/95 95/89 37/30
CA 29/20 52/25 22/4
AA 1/3 5/3 1/0

Finally, Table 7 lists the empirical powers for all of the
tests considered in the simulation study when interaction
effects present and the main effect of SNP 1 either presents
(r1 = r2 = 1) or not (r2 = 1.4). It clearly shows that the
performance of the two interaction tests are very similar. In
addition, the proposed overall association test has larger em-
pirical powers than the other two overall association tests.
We also simulated data when the genetic models various
(i.e., different values for the marginal and conditional rela-
tive risks), we saw similar patterns.

4. REAL DATA APPLICATION

We apply the proposed tests to the data presented in Ta-
ble 2 of the paper by Sha et al. [Sha, et al. 2009], which
studied the interaction effects between pairs of SNPs using
the GWAS data set of sporadic Amyotrophic lateral scle-
rosis (ALS) [Schymick, et al. 2007]. Three previously re-
ported associated SNPs were found to have possible inter-
actions. They were rs4363506 (SNP 1), rs3733242 (SNP 2),
and rs16984239 (SNP 3), among which SNP 1 was thought
to have interaction with both SNP 2 and SNP 3. The data
were summarized in Table 8.

Table 9 lists the p-value obtained from each method. Al-
though the overall association tests each has a small p-value,
indicating the existence of the overall association between
each pair of SNPs and the disease, the interaction tests (IT
and LI) only identified the significant interaction between
SNP 1 and SNP 2, but not SNP 1 and SNP 3, at the sig-
nificance level of 0.05. The eight statistics, z1, z2, . . . , z8,
are listed in Table 10. For the four interaction test statistics
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Table 9. P-value obtained by each of the method for the data

Pair of SNPs IT LI OT CS LO

SNP 1 & SNP 2 3.07e-02 1.08e-02 9.55e-11 2.53e-10 1.12e-10
SNP 1 & SNP 3 3.41e-01 3.29e-01 1.19e-10 1.82e-09 4.29e-10

Table 10. Test statistics obtained by each of the method for the data

Pair of SNPs z1 z2 z3 z4 z5 z6 z7 z8
SNP 1 & SNP 2 4.51 2.83 3.87 2.56 1.59 2.37 1.18 -1.07
SNP 1 & SNP 3 4.51 2.83 5.05 0.24 -1.57 0.57 0.94 0.93

(z5, z6, z7, and z8), their absolute values were not large for
each of the two pairs of SNPs, indicating the interaction ef-
fects are either small or zero. Furthermore, for each of the
pairs of statistics, z1 and z2, z3 and z4, they have the same
direction (both positive), indicating the GGM is valid for
both main effects. For the pair of SNP 1 and SNP 2, sup-
pose we know the signs of β1, β2, β3, and β4 as the ones
listed in Table 10 (i.e., +,+,+,−) before we see the data,
we then apply the test ZD defined in (11) to test for the
interaction effect. We obtain the test statistic zD = 3.1, and
a much smaller one-sided p-value 0.00097.

5. DISCUSSION AND CONCLUSION

In this paper we proposed a number of interaction tests
based on the four asymptotically independent statistics.
Many powerful tests under certain situations can be devel-
oped based on those statistics. However, without any prior
information about the genetic model, robust methods are
recommended.

When both the counts of cases and controls are zero for
a given genotype, the test statistics should be corrected ac-
cordingly. For instance, if in Table 1 r1 = s1 = 0, then
Z5 = 0, the robust interaction test in (10) should base on
Z6, Z7, and Z8 only, and the df should be 3, instead of 4.
Similarly, the Pearson’s chi-square test will have 7, instead
of 8, df in this situation.

Although many gene-gene interaction tests have been
proposed for GWASs in the literature, they were constructed
based on different definitions of interaction, making direct
comparison of their performances difficult. In this case, it
might be more appropriate to compare the performance of
the overall tests. Furthermore, the findings of current gene-
gene interactions are statistical method-biased. More robust
gene-gene interaction tests are desired. On the other hand,
powerful tests with specific assumptions may be preferable
when the information about the genetic models is available
from prior studies. To this end, the proposed statistical tests
in the paper may provide useful tools.

ACKNOWLEDGEMENTS

The author is grateful to the editor, the associate editor
and referees for their helpful comments and suggestions that

lead to improvement of the paper. The author also acknowl-
edges the support from the internal research funds awarded
by Indiana University School of Public Health-Bloomington.

APPENDIX A. PROOF OF THEOREM 1

Suppose W = (W1,W2, · · · ,Wk)
T is a k-dimensional

multinomial variable with parameters p = (p1, p2, · · · , pk)T
and cluster size m. Denote x(a) = x(x − 1) . . . (x − a + 1),
we have the following results [Mosimann 1962]:

(i) E (Wi) = mpi, i = 1, 2, . . . , k.

(ii) E (WiWj) = m(2)pipj , i �= j.

(iii) E
(
W 2

i

)
= m(2)p2i +mpi, i = 1, 2, . . . , k.

(iv) E (WiWjWl) = m(3)pipjpl, i �= j �= l.

(v) E
(
W 2

i Wj

)
= m(3)p2i pj +m(2)pipj , i �= j.

(vi) E
(
W 3

i

)
= m(3)p3i + 3m(2)p2i +mpi, i = 1, 2, . . . , k.

(vii) E (WiWjWlWr) = m(4)pipjplpr, i �= j �= l �= r.

(viii) E
(
W 2

i WjWl

)
= m(4)p2i pjpl +m(3)pipjpl, i �= j �= l.

(ix) E
(
W 2

i W
2
j

)
= m(4)p2i p

2
j +m(3)(p2i pj + pip

2
j )

+m(2)pipj , i �= j.

Based on the above results, let vi = var (Ti) (i =
5, 6, 7, 8), where Ti’s are defined in (8), it is easy to show
that E (Ti) = 0. Therefore vi = var (Ti) = E(T 2

i ), and
cov (Ti, Tj) = E (TiTj). Some algebra show the following:

(a) v5 = a51 + a52 + a53 + a54 + a55 + a56 + a57 + a58,

where

a51 = r(4)s(3)
[
p21p

2
5q2q4(q2 + q4) + p22p

2
4q1q5(q1 + q5)

]
,

a52 = r(4)s(2)
[
p21p

2
5q2q4 + p22p

2
4q1q5

]
,

a53 = r(3)s(4)
[
p1p5 (p1 + p5) q

2
2q

2
4 + p2p4 (p2 + p4) q

2
1q

2
5

]
,

a54 = r(3)s(3)
[
p1p5 (p1 + p5) q2q4 (q2 + q4)

+ p2p4 (p2 + p4) q1q5 (q1 + q5)
]
,

a55 = r(3)s(2) [p1p5 (p1 + p5) q2q4 + p2p4 (p2 + p4) q1q5] ,

a56 = r(2)s(4)
[
p1p5q

2
2q

2
4 + p2p4q

2
1q

2
5

]
,
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a57 = r(2)s(3) [p1p5q2q4 (q2 + q4) + p2p4q1q5 (q1 + q5)] ,

a58 = r(2)s(2) [p1p5q2q4 + p2p4q1q5] .

(b) v6 = a61 + a62 + a63 + a64 + a65 + a66 + a67 + a68,

where

a61 = r(4)s(3)
[
(p1 + p2)

2p26q3(q4 + q5)(q3 + q4 + q5)

+ p23(p4 + p5)
2(q1 + q2)q6(q1 + q2 + q6)

]
,

a62 = r(4)s(2)
[
(p1 + p2)

2p26q3 (q4 + q5)

+ p23(p4 + p5)
2 (q1 + q2) q6

]
,

a63 = r(3)s(4)
[
(p1 + p2)p6 (p1 + p2 + p6) q

2
3(q4 + q5)

2

+ p3(p4 + p5) (p3 + p4 + p5) (q1 + q2)
2q26

]
,

a64 = r(3)s(3)
[
(p1 + p2)p6 (p1 + p2 + p6) q3(q4 + q5)

× (q3 + q4 + q5) + p3(p4 + p5) (p3 + p4 + p5)

× (q1 + q2) q6 (q1 + q2 + q6)
]
,

a65 = r(3)s(2)
[
(p1 + p2)p6 (p1 + p2 + p6) q3(q4 + q5)

+ p3(p4 + p5) (p3 + p4 + p5) (q1 + q2) q6
]
,

a66 = r(2)s(4)
[
(p1 + p2)p6q

2
3(q4 + q5)

2

+ p3(p4 + p5)(q1 + q2)
2q26

]
,

a67 = r(2)s(3)
[
(p1 + p2)p6q3 (q4 + q5) (q3 + q4 + q5)

+ p3(p4 + p5)(q1 + q2)q6 (q1 + q2 + q6)
]
,

a68 = r(2)s(2)
[
(p1 + p2)p6q3 (q4 + q5)

+ p3(p4 + p5)(q1 + q2)q6 (q1 + q2 + q6)
]
.

(c) v7 = a71 + a72 + a73 + a74 + a75 + a76 + a77 + a78,

where

a71 = r(4)s(3)
[
(p1 + p4)

2p28q2q7(q2 + q5 + q7)

+ (p2 + p5)
2p27(q1 + q4)q8(q1 + q4 + q8)

]
,

a72 = r(4)s(2)
[
(p1 + p4)

2p28(q2 + q5)q7

+ (p2 + p5)
2p27(q1 + q4)q8

]
,

a73 = r(3)s(4)
[
(p1 + p4)p8(p1 + p4 + p8)(q2 + q5)

2q27

+ (p2 + p5)p7(p2 + p5 + p7)(q1 + q4)
2q28

]
,

a74 = r(3)s(3)
[
(p1 + p4)p8(p1 + p4 + p8)(q2 + q5)

× q7(q2 + q5 + q7)

+ (p2 + p5)p7(p2 + p5 + p7)q1q8(q1 + q4 + q8)
]
,

a75 = r(3)s(2)
[
(p1 + p4)p8(p1 + p4 + p8)(q2 + q5)q7

+ (p2 + p5)p7(p2 + p5 + p7)(q1 + q4)q8
]
,

a76 = r(2)s(4)
[
(p1 + p4)p8(q2 + q5)

2q27

+ (p2 + p5)p7(q1 + q4)
2q28

]
,

a77 = r(2)s(3)
[
(p1 + p4)p8(q2 + q5)q7(q2 + q5 + q7)

+ (p2 + p5)p7(q1 + q4)q8(q1 + q4 + q8)
]
,

a78 = r(2)s(2)
[
(p1 + p4)p8(q2 + q5)q7

+ (p2 + p5)p7(q1 + q4)q8(q1 + q4 + q8)
]
.

(d) v8 = a81 + a82 + a83 + a84 + a85 + a86 + a87 + a88,

where

a81 = r(4)s(3)[(p1 + p2 + p4 + p5)
2p29(q3 + q6)(q7 + q8)

× (q3 + q6 + q7 + q8) + (p3 + p6)
2(p7 + p8)

2

× (q1 + q2 + q4 + q5)q9(q1 + q2 + q4 + q5 + q9)],

a82 = r(4)s(2)
[
(p1 + p2 + p4 + p5)

2p29(q3 + q6)(q7 + q8)

+ (p3 + p6)
2(p7 + p8)

2(q1 + q2 + q4 + q5)q9
]
,

a83 = r(3)s(4)
[
(p1 + p2 + p4 + p5)p9(p1 + p2 + p4 + p5 + p9)

× (q3 + q6)
2(q7 + q8)

2 + (p3 + p6)(p7 + p8)

× (p3 + p6 + p7 + p8)(q1 + q2 + q4 + q5)
2q29

]
,

a84 = r(3)s(3)
[
(p1 + p2 + p4 + p5)p9(p1 + p2 + p4 + p5 + p9)

× (q3 + q6)(p7 + p8)(q3 + q6 + p7 + p8)

+ (p3 + p6)(p7 + p8)(p3 + p6 + p7 + p8)

× (q1 + q2 + q4 + q5)q9(q1 + q2 + q4 + q5 + q9)
]
,

a85 = r(3)s(2)
[
(p1 + p2 + p4 + p5)p9(p1 + p2 + p4 + p5 + p9)

× (q3 + q6)(q7 + q8) + (p3 + p6)(p7 + p8)

× (p3 + p6 + p7 + p8)(q1 + q2 + q4 + q5)q9
]
,

a86 = r(2)s(4)
[
(p1 + p2 + p4 + p5)p9(q3 + q6)

2(q7 + q8)
2

+ (p3 + p6)(p7 + p8)(q1 + q2 + q4 + q5)
2q29

]
,

a87 = r(2)s(3)
[
(p1 + p2 + p4 + p5)p9(q3 + q6)(p7 + p8)

× (q3 + q6 + p7 + p8) + (p3 + p6)(p7 + p8)

× (q1 + q2 + q4 + q5)q9(q1 + q2 + q4 + q5 + q9)
]
,

a88 = r(2)s(2)
[
(p1 + p2 + p4 + p5)p9(q3 + q6)(p7 + p8)

+ (p3 + p6)(p7 + p8)(q1 + q2 + q4 + q5)

× q9(q1 + q2 + q4 + q5 + q9)
]
.

(e) cov (Ti, Tj) = 0, i �= j.

From the above results, the variances can be estimated
by the estimates of the leading terms. For example, Var(T5),
i.e., v5, can be approximated by v̂5 = â51+ â53, the estimate
of a51 + a53, with the pi and qi being replaced by their
MLEs p̂i =

ri
r , and q̂i =

si
s . This is because

a5i

a51+a53
→ 0 for

i = 2, 4, 5, . . . , 8 when r and s → ∞.

APPENDIX B. PROOF OF THEOREM 2

We only need to show that var(TLOR
5 ) ≈ 1

r1
+ 1

r2
+

1
r4

+ 1
r5

+ 1
s1

+ 1
s2

+ 1
s4

+ 1
s5
, and cov(TLOR

5 , TLOR
6 ) =

0 as the other results can be proven in the same
way. Since TLOR

5 = ln( r1r5s2s4r2r4s1s5
) = ln( p̂1p̂5q̂2q̂4

p̂2p̂4q̂1q̂5
), let

f(p1, p2, p4, p5, q1, q2, q4, q5) = ln(p1) − ln(p2) − ln(p4) +
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ln(p5) − ln(q1) + ln(q2) + ln(q4) − ln(q5), then the gra-
dient ∇f = ( 1

p1
,− 1

p2
,− 1

p4
, 1
p5
,− 1

q1
, 1
q2
, 1
q4
,− 1

q5
)T . The

variance-covariance matrix, denoted by Σ, of vector
(p̂1, p̂2, p̂4, p̂5, q̂1, q̂2, q̂4, q̂5)

T can be found based on the prop-
erties of multinomial distribution and the fact that cases and

controls are independent. Σ =

[
ΣP 0
0 ΣQ

]
, where

ΣP =
1

r

⎡
⎢⎢⎣

p1(1− p1) −p11p2 −p1p4 −p1p5
−p1p2 p2(1− p2) −p2p4 −p2p5
−p1p4 −p2p4 p4(1− p4) −p4p5
−p1p̂5 −p2p5 −p4p5 p5(1− p5)

⎤
⎥⎥⎦ ,

and

ΣQ =
1

s

⎡
⎢⎢⎣

q1(1− q1) −q1q2 −q1q4 −q1q5
−q1q2 q2(1− q2) −q2q4 −q2q5
−q1q4 −q2q4 q4(1− q4) −q4q5
−q1q5 −q2q5 −q4q5 q5(1− q5)

⎤
⎥⎥⎦ .

The variance of TLOR
5 can then be approximated

by (∇f)TΣ(∇f). It is not difficulty to show that
(∇f)TΣ(∇f) = 1

r1
+ 1

r2
+ 1

r4
+ 1

r5
+ 1

s1
+ 1

s2
+ 1

s4
+ 1

s5
.

Next, we show that cov(TLOR
5 , TLOR

6 ) ≈ 0. Let
f(p1, p2, p4, p5, p7, p8, q1, q2, q4, q5, q7, q8) = ln(p1)− ln(p2)−
ln(p4) + ln(p5) − ln(q1) + ln(q2) + ln(q4) − ln(q5) as de-
fined above and g(p1, p2, p4, p5, p7, p8, q1, q2, q4, q5, q7, q8) =
ln(p1 + p2) − ln(p3 + p4) − ln(p5) + ln(p6) − ln(q1 + q2) +
ln(q3 + q4) + ln(q5)− ln(q6).

Then ∇f = ( 1
p1
,− 1

p2
,− 1

p4
, 1
p5
, 0, 0,− 1

q1
, 1
q2
, 1
q4
,− 1

q5
,

0, 0)T , and ∇g = ( 1
p1+p2

, 1
p1+p2

,− 1
p3+p4

,− 1
p3+p4

,− 1
p5
, 1
p6
,

− 1
q1+q2

,− 1
q1+q2

, 1
q3+q4

, 1
q3+q4

, 1
q5
, 1
q6
)T . The variance-

covariance matrix of random vector (p1, p2, p4, p5, p7, p8,

q1, q2, q4, q5, q7, q8)
T can be found as Σ =

[
ΣP 0
0 ΣQ

]
,

with

ΣP =

1

r

⎡
⎢⎢⎢⎣
p1(1− p1) −p1p2 −p1p3 −p14 −p1p5 −p1p6
−p1p2 p2(1− p2) −p2p3 −p2p4 −p2p5 −p2p6
−p1p3 −p2p3 p3(1− p3) −p3p4 −p3p5 −p3p6
−p1p4 −p2p4 −p3p4 p4(1− p4) −p4p5 −p4p6
−p1p5 −p2p5 −p3p5 −p4p5 p5(1− p5) −p5p6
−p1p6 −p2p6 −p3p6 −p4p6 −p5p6 p6(1− p6)

⎤
⎥⎥⎥⎦,

and

ΣQ =

1

s

⎡
⎢⎢⎢⎣
q1(1− q1) −q1q2 −q1q3 −q1q4 −q1q5 −q1q6
−q1q2 q2(1− q2) −q2q3 −q2q4 −q2q5 −q2q6
−q1q3 −q2q3 q3(1− q3) −q3q4 −q3q5 −q3q6
−q1q4 −q2q4 −q3q4 q4(1− q4) −q4q5 −q4q6
−q1q5 −q2q5 −q3q5 −q4q5 q5(1− q5) −q5q6
−q1q6 −q2q6 −q3q6 −q4q6 −q5q6 q6(1− q6)

⎤
⎥⎥⎥⎦ .

The cov(TLOR
5 , TLOR

6 ) can be approximated by
(∇f)TΣ(∇g), which can be shown equal to 0.

APPENDIX C. PROOF OF THEOREM 3

We only show that ZLOR
5 ≈ Z5 when β1 is small,

the others can be proved in the same way. Since β1 =
ln( r1r5s2s4r2r4s1s5

), if β1 is a small, which is usually true in GWAS,

r1r5s2s4 = eβ1r2r4s1s5 ≈ (1 + β1)r2r4s1s5, or p1p5q2q4 ≈
(1 + β1)p2p4q1q5. Because Z5 = β1r5s2s4−r2r4s1s5√

â51+â53
≈

β1r5s2s4−r2r4s1s5√
a51+a53

, where

a51 = r(4)s(3)
[
p21p

2
5q2q4(q2 + q4) + p22p

2
4q1q5(q1 + q5)

]
= r(4)s(3)p22p

2
4q

2
1q

2
5

[(
1 + β1

)2(
1

q2
+

1

q4

)
+

(
1

q1
+

1

q5

)]

≈ r(4)s(3)p22p
2
4q

2
1q

2
5

[
1

q2
+

1

q4
+

1

q1
+

1

q5

]
,

and

a53 = r(3)s(4)
[
p1p5(p1 + p5)q

2
2q

2
4 + p2p4(p2 + p4)q

2
1q

2
5

]
= r(3)s(4)p22p

2
4q

2
1q

2
5

[(
1 + β1

)2(
1

p1
+

1

p5

)
+

(
1

p2
+

1

p4

)]

≈ r(3)s(4)p22p
2
4q

2
1q

2
5

[
1

p1
+

1

p5
+

1

p2
+

1

p4

]
.

Therefore,

Z5 ≈
{
r2s2β1p2p4q1q5

}
×

{
r(4)s(3)p22p

2
4q

2
1q

2
5

[
1

q2
+

1

q4
+

1

q1
+

1

q5

]

+ r(3)s(4)p22p
2
4q

2
1q

2
5

[
1

p1
+

1

p5
+

1

p2
+

1

p4

]}− 1
2

≈ β1√
1
s

[
1
q2

+ 1
q4

+ 1
q1

+ 1
q5

]
+ 1

r

[
1
p1

+ 1
p5

+ 1
p2

+ 1
p4

]
= ZLOR

5 .

APPENDIX D. PROOF OF THEOREM 4

For the statistics Ti’s, denote their variances by vi (i =
1, 2, 3, 4). Similar as in the proof of theorem 1, under the
null hypothesis of H02 we can show that

(a) v1 = rs (p1 + p2 + p3) (p4 + p5 + p6)

× [(n− 2) (p1 + p2 + p3 + p4 + p5 + p6) + 2],

(b) v2 = nrs(p1 + p2 + p3 + p4 + p5 + p6)(p7 + p8 + p9),

(c) v3 = rs (p1 + p4 + p7) (p2 + p5 + p8)

× [(n− 2) (p1 + p4 + p7 + p2 + p5 + p8) + 2],

(d) v4 = nrs(p1 + p4 + p7 + p2 + p5 + p8)(p3 + p6 + p9),

and

(e) cov(Ti, Tj) = 0, i �= j.
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In the above formula, pi =
rpi+sqi

r+s . The variances vi can
be estimated by v̂i for which pi in vi is replaced by its esti-
mate p̂i =

ri+si
r+s .
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