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Identifying interaction effects via additive quantile
regression models

Qianqian Zhu, Yanan Hu, and Maozai Tian
∗

As additive quantile regression (AQR) models possess the
properties of robustness and flexibility, they become increas-
ingly popular in many applications. However, such models
may fail when predictors reflect interaction effects in the re-
sponse. In fact, we often encounter such a problem that the
main effects are not significant but the pairwise interactions
are in regression. The existence of such a situation is neither
accidental nor ignorable. Overlooking the interaction effects
may render many of the traditional statistical techniques
used for studying data relationships invalid. In these situ-
ations, it is necessary to consider more reasonable models
such as AQR model with pairwise interactions. This paper
mainly studies estimation and testing for the AQR model
with pairwise interactions. To estimate the unknown func-
tions in the model, local linear fitting and ordinary backfit-
ting methods are applied. The generalized likelihood ratio
(GLR) type test statistic is constructed to test the overall
significance of pairwise interactions, and bootstrap method
is utilized to approximate the asymptotic distribution of the
test statistic. Theoretical properties of estimators and GLR
type test statistic are derived. Bandwidth selection based on
plug-in method for pairwise interactions is discussed as well.
Finally, simulation study and a simple empirical analysis
are presented to illustrate the performance of the proposed
model.

Keywords and phrases: Additive quantile models, Back-
fitting algorithm, Bandwidth selection, Generalized likeli-
hood ratio type testing, Pairwise interaction.

1. INTRODUCTION

Suppose that {(XT
i , Yi)}ni=1 is an independent and iden-

tically distributed (i.i.d.) random sample satisfying

(1) Y = m(X) + ε, X ∈ Rd,

where Y is response, X = (X1, . . . , Xd)
T is a vector of re-

gressors, and ε is i.i.d. random error. Consider the following
additive structure

(2) m(X) = c+
d∑

α=1

gα(Xα),

∗Corresponding author.

where c is a constant and gα(·)’s are unknown real-valued
functions. Additive model (2) could reduce the “curse of
dimensionality” in nonparametric modeling and allow for
simple interpretation of marginal changes of each regres-
sor. These attractive advantages of additive model make
it widely studied and applied in many fields, see Hastie
and Tibshirani (1990), Linton and Nielsen (1995), Mam-
men et al. (1999) and Derbort et al. (2002) for additive
mean regression model. Furthermore, additive quantile re-
gression (AQR) model has attracted more and more atten-
tions since the introduction of quantile regression in Koenker
and Bassett (1978), see De Gooijer and Zerom (2003),
Yu and Lu (2004), Horowitz and Lee (2005) and Dette
and Scheder (2011). Among these literature, ordinary or
smoothed backfitting algorithms and marginal integration
are commonly used estimation approaches for additive
model (2).

Model (2) assumes the underlying model is purely ad-
ditive, however, this assumption may not be valid. If the
additivity assumption does not hold, pairwise interactions
could be introduced and then a possibly more reasonable
model is the additive model with pairwise interactions

(3) m(X) = c+
d∑

α=1

gα(Xα) +
∑

1≤α<j≤d

gαj(Xα, Xj),

where unknown real-valued functions gαj(Xα, Xj)’s repre-
sent the pairwise interactions between Xα and Xj . Sperlich
et al. (2002) introduced model (3) and studied its mean re-
gression estimation using marginal integration. As far as we
know, few literature have considered quantile regression es-
timation for model (3). Therefore, in this paper, we consider
the following AQR model with pairwise interactions

(4) θτ (x) = Cτ +

d∑
α=1

gα(xα) +
∑

1≤α<j≤d

gαj(xα, xj),

where x ∈ Rd, θτ (x) = θY (τ |X = x) and Cτ = θε(τ |X = x)
are the τ -th conditional quantiles of Y and ε given X, re-
spectively. It can be noted that, to ensure the identification
of Cτ , we assume that the constant term c in model (3)
is zero. In this paper, ordinary backfitting algorithm is ap-
plied to estimate model (4) for its simple implementation
and popular application in additive models.
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It is of vital importance to test the existence of pair-
wise interactions. Many researchers have proposed several
test statistics to check the additivity, see Eubank and
Hart (1995), Fan et al. (2001), Derbort et al. (2002) and Fan
and Jiang (2005). Among these test statistics, the general-
ized likelihood ratio (GLR) test statistic introduced by Fan
et al. (2001) is general for nonparametric testing problems
based on function estimation. Goh (2005) further studied
GLR type test on conditional quantile processes. In this pa-
per, we apply GLR type test statistic to check the overall
significance of pairwise interactions in model (4).

The remainder of this paper is organized as follows. Sec-
tion 2 introduces the estimation procedure for model (4).
We construct the GLR test statistic to check significance
of pairwise interactions and apply bootstrap method to ap-
proximate its asymptotic distribution in Section 3. In Sec-
tion 4, theoretical properties of estimators and test statistic
are established, and bandwidth selection is also discussed for
functions of pairwise interactions. Simulation is conducted
in Section 5 and an empirical study of mathematical achieve-
ment of senior high school students in Alberta is presented
in Section 6 to illustrate the proposed model. Section 7
gives concluding remarks. All proofs are contained in the
Appendix.

2. ESTIMATION FOR AQR MODEL WITH
PAIRWISE INTERACTIONS

In this section, we study the estimation for model (4). To
ensure the model identification, we assume τ -th quantiles
of gα(Xα) and gαj(Xα, Xj) for 1 ≤ α < j ≤ d to be zero.
Otherwise, subtract each function by its τ -th quantile. Then
the estimate of τ -th conditional quantile of Y has the form
of

(5) θ̂τ (x) = Ĉτ +

d∑
α=1

ĝα(xα) +
∑

1≤α<j≤d

ĝαj(xα, xj),

where Ĉτ , ĝα(xα)’s and ĝαj(xα, xj)’s are estimates obtained
via the following backfitting algorithm:

1. Step 1, initial estimation.

Ĉ(0)
τ = argmin

μ

n∑
i=1

ρτ (Yi − μ),

g(0)α (xα) =argmin
a

n∑
i=1

ρτ

(
Yi − Ĉ(0)

τ − a

− b(Xαi − xα)

)
×K

(
Xαi − xα

hα

)
,

g
(0)
αj (xα, xj) =argmin

a

n∑
i=1

ρτ

(
Yi − Ĉ(0)

τ −
d∑

α=1

g(0)α (Xαi)

− a− b(Xαi − xα)− c(Xji − xj)

)

×K
(
Xαi − xα

hαj
,
Xji − xj

hαj

)
,

where ρτ (u) = u(τ − I(u < 0)) is the check function,
I(·) is the indicator function, K(·) and K(·, ·) are one-
dimensional and two-dimensional kernel functions re-
spectively, hα and hαj are the bandwidths for gα(Xα)

and gαj(Xα, Xj) respectively. DenoteQτ{g(0)α (Xαi)
n
i=1}

and Qτ{g(0)αj (Xαi, Xji)
n
i=1} as the τ -th sample quan-

tiles of g
(0)
α (Xαi) and g

(0)
αj (Xαi, Xji) for i = 1, . . . , n,

respectively. For model identification, center g
(0)
α (xα)

and g
(0)
αj (xα, xj) as follows

g∗(0)α (xα) = g(0)α (xα)−Qτ{g(0)α (Xαi)
n
i=1},

g
∗(0)
αj (xα, xj) = g

(0)
αj (xα, xj)−Qτ{g(0)αj (Xαi, Xji)

n
i=1}.

2. Step 2, iteration.

Ĉ(t)
τ =argmin

μ

n∑
i=1

ρτ

(
Yi −

d∑
α=1

g∗(t−1)
α (Xαi)

−
∑

1≤α<j≤d

g
∗(t−1)
αj (Xαi, Xji)− μ

)
,

g(t)α (xα) =argmin
a

n∑
i=1

ρτ

(
Yi − Ĉ(t)

τ −
d∑

l �=α

g
∗(t−1)
l (Xli)

−a−b(Xαi − xα)−
∑

1≤α<j≤d

g
∗(t−1)
αj (Xαi, Xji)

)

×K

(
Xαi − xα

hα

)
,

g
(t)
αj (xα, xj) =argmin

a

n∑
i=1

ρτ

(
Yi − Ĉ(t)

τ −
d∑

α=1

g(t)α (Xαi)

−
∑

1≤l<m≤d,l �=α,m �=j

g
∗(t−1)
lm (Xli, Xmi)

− a− b(Xαi − xα)− c(Xji − xj)

)

×K
(
Xαi − xα

hαj
,
Xji − xj

hαj

)
.

Then obtain g
∗(t)
α (xα) and g

∗(t)
αj (xα, xj) as in Step 1.

3. Step 3, update. Iterate Step 2 for t = 1, 2, 3, . . . until

all the values of Ĉ
(t)
τ , g

∗(t)
α (xα) and g

∗(t)
αj (xα, xj) for 1 ≤

α < j ≤ d converge.

Note that local linear fitting method (Fan and Gijbels, 1996)
is used in the above procedure to approximate each non-
parametric function. Local linear estimator outperforms lo-
cal constant estimator in boundary regions and its fitting
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results are comparable among local polynomial approxima-
tions.

3. TEST STATISTIC FOR INTERACTIONS

In this section, we construct a GLR statistic to test the
overall significance of pairwise interactions in model (4) and
use bootstrap method to approximate its null distribution.

3.1 GLR type statistic

Consider the following hypothesis test for model (4)

H0 : gαj(xα, xj) = 0 ∀ 1 ≤ α < j ≤ d, v.s.

H1 : gαj(xα, xj) �= 0 ∃ 1 ≤ α < j ≤ d.

Denote the average fitting residuals under H0 and H1 as
follows

ARS0(τ) =
1

n

n∑
i=1

ρτ

(
Yi − C̃τ −

d∑
α=1

g̃α(Xαi)

)
,

ARS1(τ) =
1

n

n∑
i=1

ρτ

(
Yi − Ĉτ −

d∑
α=1

ĝα(Xαi)

−
∑

1≤α<j≤d

ĝαj(Xαi, Xji)

)
,

where C̃τ and g̃α(xα) for α = 1, 2, . . . , d are estimates
obtained for model (4) under H0 while Ĉτ , ĝα(xα) and
ĝαj(xα, xj) for 1 ≤ α < j ≤ d are estimates obtained for
model (4) under H1. The GLR type statistic λ(τ) is then
constructed as follows

(6) λ(τ) = ARS0(τ)−ARS1(τ).

The larger the value of λ(τ) is, the more significant the
pairwise interactions will be. In practice, it may be more
interesting to study the existence of a specific pairwise in-
teraction between any two regressors. Note that the above
test is a nesting test which can be applied to test the sig-
nificance of a specific pairwise interaction. Therefore, (6)
can also be used in a simple test where only one pairwise
interaction function involved in the model.

3.2 Bootstrap for testing

It should be noted that it is difficult to calculate critical
values of λ(τ) due to unknown quantities in its asymptotic
distribution, and the critical values obtained based on small
or moderate sample size may not be effective. In these situ-
ations, it is reasonable to use bootstrap method to approx-
imate the asymptotic critical values of λ(τ). According to
Härdle and Mammen (1993), the standard bootstrap pro-
cedure fails in bootstrapping statistic which measures the
deviation between two nonparametric fits, however, the wild
bootstrap still works in this case. Therefore, we consider the
wild bootstrap method which consists of the following steps:

1. Estimate model (4) underH0 to obtain estimates θ̃τ (x),
and then calculate the residuals ũi = Yi − θ̃τ (Xi);

2. Draw bootstrap residuals ũ∗
i = ũiυ

∗
i for i = 1, 2, · · · , n,

where υ∗
i is randomly sampled from a two-point distri-

bution F(a,b) with a = −(
√
5−1)/2 and b = (

√
5+1)/2,

and υ∗
i = a with probability p = (

√
5 + 1)/(2

√
5) and

υ∗
i = b with probability 1− p;

3. Generate a bootstrap sample (XT
i , Y

∗
i ) for i =

1, 2, · · · , n with Y ∗
i = θ̃τ (Xi) + ũ∗

i ;
4. Calculate the value of test statistic λ∗(τ) based on the

bootstrap sample in the same way as defined in (6);
5. Repeat steps 2–4 B times and determine critical values

based on B generated λ∗(τ).

4. THEORETICAL PROPERTIES

In this section, we derive theoretical properties for esti-
mators and GLR type test statistic, and discuss the band-
width selection for pairwise interaction functions.

4.1 Asymptotic distributions of estimators

Denote F (·|x) as the conditional cumulative distribution
function (cdf) of ε given X = x and f(·|x) as the corre-
sponding conditional probability density function (pdf). For
1 ≤ α < j ≤ d, let fα(xα) be the marginal pdf of Xα,
fαj(xα, xj) be the joint pdf of Xα and Xj , fα(y|xα) be the
conditional pdf of Y −Cτ−

∑
l �=α

gl(Xl)−
∑

1≤α<j≤d

gαj(Xα, Xj)

given Xα = xα, f
∗
α(y|xα) be the conditional pdf of Y −Cτ −∑

l �=α

gl(Xl) given Xα = xα, and fαj(y|(xα, xj)) be the con-

ditional pdf of Y − Cτ −
d∑

l=1

gl(Xl)−
∑

1≤l<m≤d,
l �=α,m �=j

glm(Xl, Xm)

given (Xα, Xj) = (xα, xj). To obtain asymptotic properties
for estimators, assumptions are given below.

Assumption 1. (i). f(·|x), fα(·) and fαj(·, ·) are contin-
uous and bounded away from 0.

(ii). fα(y|xα) > 0. Given Xα = x̃α, for x̃α in a neighborhood
of xα, fα(y|x̃α) is uniformly continuous with respect to
y in a neighborhood of gα(xα), and is also continuous
with respect to x̃α for all y in a neighborhood of gα(xα).

(iii). fαj(y|(xα, xj)) > 0. Given (Xα, Xj) = (x̃α, x̃j), for
(x̃α, x̃j) in a neighborhood of (xα, xj), fαj(y|(x̃α, x̃j))
is uniformly continuous with respect to y in a neighbor-
hood of gαj(xα, xj), and is also continuous with respect
to (x̃α, x̃j) for all y in a neighborhood of gαj(xα, xj).

Assumption 2. Kernel function K(·) is a bounded density
function such that

∫
uK(u)du = 0, μ2(K) =

∫
uTuK(u)du > 0.

Assumption 3. The bandwidth hn satisfies, as n → ∞,

hn → 0, nh2
n → ∞.
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Remark. Above assumptions are similar to those in Yu
and Lu (2004). Assumption 1 (iii) and nh2

n → ∞ in As-
sumption 3 are assumed for pairwise interaction functions.
Subscript n of bandwidth hn in Assumption 3 reflects the
dependence of bandwidth on sample size. In Section 2 and
the following sections, we omit the subscript n in hn for sim-
plicity and instead use subscripts α and αj to denote the
corresponding bandwidths for component Xα and pairwise
interaction between Xα and Xj , respectively.

Theorem 4.1. Under Assumptions 1–3, for α = 1, . . . , d,√
nhα(ĝα(xα) − gα(xα) − Bα(xα)h

2
α) is asymptotically dis-

tributed as N(0, Vα(xα)), where

Bα(xα) =
1

2
g

′′

α(xα)μ2(K),

Vα(xα) =
R(K)

fα(xα)

τ(1− τ)

[fα(gα(xα)|xα)]2
,

and gα(xα) is the τ -th quantile function of Y − Cτ −∑
l �=α

gl(Xl) −
∑

1≤α<j≤d

gαj(Xα, Xj) given Xα = xα, g
′′

α(xα)

is the second derivative of gα(xα), and R(K) =
∫
K2(u)du.

Theorem 4.2. Under Assumptions 1–3, for 1 ≤ α < j ≤ d,√
nh2

αj(ĝαj(xα, xj)−gαj(xα, xj)−Bαj(xα, xj)h
2
αj) is asymp-

totically distributed as N(0, Vαj(xα, xj)), where

Bαj(xα, xj) =
1

2
tr{Hgαj (xα, xj)}μ2(K),

Vαj(xα, xj) =
R(K)

fαj(xα, xj)

τ(1− τ)

[fαj(gαj(xα, xj)|(xα, xj))]2
,

and gαj(xα, xj) is the τ -th quantile function of Y −

Cτ −
d∑

l=1

gl(Xl) −
∑

1≤l<m≤d,
l �=α,m �=j

glm(Xl, Xm) given (Xα, Xj) =

(xα, xj), Hgαj (xα, xj) is the Hessian matrix of function
gαj(xα, xj), and tr{Hgαj (xα, xj)} is the trace of this Hes-
sian matrix.

Remark. Theorems 4.1–4.2 illustrate the asymptotic dis-
tributions of one-dimensional estimators ĝα(xα) for α =
1, . . . , d and two-dimensional estimators ĝαj(xα, xj) for 1 ≤
α < j ≤ d of model (4). For simplicity, we use equal
bandwidth hαj in kernel function K(·, ·). Note that two-
dimensional functions ĝαj(xα, xj) have slower convergence
rate than that of one-dimensional functions ĝα(xα).

4.2 Asymptotic distribution of GLR test
statistic

To obtain the asymptotic distribution of λ(τ) under H0,
we further assume

Assumption 4. Estimators ĝα(xα) for α = 1, . . . , d have
the same convergence rate under the alternative hypothesis
H1 with that under the null hypothesis H0.

Theorem 4.3. Based on Assumptions 1–4, Theorems 4.1–
4.2, for 1 ≤ α < j ≤ d, under H0,

[
V

−1/2
λ (τ) (λ(τ)−Bλ(τ))

∣∣χn

]
→ N(0, 1)

in distribution as n → ∞, where

Bλ(τ) =
1

2n

n∑
i=1

f(Cτ |Xi)

[ (
θ̃τ (Xi)− θτ (Xi)

)2

−
(
θ̂τ (Xi)− θτ (Xi)

)2
]
,

Vλ(τ) =
τ(1− τ)

n2

n∑
i=1

(
θ̂τ (Xi)− θ̃τ (Xi)

)2
,

with χn = (X1, . . . ,Xn), θτ (Xi) = Cτ +
∑d

α=1 gα(Xαi),

θ̃τ (Xi) = C̃τ +
∑d

α=1 g̃α(Xαi), and θ̂τ (Xi) = Ĉτ +∑d
α=1 ĝα(Xαi) +

∑
1≤α<j≤d ĝαj(Xαi, Xji).

4.3 Bandwidth selection

As we know, bandwidth selection has much more influ-
ence on nonparametric estimation than that of kernel se-
lection. For one-dimensional functions in AQR model, Yu
and Lu (2004) have proposed a heuristic rule to select the
bandwidth. In this paper, we mainly consider the bandwidth
selection for pairwise interaction functions.

From Theorem 4.2, the AMSE of ĝαj(xα, xj) has the form
of

(7) AMSEαj = B2
αj(xα, xj)h

4
αj +

1

nh2
αj

Vαj(xα, xj).

Minimize AMSEαj with respect to hαj , we have

hαj,opt(τ) =

{
2τ(1− τ)R(K)

nμ2
2(K)[tr{Hgαj,τ (xα, xj)}]2

× 1

fαj(xα, xj)[fαj(gαj,τ (xα, xj)|(xα, xj))]2

} 1
6

.(8)

Similar to Yu and Jones (1998) and Yu and Lu (2004), the
optimal bandwidths for different quantiles have the follow-
ing relationship

[
hαj,opt(τ1)

hαj,opt(τ2)

]6

=
τ1(1− τ1)[tr{Hgαj,τ2

(xα, xj)}]2

τ2(1− τ2)[tr{Hgαj,τ1
(xα, xj)}]2

× [fαj(gαj,τ2(xα, xj)|(xα, xj))]
2

[fαj(gαj,τ1(xα, xj)|(xα, xj))]2
.(9)

According to Yu and Lu (2004), the second derivatives of
any two quantiles will often be very similar, so it is reason-
able to set the traces of Hessian matrices to be equal for any
two quantiles. Assume that fαj(gαj(xα, xj)|(xα, xj)) is the
joint density of two independently and normally distributed
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variables with means μα, μj and variances σ2
α, σ

2
j , respec-

tively. Then we have

(10)

[
hαj,opt(τ1)

hαj,opt(τ2)

]6

=
τ1(1− τ1)[φ(Φ

−1(τ2))]
4

τ2(1− τ2)[φ(Φ−1(τ1))]4
.

Consider τ2 = 0.5, then

(11) h6
αj,opt(τ) =

τ(1− τ)

π2[φ(Φ−1(τ))]4
h6
αj,opt(0.5).

If we can obtain the estimate for optimal median band-
width hαj,opt(0.5), then the optimal bandwidth for pairwise
interaction functions at any quantile can be calculated via
(11). According to Scott’s rule (Scott, 1992), the optimal

bandwidth can be approximated by ĥ = n−1/(d+4)σ̂, where
d is the dimension. In our case, d = 2 and then we can use
ĥαj,opt(0.5) = n−1/6σ̂αj to approximate the optimal median
bandwidth, where σ̂αj = (σ̂α + σ̂j)/2 for simplicity.

Remark. The above discussion provides a possible ap-
proach to select the optimal bandwidth for pairwise interac-
tions. However, bandwidth selection is much more complex
in practice and the obtained optimal bandwidth may not
lead to the global optimal estimation. It would be better
to try different bandwidths in practice. In the simulation
and real data analysis, we use the canonical bandwidth of
Gaussian kernel for simplicity.

5. SIMULATION

In this section, we implement three simulation experi-
ments to illustrate the finite sample performance of the pro-
posed model, estimation procedure and the GLR test statis-
tic. Consider the following data generating model with two
regressors (d = 2) and one pairwise interaction

(12) Y = g1(X1) + g2(X2) + g12(X1, X2) + ε,

where g1(X1) = 0.75X1, g2(X2) = 1.5 sin(0.5πX2), and
g12(X1, X2) = aX1X2 with X1 and X2 independently fol-
lowing uniform distribution U(−2, 2) and a being a constant.
Its corresponding AQR model with pairwise interaction is

(13) θτ (x) = Cτ + g1(x1) + g2(x2) + g12(x1, x2).

The first experiment is conducted to compare the per-
formance of AQR models without and with pairwise in-
teraction. Data is generated via (12) with a = 2 and
ε following standard normal distribution N(0, 1) for sam-
ple sizes n = 80, 200 and 500, respectively. Simulation
is implemented for 100 replications and quantiles τ =
0.25, 0.5 and 0.75 are considered in estimation. We ap-
ply AQR model with pairwise interaction and AQR model
without pairwise interaction to the data respectively. Gaus-
sian kernel K(u) = (2π)−1/2 exp(−u2/2) and product ker-
nel K(u1, u2) = K(u1) · K(u2) are used with the canoni-
cal bandwidth h0 = 0.7764 corresponding to Gaussian ker-
nel. To assess the performance of the estimation procedure,

Table 1. MAAE under H1 and H0

τ = 0.25 τ = 0.5 τ = 0.75

MAAE1 0.683 0.281 0.905
n = 80 MAAE0 2.962 2.947 3.388

MAAE1 0.627 0.263 0.659
n = 200 MAAE0 2.376 2.337 3.098

MAAE1 0.614 0.181 0.611
n = 500 MAAE0 2.202 2.191 2.430

we calculate the average absolute error (AAE) AAE =

n−1
∑n

i=1 |θτ (xi)− θ̂τ (xi)| for each replication and then ob-
tain the mean average absolute error (MAAE) MAAE =

100−1
∑100

j=1 AAEj in 100 replications.
Table 1 summarizes the values of MAAE for AQR model

without pairwise interaction (MAAE0) and AQR model
with pairwise interaction (MAAE1) for different values of τ
and different sample sizes. From Table 1, it is noted that for
the same sample size, both values of MAAE1 and MAAE0

are the smallest when τ = 0.5, which illustrates the best per-
formance of median regression. For the same τ , the values
of MAAE1 are significantly smaller than those of MAAE0,
which indicates that the proposed model outperforms the
AQR model without pairwise interactions if pairwise inter-
actions do exist. Moreover, it is indicated that, for the same
τ , the values ofMAAE decrease as the sample size increases,
which is reasonable since the estimated model is more accu-
rate for larger sample size.

To illustrate estimation performance of the proposed
model, we choose estimates of each function with respect to
the 25%, 50% and 75% percentiles of AAE’s for τ = 0.5 and
n = 200, see Figure 1. From Figure 1, it can be seen that the
performance gets worse as the value of AAE increases, which
is reasonable since the smaller value of AAE indicates more
accurate estimation results. Although the boundary effects
which are common in kernel regression also occur in our es-
timation, the estimation procedure has desirable results for
both one-dimensional functions and pairwise function.

The second experiment is to illustrate the power of the
GLR test statistic in Section 3. Data is generated via (12)
with a = 0.25, 0.5, 0.75 and 1 for n = 80 and ε following
N(0, 1). Consider the following test for model (13)

H0 : g12(x1, x2) = 0 v.s. H1 : g12(x1, x2) �= 0.

As in Section 3, we construct λ(τ) and use bootstrap method
with 100 bootstrap samples to approximate its asymptotic
distribution under H0. The empirical rejection rates (ERR)
of λ(τ) calculated based on 100 replications under signifi-
cance level α = 5% are summarized in Table 2 for different
values of a and τ = 0.25, 0.5 and 0.75. From Table 2, we can
see that, for the same τ , the values of ERR become larger
as a increases, which is consistent with the fact that there is
greater power to detect larger deviation from H0. Secondly,
the values of ERR approach 1 when a = 0.75 and a = 1,
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Figure 1. True functions and estimates at quantile τ = 0.5. In
the first row, the black solid lines denote the true functions of
g1(x1) and g2(x2), the blue dashed, red dotted and green
dotdashed lines denote their estimates corresponding to

25%, 50%, 75% percentiles of AAE’s. In the second row, the
blue triangles denote the true function of g12(x1, x2) while
the black circles denote the estimates. The titles of 3-d
graphs denote the 25%, 50%, 75% percentiles of AAE’s.

Table 2. ERR of λ(τ) for α = 5%

τ = 0.25 τ = 0.5 τ = 0.75

a = 0.25 0.68 0.85 0.63

a = 0.5 0.90 0.97 0.88

a = 0.75 0.97 1.00 0.97

a = 1 0.99 1.00 0.99

which shows the desirable performance of λ(τ). Moreover,
for the same a the values of ERR are largest when τ = 0.5,
which indicates that λ(τ) has the greatest power in median
regression.

In the third experiment, data is generated via (12) with
a = 2 and ε following N(0, 1) and standard Cauchy distribu-
tion denoted as C(0, 1) for sample size n = 80, 200 and 500,
respectively. To compare performance of median regression
and mean regression methods for additive model with pair-
wise interactions, we apply these two methods to the data.
The MAAE’s are listed in Table 3. Table 3 indicates that
median regression has much better performance than that of
mean regression when errors are from Cauchy distribution.
When errors are normal, it can be seen that mean regression
outperforms median regression, however, the difference will
narrow down as the sample size increases.

6. AN EMPIRICAL DATA ANALYSIS

In this section, we apply the proposed model to a data
set of mathematical achievement of senior high school stu-
dents in Alberta, Canada. The data is from Canadian Cen-

Table 3. MAAE for median regression and mean regression

n = 80 n = 200 n = 500

QR 0.416 0.327 0.270
ε ∼ N(0, 1) OLS 0.366 0.315 0.288

QR 0.592 0.385 0.304
ε ∼ C(0, 1) OLS 7.473 4.604 11.387

ter for Advanced Studies of National Databases. Researchers
mainly used mean regression method to study the relation-
ship between mathematical achievement of students and
other factors including social, economic, and cultural ones.
Tian (2006) analyzed this data via quantile regression ap-
proach to investigate the effects of family background fac-
tors on mathematical achievement. In this paper, we aim to
check whether there are pairwise interactions among fam-
ily background factors on mathematical achievement of stu-
dents. We use a subset of n = 180 observations of the origi-
nal data set. The response is the mathematical achievement
of students. The regressors of interest are gender, mother’s
socioeconomic status and father’s socioeconomic status de-
noted by x1, x2 and x3, respectively. Gender takes value 1 if
student is female and 0 if male, and parents’ socioeconomic
status is measured by the International Socioeconomic In-
dex (ISEI). We first consider the following AQR model with
pairwise interaction between x1 and x2

θτ (x) = Cτ + g1(x1) + g2(x2) + g3(x3) + g12(x1, x2),

and the corresponding hypotheses

H0 : g12(x1, x2) = 0 v.s. H1 : g12(x1, x2) �= 0,

which can be used to test the significance of pairwise inter-
action between x1 (gender) and x2 (mother’s socioeconomic
status).

We estimate the model for τ = 0.5 and use Gaussian
kernel and product kernel with canonical bandwidths as in
Section 5. The 95% confidence intervals are constructed for
one-dimensional functions via bootstrap method. The es-
timates of g1(x1) are 0 and −3 for male and female stu-
dents respectively, which indicates that male students tend
to outperform female students in mathematical achieve-
ment. For functions g2(x2), g3(x3) and g12(x1, x2), their
estimation results are shown in Figure 2. From Figure 2,
it can be seen that the rise of parents’ socioeconomic sta-
tus may not bring benefits for the mathematical achieve-
ment of their children. Moreover, the estimated interaction
function illustrates that, as mother’s socioeconomic status
enhances, girls’ mathematical achievement improves on the
whole while boys’ mathematical achievement improves first
and then declines.

As in Section 3, we construct the GLR test statistic for
the above hypothesis test and use wild bootstrap with 100
bootstrap samples to approximate its asymptotic critical
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Figure 2. Estimates of functions at quantile τ = 0.5. The first
two graphs demonstrate the estimates of one-dimensional

functions g2(x2) and g3(x3), and the last graph illustrates the
estimates of g12(x1, x2) given x1 = 0.

values. The value of the GLR test statistic is 0.080, which
is larger than its critical value 0.056 under 5% significance
level, which means that g12(x1, x2) is significant under 5%
significance level. Therefore, we may conclude that there is
pairwise interaction between gender and mother’s socioeco-
nomic status on students’ mathematical achievement.

Similarly, we can consider the AQR model with pair-
wise interaction g13(x1, x3) or g23(x2, x3) respectively and
test their statistical significance. The value of the GLR test
statistic is 0.102 for g13(x1, x3), which is larger than its crit-
ical value 0.082 under 5% significance level. And the value
of the GLR test statistic is 0.121 for g23(x2, x3), which is
also larger than its critical value 0.112 under 5% significance
level. Hence, it can be seen that there are pairwise interac-
tions between gender and father’s socioeconomic status or
among parents’ socioeconomic status on the mathematical
achievement of students.

7. CONCLUDING REMARKS

AQR model with pairwise interactions could combine ad-
vantages of quantile regression and additive model with pair-
wise interactions. We use backfitting algorithm for model
estimation and discuss bandwidth selection for pairwise in-
teractions. GLR type test statistic is constructed to check
the significance of pairwise interactions and wild bootstrap
is applied to approximate its asymptotic distribution. Sim-
ulation study and empirical analysis illustrate good per-
formance of the proposed estimation and testing meth-
ods.

As functional data analysis becomes increasingly popu-
lar, it is meaningful and interesting to apply AQR models
to functional data. The difficulty is to deal with the con-
tinuum of function values over the entire time domain, see
Müller and Yao (2008) for details. They used additive func-
tional principle components (FPC) to overcome this dif-
ficulty in mean regression framework. However, for quan-

tile regression, the estimation procedure will be much more
complicated due to the difficulty in transforming the objec-
tive additive functional model into an additive FPC model.
Moreover, extending AQR model with pairwise interactions
to functional data will be even more complex since the in-
teractions of functional predictors involved over the entire
time domain. In the future, application of AQR models to
functional data will be our potential research.
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APPENDIX

In the Appendix, we first give Lemmas 1–2 which are
useful to the proofs of Theorems 4.1–4.3 and then prove
Theorems 4.1–4.3 in detail.

Lemma 1. Assume Assumptions 1–3 are satisfied and
quantile function qτ (x) is continuous at x, then for any

x = xα and qτ (x) = gα(xα) with Y
(α)
i = Yi − Cτ −∑

l �=α

gl(Xli) −
∑

1≤α<j≤d

gαj(Xαi, Xji), the following Bahadur

representation holds

√
nhα(q̂τ (x)− qτ (x)) =

φτ√
nhα

n∑
i=1

ψτ (Y
(α)∗
i )

×K

(
Xαi − x

hα

)
+ op(1),(1)

as n → ∞, where ψτ (y) = τ − I(y < 0), Y
(α)∗
i = Y

(α)
i −

qτ (x) − ∂qτ (x)

∂xα
(Xαi − xα) and φτ ≡ φτ (x) =

(fα(qτ (x)|x)fα(x))−1.
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Lemma 2. Assume Assumptions 1–3 are satisfied and
quantile function qτ (x) is continuous at x, then for any

x = (xα, xj) and qτ (x) = gαj(xα, xj) with Y
(α,j)
i = Yi −

Cτ −
d∑

l=1

gl(Xli)−
∑

1≤l<m≤d,
l �=α,m �=j

glm(Xli, Xmi) and h = hαj, the

following Bahadur representation holds

√
nh2(q̂τ (x)− qτ (x)) =

φτ√
nh2

n∑
i=1

ψτ (Y
(α,j)∗
i )

×K

(
Xαi − xα

h
,
Xji − xj

h

)
+ op(1),(2)

as n → ∞, where ψτ (y) = τ − I(y < 0), Y
(α,j)∗
i = Y

(α,j)
i −

qτ (x) −
∂qτ (x)

∂xα
(Xαi − xα) −

∂qτ (x)

∂xj
(Xji − xj) and φτ ≡

φτ (x) = (fαj(qτ (x)|x)fαj(x))−1.

Lemma 1 and Lemma 2 are special cases of Theorem 3.2
in Lu et al. (2000), so we omit the detailed proof here.

To clearly illustrate the proofs of Theorems 4.1–4.2, con-
sider the following AQR model with one pairwise interaction

(3) Qτ (x) = Cτ + g1(X) + g2(Z) + g12(X,Z).

Under identification conditions that all τ -th quantiles of
gα(Xα), α = 1, 2, . . . , d, and gαj(Xα, Xj), 1 ≤ α < j ≤ d,
are zero, the following equations hold

Qτ (Y − Cτ − g2(Z)− g12(X,Z)|X) = g1(X),(4)

Qτ (Y − Cτ − g1(X)− g12(X,Z)|Z) = g2(Z),(5)

Qτ (Y − Cτ − g1(X)− g2(Z)|(X,Z)) = g12(X,Z).(6)

Proof of Theorem 4.1. Let Y
(1)
i = Yi − Cτ − g2(Zi) −

g12(Xi, Zi), Y
(2)
i = Yi − Cτ − g1(Xi) − g12(Xi, Zi) and

Y
(1,2)
i = Yi −Cτ − g1(Xi)− g2(Zi). Denote g

′
(x) and g

′′
(x)

as the first and second derivatives of function g(x), respec-

tively. For h = h1, set Xhi =
Xi − x

h
, Ki = K(Xhi) and

Tni = g
′

1(x)Xhih. Lemma 1 and (4) entail that

ĝ1(x)− g1(x)

=
1

nh
φ(1)
τ

n∑
i=1

ψτ (Y
(1)∗
i )Ki + op

(
1√
nh

)

=
1

nh
φ(1)
τ

n∑
i=1

[
ψτ (Y

(1)∗
i )Ki − Eψτ (Y

(1)∗
i )Ki

]

+
1

nh
φ(1)
τ

n∑
i=1

Eψτ (Y
(1)∗
i )Ki + op

(
1√
nh

)

=Q1 +Q2 + op

(
1√
nh

)
,(7)

where Y
(1)∗
i = Y

(1)
i − g1(x) − g

′

1(x)(Xi − x) and φ
(1)
τ =

φ
(1)
τ (x) = (f1(g1(x)|x)f1(x))−1.

From (4), note that τ = F1(g1(Xi)|Xi) and when Ki > 0,
there exists 0 < θ < 1 such that

Δi(x) = g1(Xi)− g1(x)− Tni

=
1

2
[g

′′

1 (x+ θXhih)](Xhih)
2.(8)

Using (8), it follows that there exists some 0 < ξ < 1
such that

Q2 =
φ
(1)
τ

h
E(τ − I(Y

(1)∗
i < 0))Ki

=
φ
(1)
τ

h
E

{
[F1(g1(Xi)|Xi)− F1(g1(x) + Tni|Xi)]Ki

}

=
φ
(1)
τ

h
E

[
f1(g1(x) + Tni + ξΔi(x)|Xi)Δi(x)Ki

]

= (1 + o(1))

[
1

2
g

′′

1 (x)h
2φ(1)

τ f1(g1(x)|x)f1(x)μ2(K)

]

= (1 + o(1))h2

[
1

2
g

′′

1 (x)μ2(K)

]
.(9)

Set νi = φ
(1)
τ ψτ (Y

(1)∗
i )Ki and Ii(τ) = I(Y

(1)∗
i (τ) < 0), then

EQ2
1 =

1

(nh)2
E

[ n∑
i=1

(νi − Eνi)
2 +

∑
i �=j

(νi − Eνi)(νj − Eνj)

]

=
1

nh2
V ar(ν1).

Note that ν2i = (τ2 − 2τIi(τ) + Ii(τ))(φ
(1)
τ Ki)

2, then

Eν2i = E

[
(τ2 − 2τIi(τ) + Ii(τ))(φ

(1)
τ Ki)

2

]

= E

[
τ2 − 2τIi(τ) + Ii(τ)

]
EK2

i · (φ(1)
τ )2

= τ(1− τ)(φ(1)
τ )2

∫
K2

(
s1 − x

h

)
f1(s1)ds1

= τ(1− τ)(φ(1)
τ )2

∫
K2(u1)f1(x+ u1h)hdu1

= (1 + o(1))τ(1− τ)(φ(1)
τ )2hf1(x)

∫
K2(u)du.

Thus,

(10) EQ2
1 = (1 + o(1))

1

nh

τ(1− τ)
∫
K2(u)du

[f1(g1(x)|x)]2f1(x)
.

Based on the central limit theorem, from (7), (9) and (10)
we can obtain Theorem 4.1.

Proof of Theorem 4.2. Set u =
(Xi − x

h
,
Zi − z

h

)T
, χ =

(x, z)T , Ki = K(u), and Tni = (Xi − x, Zi − z)∇g12(x, z),
where h = h12 is the pairwise bandwidth, and ∇g12(x, z) =(∂g12(x, z)

∂x
,
∂g12(x, z)

∂z

)T
is the gradient vector. Denote
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Hg12(x, z) as the Hessian matrix with second partial deriva-
tives of function g12(x, z) as elements. Lemma 2 and (6)
entail that

ĝ12(x, z)− g12(x, z)

=
1

nh2
φ(1,2)
τ

n∑
i=1

ψτ (Y
(1,2)∗
i )Ki + op(

1√
nh2

)

=
1

nh2
φ(1,2)
τ

n∑
i=1

[
ψτ (Y

(1,2)∗
i )Ki − Eψτ (Y

(1,2)∗
i )Ki

]

+
1

nh2
φ(1,2)
τ

n∑
i=1

Eψτ (Y
(1,2)∗
i )Ki + op(

1√
nh2

)

=Q1 +Q2 + op(
1√
nh2

),(11)

where Y
(1,2)∗
i = Y

(1,2)
i − g12(x, z) −

∂g12(x, z)

∂x
(Xi − x) −

∂g12(x, z)

∂z
(Zi − z) = Y

(1,2)
i − g12(x, z) − Tni and φ

(1,2)
τ =

φ
(1,2)
τ (x, z) = (f12(g12(x, z)|(x, z))f12(x, z))−1

. From (6),
note that τ = F12(g12(Xi, Zi)|(Xi, Zi)) and when Ki > 0,
there exists 0 < θ < 1 such that

Δi(x, z) = g12(Xi, Zi)− g12(x, z)− Tni

=
1

2
h2uTHg12(x, z)u.(12)

Using (12), it follows that there exists some 0 < ξ < 1 such
that

Q2 =
1

h2
φ(1,2)
τ E(τ − I(Y

(1,2)∗
i < 0))Ki

=
1

h2
φ(1,2)
τ E

{[
F12(g12(Xi, Zi)|(Xi, Zi))

− F12(g12(x, z) + Tni|(Xi, Zi))
]
Ki

}

=
1

h2
φ(1,2)
τ E

[
f12(g12(x, z) + Tni + ξΔi(x, z)|(Xi, Zi))

× 1

2
h2uTHg12(x, z)uKi

]

= (1 + o(1))
1

2h2
φ(1,2)
τ f12(g12(x, z)|(x, z)

∫ [
h2uT

×Hg12(x,z)uK

(
s1 − x

h
,
s2 − z

h

)
f12(s1, s2)

]
ds1ds2

= (1 + o(1))
1

2h2
φ(1,2)
τ f12(g12(x, z)|(x, z))

×
∫ [

h2uTHg12(x, z)uK(u1, u2)

× f12(x+ u1h, z + u2h)h
2
]
du1du2

= (1 + o(1))h2

[
1

2

∫
uTHg12(x, z)uK(u)du

]
.

(13)

Set νi = φ
(1,2)
τ ψτ (Y

(1,2)∗
i )Ki and Ii(τ) = I(Y

(1,2)∗
i (τ) < 0),

then

EQ2
1 =

1

(nh2)2
E

[ n∑
i=1

(νi − Eνi)
2 +

∑
i �=j

(νi −Eνi)(νj −Eνj)

]

=
1

nh4
V ar(ν1).

Note that ν2i = [(τ2 − 2τIi(τ) + Ii(τ))(φ
(1,2)
τ )2K2

i ], then

Eν2i = E[(τ2 − 2τIi(τ)+Ii(τ))(φ
(1,2)
τ )2K2

i ]

= E[τ2 − 2τIi(τ)+Ii(τ)]EK2
i (φ

(1,2)
τ )2

= τ(1− τ)(φ(1,2)
τ )2

∫
K2

(
s1 − x

h
,
s2 − z

h

)

× f12(s1, s2)ds1ds2

= τ(1− τ)(φ(1,2)
τ )2

∫
K2(u1, u2)

× f12(x+ u1h, z + u2h)h
2du1du2

= (1 + o(1))τ(1− τ)(φ(1,2)
τ )2h2f12(x, z)

∫
K2(u)du.

Thus,

(14) EQ2
1 = (1 + o(1))

1

nh2

τ(1− τ)
∫
K2(u)du

[f12(g12(x, z)|(x, z))]2f12(x, z)
.

Based on the central limit theorem, from (11), (13) and (14)
we prove Theorem 4.2.

Proof of Theorem 4.3. Under the null hypothesis H0, data
{(XT

i , Yi)}ni=1 satisfies Yi =
∑d

α=1 gα(Xα) + εi. Let

θτ (Xi) = Cτ +
∑d

α=1 gα(Xαi) be the quantile function un-

der H0, θ̃τ (Xi) = C̃τ +
∑d

α=1 g̃α(Xαi) be the estimate of

θτ (Xi) under H0, and θ̂τ (Xi) = Ĉτ +
∑d

α=1 ĝα(Xαi) +∑
1≤α<j≤d ĝαj(Xαi, Xji) be the estimate of θτ (Xi) under

the alternative hypothesis H1. Denote χn = (X1, . . . ,Xn),
ψτ (u) = τ − I(u < 0) and ρτ (u) = uψτ (u). Then

ARS0(τ) =
1

n

n∑
i=1

ρτ

(
Yi − θ̃τ (Xi)

)
,

ARS1(τ) =
1

n

n∑
i=1

ρτ

(
Yi − θ̂τ (Xi)

)
.

Apply Knight equation in Knight (1998) as follows

ρτ (u−υ)−ρτ (u) = −υψτ (u)+

∫ υ

0

(
I(u ≤ s)−I(u ≤ 0)

)
ds,

then we obtain

ARS0(τ)

=
1

n

n∑
i=1

ρτ

(
ε∗iτ − (θ̃τ (Xi)− θτ (Xi))

)
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=
1

n

n∑
i=1

(
ρτ (ε

∗
iτ )−

(
θ̃τ (Xi)− θτ (Xi)

)
ψτ (ε

∗
iτ )

+

∫ θ̃τ (Xi)−θτ (Xi)

0

[I(ε∗iτ ≤ t)− I(ε∗iτ ≤ 0)] dt

)

=
1

n

n∑
i=1

(
ρτ (ε

∗
iτ )−

(
θ̃τ (Xi)− θτ (Xi)

)
ψτ (ε

∗
iτ ) + I0

)
,

and

ARS1(τ)

=
1

n

n∑
i=1

ρτ

(
ε∗iτ − (θ̂τ (Xi)− θτ (Xi))

)

=
1

n

n∑
i=1

(
ρτ (ε

∗
iτ )−

(
θ̂τ (Xi)− θτ (Xi)

)
ψτ (ε

∗
iτ )

+

∫ θ̂τ (Xi)−θτ (Xi)

0

[I(ε∗iτ ≤ t)− I(ε∗iτ ≤ 0)] dt

)

=
1

n

n∑
i=1

(
ρτ (ε

∗
iτ )−

(
θ̂τ (Xi)− θτ (Xi)

)
ψτ (ε

∗
iτ ) + I1

)
,

where ε∗iτ = εiτ − Cτ and

I0 =

∫ θ̃τ (Xi)−θτ (Xi)

0

[I(ε∗iτ ≤ t)− I(ε∗iτ ≤ 0)] dt,

I1 =

∫ θ̂τ (Xi)−θτ (Xi)

0

[I(ε∗iτ ≤ t)− I(ε∗iτ ≤ 0)] dt.

Therefore,

λ(τ) = ARS0(τ)−ARS1(τ)

=
1

n

n∑
i=1

((
θ̂τ (Xi)− θ̃τ (Xi)

)
ψτ (ε

∗
iτ ) + I0 − I1

)
.(15)

Set Zi,τ =
(
θ̂τ (Xi)− θ̃τ (Xi)

)
ψτ (ε

∗
iτ ). Since Eψτ (ε

∗
iτ ) = τ −

E[I(εiτ < Cτ )] = 0, we have

(16) E(Zi,τ |Xi) =
(
θ̂τ (Xi)− θ̃τ (Xi)

)
Eψτ (ε

∗
iτ ) = 0.

E(I0|Xi) = E

{∫ θ̃τ (Xi)−θτ (Xi)

0

[
I(ε∗iτ ≤ t)− I(ε∗iτ ≤ 0)

]
dt

}

=

∫ θ̃τ (Xi)−θτ (Xi)

0

E
[
I(ε∗iτ ≤ t)− I(ε∗iτ ≤ 0)

]
dt

=

∫ θ̃τ (Xi)−θτ (Xi)

0

[
F (Cτ + t|Xi)− F (Cτ |Xi)

]
dt

=

∫ θ̃τ (Xi)−θτ (Xi)

0

f(Cτ |Xi)tdt+ o(1)

=
1

2
f(Cτ |Xi)

(
θ̃τ (Xi)− θτ (Xi)

)2
+ o(1),

and similarly

E(I1|Xi) =
1

2
f(Cτ |Xi)

(
θ̂τ (Xi)− θτ (Xi)

)2
+ o(1),

therefore,

E(λ(τ)|χn) =
1

n

n∑
i=1

E[Zi,τ + (I0 − I1)|Xi]

=
1

2n

n∑
i=1

f(Cτ |Xi)

[
(θ̃τ (Xi)− θτ (Xi))

2

− (θ̂τ (Xi)− θτ (Xi))
2

]
+ o(1).(17)

We next consider the variance of λ(τ) given χn. Under The-
orems 4.1–4.2 and Assumption 4,

V ar(Zi,τ |Xi) = E(Z2
i,τ |Xi)

= τ(1− τ)
(
θ̂τ (Xi)− θ̃τ (Xi)

)2

= Op(
1

nh2
),

and E[|Zi,τ |3|Xi] = Op((nh
2)−3/2), then

(18)

∑n
i=1 E[|Zi,τ |3|Xi](∑n

i=1 V ar(Zi,τ |Xi)
)3/2 = Op(

1√
n
) → 0

in probability as n → ∞, and

V ar(λ(τ)|χn) =
τ(1− τ)

n2

n∑
i=1

(
θ̂τ (Xi)− θ̃τ (Xi)

)2

.(19)

According to Lyapunov CLT theorem, from (17), (18) and
(19) we obtain Theorem 4.3.
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