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Power-transformed linear quantile regression
estimation for censored competing risks data

Caiyun Fan, Feipeng Zhang
∗
, and Yong Zhou

This paper considers a power-transformed linear quantile
regression model for censored competing risks data, based
on conditional quantiles defined by using the cumulative in-
cidence function. We propose a two-stage estimating proce-
dure for the regression coefficients and the transformation
parameter. In the first step, for a given transformation pa-
rameter, we develop an unbiased monotone estimating equa-
tion for regression parameters in the quantile model, which
can be solved by minimizing a L1 type convex objective
function. In the second step, the transformation parame-
ter can be estimated by constructing the cumulative sum
processes. The consistency and asymptotic normality of the
regression parameters and transformation parameter are de-
rived. The finite-sample performances of the proposed ap-
proach are illustrated by simulation studies and an applica-
tion to the follicular type lymphoma data set.
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1. INTRODUCTION

In time-to-event data, it is often observed that each indi-
vidual under study may be at risk of at least two mutually
exclusive failure types. Such data are commonly referred to
as competing risks data. As an example, in the study of fol-
licular cell lymphoma conducted by the Princess Margaret
Hospital Pintilie [24], patients with early stage disease (I or
II) registered for treatment and then were followed-up until
treatment failure, which comprised two different types: re-
lapse (such as local, distant or both) of lymphoma and non-
relapse-related deaths. Here, relapse and non-relapse deaths
are competing risks events.

Compared with classic survival analysis for only one type
of failure, the analysis for competing risks is more challeng-
ing. One major difficulty is the identifiability crisis when the
censoring time is dependent on the competing risk events.
[26] showed that a joint distribution for the time of different
failure types cannot be estimated without making strong un-
verified assumptions. Besides, the marginal distribution of
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the latent event time has problematic interpretations when
hypothesizing the removal of other competing risks events
[12]. Another difficulty is that the informative censoring in-
duced by the potential dependence further complicates the
analysis of failure times with competing risks.

For competing risks data, it is of great interest to esti-
mate the cumulative incidence function, i.e., the cumulative
probability of a specific failure type. Most of the prior work
on analyzing the effects of factors for competing risks has
focused on examining their effects on the cause-specific haz-
ard functions of the different failure types [16, 25]. How-
ever, many authors have noted that the effect of a covariate
on the cause-specific hazard function of a particular failure
type may be very different from the effect of the covariate
on the corresponding cumulative incidence function [11, 22].
As [2, 9, 15] pointed out, the cumulative incidence func-
tion provides information secondary to the overall survival
function. Consequently, the cumulative incidence function
is intuitively appealing, well suited to graphical display and
cost-effective in analyzing the absolute risks of the different
failure types. [7] introduced a semiparametric proportional
hazards model for the cumulative incidence function of a
competing risk. Nevertheless, their model not only requires
that the regression coefficients are monotonously linked to
the cumulative incidence function, but also requires that the
occurrence of competing events has an influence on the co-
efficients.

In many applications, another alternative and flexible
model, so-called the quantile regression model, can be cho-
sen to model complicated effect patterns. [20] firstly devel-
oped a nonparametric quantile definition based on the cu-
mulative incidence function for competing risks data. Based
on the same idea, [21] proposed a formulation of compet-
ing risks quantile regression model with a known monotone
link function by assuming the independence between the
censoring time and covariates. However, the monotone link
function is always unknown and the covariate-independent
censoring assumption is too stringent in practice. The pri-
mary purpose of this paper is to develop a novel and flexible
qunatile regression model for competing risks data, which
can also be applied to the case that the censoring time de-
pends on the covariates.

As a natural and powerful tool, it is well-known that the
transformation model extensively includes a large and im-
portant class of modeling structures [4, 5, 13]. Among those,
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the parsimonious and interpretable Box-Cox transformation
[3] is often used to improve the error normality in linear
models. [18] proposed a linear quantile regression model
with power transformation for complete data, which may
have great potential in various applications. [28] proposed a
power-transformed linear quantile regression model for ran-
domly and independently censored survival data. However,
to the best of our knowledge, there is no literature on power-
transformed linear quantile regression model with the com-
peting risks data. In such situation, the existing approaches
may not or not appropriately be used to analyze compet-
ing risks data. Moreover, the theoretical and computational
developments for quantile regression become much more in-
volved and challenging.

In this paper, we propose a new power-transformed quan-
tile regression model for censored competing risks data.
For both covatiate-independent censoring and covariate-
dependent censoring, we propose a two-stage procedure for
the regression coefficients and the transformation parame-
ter. Specially, in the first step, for a given transformation
parameter, we develop an unbiased monotone estimating
equation for regression parameters in the quantile model,
which can be solved by minimizing a L1 type convex ob-
jective function. In the second step, the transformation pa-
rameter can be estimated by constructing the cumulative
sum processes. By utilizing the empirical process theory, we
can derive that the proposed estimator is uniformly consis-
tent and asymptotically normal. We also provide the explicit
form for the variance-covariance matrix of the estimators
with the unknown of the error term, and use a bootstrap
resampling method for estimating the covariance-matrix to
lighten the computational burden. In our empirical studies,
we observe that our model has better performances than
that of [21], especially when the censoring variable is depen-
dent on the covariates.

The reminder of the paper is organized as follows. Sec-
tion 2 proposes the estimation procedure for transformation
quantile regression model with censored competing risks
data. The large sample properties of the proposed estimates
are given in Section 3, and simulation studies are presented
in Section 4. In Section 5, we illustrate the proposed method
with application to a follicular type lymphoma data set.
Section 6 concludes the paper with some discussions. The
technical proofs are given in the Appendix.

2. TRANSFORMED QUANTILE
REGRESSION VIA THE WEIGHTED

ESTIMATING EQUATION

We first introduce some necessary notations. Let T and
C be the failure and censoring time, respectively, Z̃ be a
p × 1 vector and Z = (1, Z̃T )T , and ε ∈ {1, ...,K} be the
cause of failure. The observations consist of n independently
and identically distributed replicates of (X, δε,Z), denoted
by {(Xi, δiεi,Zi), i = 1, · · · , n}, where X = min(T,C) and

δ = I(T ≤ C). The cumulative incidence function of cause
k, is defined by Fk(t|Z) = Pr(T ≤ t, ε = k|Z), k = 1, ...,K.
Indeed, Fk(t|Z) represents the probability of observing cause
k failure in the presence of other types of events given co-
variate Z. It is commonly assumed that the censoring vari-
able C is conditionally independent of (T, ε) given Z. Let
G0(t|Z) = Pr(C > t|Z) be the conditional survival function
of C given covariates Z.

For 0 < τ ≤ P (ε = k), the τth conditional quantile of
failure time T caused by the kth risk is defined by using
cumulative incidence function [21]:

Qk(τ |Z) = inf{t : Fk(t|Z) ≥ τ}, k = 1, ...,K.

Here, Qk(τ |Z) can be easily interpreted as the first time
given covariates Z at which the probability of cause k failure
having occurred exceeds τ , in the presence of other events
which can exclude occurrence of cause k failure. Without
loss of generality, we only focus on Q1(τ |Z) in the sequel. If
we let T ∗

1 = T × I(ε = 1) +∞× I(ε �= 1), it is easy to see
that F1(t|Z) = Pr(T ∗

1 ≤ t|Z) = Pr(T ≤ t, ε = 1|Z). In other
words, F1(t|Z) can be viewed as the cumulative distribution
of the variable T ∗

1 .
[21] formulated a competing risks quantile regression

model by assuming

Q1(τ |Z) = g{β0(τ)
TZ}, for τ ∈ [τL, τU ],

where β0(τ) is a (p + 1) × 1 vector of unknown regression
coefficients, g(·) is a known monotone link function, and
0 < τL ≤ τU ≤ P (ε = k). Despite the model is flexi-
ble, it requires specifying the monotone transformation g(·).
To relax this stringent assumption, we propose the power-
transformed linear quantile regression model

Q1(τ |Z) = H−1
γ0

(
β0(τ)

TZ
)
,(1)

for τ ∈ [τL, τU ], where β0(·) is a (p + 1) × 1 vector of un-
known regression parameters, γ0 is an unknown transfor-
mation parameter. Here, H−1

γ0
is the inverse of the Box-Cox

transformation [3]

Hγ0(T ) =

{
(T γ0 − 1)/γ0, for γ0 > 0
log(T ), for γ0 = 0.

Note that the Box-Cox transformation is often used to im-
prove the error normality in linear models.

In this paper, we propose a two-stage estimation proce-
dure. In the first step, we estimate β0(τ) for a given γ0. For
uncensored data, the transformed linear quantile regression
parameters can be estimated by minimizing

n∑
i=1

ρτ
(
Hγ0(T

∗
1i)− bTZi

)
,(2)

where ρτ (u) = u {τ − I(u ≤ 0)} is the so-called check func-
tion. Note that the minimizer to (2) is equivalent to the root
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of the following estimating equations:

n∑
i=1

Zi

{
I

(
Hγ0(T

∗
1i) ≤ bTZi

)
− τ

}
= 0.

Recall that when the γ0 fixed, [21] derived the following
estimating equation for censored competing risks data,

Sn(b, τ)(3)

=

n∑
i=1

Zi

{
I

{
Xi ≤ H−1

γ0
(bTZi)

}
I(δiεi = 1)

Ĝ(Xi|Zi)
− τ

}
= 0,

where Ĝ(·|Zi) is a reasonable estimate for G0(·|Zi). As the

authors argued, Ĝ(·|Zi) may be obtained via ad hoc ap-
proaches, but they assumed for simplicity that C is inde-
pendent of (T, ε,Z), and hence they used the classic Kaplan-
Meier estimator for G0(·|Zi).

To relax these restrictions, we propose a new estimator
for β0(τ), which is motivated by the argument of [1] for
only right-censored data. The key observation is that the
individual has a probability G0(T |Z) of not being censored
for the failure time T . Hence,

E

(
δ

G0(X|Z)Z
[
I

{
X ≤ H−1

γ0
(bTZ), ε = 1

}
− τ

] ∣∣∣∣Z)
= E

{
E

(
I(T ≤ C)

G0(T |Z)
Z

[
I

{
T ≤ H−1

γ0
(bTZ), ε = 1

}
− τ

]∣∣∣∣T, ε,Z)
|Z

}
= E

(
Z

[
I

{
T ≤ H−1

γ0
(bTZ), ε = 1

}
− τ

]
E

{
I(T ≤ C)

G0(T |Z)
|T, ε,Z

} ∣∣∣∣Z)
= 0.

Then, our proposed estimating equation is given by

Un(b, τ)(4)

=
1√
n

n∑
i=1

δi

Ĝ(Xi|Zi)
Zi

[
I

{
Hγ0(Xi)≤ bTZi, εi =1

}
− τ

]
≈ 0,

where Ĝ(·|Zi) is an estimator for G0(·|Zi), which is the con-
ditional survival function of the censoring variable Ci given
the covariates. The approximation sign is used here because
the function of sum is a discontinuous function of b.

It is worth pointing out that the Equation (4) is monotone
but not continuous. The numerical solution to Equation (4)
can be obtained by locating the minimizer of the following
L1 type convex function.

Ln(b, τ) =

n∑
i=1

I (δiεi = 1)

∣∣∣∣∣ Hγ0(Xi)

Ĝ(Xi|Zi)
− bT

Zi

Ĝ(Xi|Zi)

∣∣∣∣∣

+

∣∣∣∣∣M − bT
n∑

l=1

−ZlI (δlεl = 1)

Ĝ(Xl|Zl)

∣∣∣∣∣
+

∣∣∣∣∣M − bT
n∑

k=1

2τI (δk �= 0)Zk

Ĝ(Xk|Zk)

∣∣∣∣∣ ,
where M is an extremely large positive number. It

should be selected to exceed
∣∣∣bT ∑n

l=1
−ZlI(δlεl=1)

Ĝ(Xl|Zl)

∣∣∣ and∣∣∣bT ∑n
k=1

2τI(δk �=0)Zk

Ĝ(Xk|Zk)

∣∣∣ for all b in the compact parameter

space for β0(τ). The equivalency is shown in the Appendix.
Since Ln(b, τ) is a convex function on b for each τ , its min-
imizer can be easily found by using standard software, for
example, the rq() function in the contributed R package
quantreg.

Recall that [21] proposed a global Kaplan-Meire estimate
for G0(t|z) by independent assumption between the censor-
ing variable C and the covariates Z. However, in practice,
the distribution of C may depend on the covariates Z. To
this end, one may use the local Kaplan-Meier estimator for
G0(Xi|Zi) as in [27],

Ĝ(t|z) =
n∏

i=1

[
1− Bni(z)

n∑
j=1

I(Xj ≥ Xi)Bnj(z)

]I(Xi≤t,δi=0)

,

where

Bni(z) = K(
z − zi
hn

)

[ n∑
j=1

K(
z − zj
hn

)

]−1

,

and the product kernel function K(u1, ..., up) =
∏p

i=1 K(ui),
with K(·) being a univariate kernel function, and hn > 0 is
the bandwidth. As suggested by [19, 17], one can choose
the biquadratic kernel K(x) = 15

16 (1 − x2)2I(|x| ≤ 1) for
the univariate covariate (p = 1), and for multiple continu-
ous covariates with p ≥ 2, one should use a product kernel
function with a higher order kernel for each covariate. For
example, when p = 2, one can choose K(x) = 15

32 (3−10x2+
7x4)I(|x| ≤ 1) for each covariate. When p = 3, one can
choose K(x) = 35

256 (15 − 105x2 + 189x4 − 99x6)I(|x| ≤ 1).
Because the estimate of G0(Xi|Zi) may be outside of [0, 1]
under these higher order kernels, one can truncate the value
to [0, 1] as needed.

In the second step, we propose two estimators based on
cusum processes to estimate the transformation parameter
γ0, which is motivated by [18, 28]. Define a discrepancy mea-
sure based on the cusum process as

Dn (z, γ0) =

n∑
i=1

I(Zi ≤ z)

(
δi

Ĝ(Xi|Zi)[
τ − I

{
Hγ0(Xi) ≤ β̂(γ0, τ)

TZi, εi = 1
}])
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and I (Zi ≤ z) = I (Zi1 ≤ z1, Zi2 ≤ z2 · · · , Zip ≤ zp). Note
that Dn(·, ·) can be used to distinguish the correct transfor-
mation from those wrong ones. One estimator for γ0 can be
derived by minimizing the following function,

Rn(γ0) =
n∑

i=1

Dn(Zi, γ0)
2.

As suggested in [28], for the case with high dimensional co-
variates, especially many categorical variables, another al-
ternative cusum process is

D∗
n (t, γ0) =

n∑
i=1

I(β̂(γ0, τ)
TZi ≤ t)(

δi

Ĝ(Xi|Zi)

[
τ − I

{
Hγ(Xi) ≤ β̂(γ0, τ)

TZi, εi = 1
}])

.

Then, another estimator for γ0 is obtained by minimizing

R∗
n(γ0) =

n∑
i=1

∫ ∞

0

D∗
n(t, γ0)

2dNi(t),

where Ni(t) = I(Hγ(Xi) ≤ t).

3. LARGE-SAMPLE PROPERTIES OF THE
PROPOSED ESTIMATOR

In this section, we establish the consistency and the
asymptotic normality of the estimators. To derive the
asymptotic properties of the proposed estimator, we require
the following technical regularity assumptions.

C1. γ0 belongs to a compact set Γ.
C2. The support Z of Z is uniformly bounded and if

H−1
γ (βTZ) = H−1

γ0
(βT

0 Z), then β = β0, and γ = γ0.
Moreover, the transformation Hγ(.) is strictly increas-
ing and twice-continuously differentiable in a neighbor-
hood of γ0.

C3. There exists constants υ > 0 and λ > 0 such that
inf
Z∈Z

Pr(C ≥ λ|Z) > υ.

C4. The conditional density functions f1(t|z), and g0(t|z)
are uniformly bounded away from infinity and have
bounded (uniformly in t) first order partial derivatives
with respect to z, where f1(t|z) = dPr(Hγ0(T ) ≤ t, ε =
1|z)/dt and g0(t|z) = dG0(t|z)/dt. In addition, β0(τ)
is Lipschitz continuous for τ ∈ [τL, τU ].

C5. The 100τth of Hγ0(T
∗
1 ) given Z is unique with proba-

bility 1 and is strictly less than λ.
C6. The bandwidth hn satisfies hn = O(n−ν) with 1/4 <

ν < 1/3.
C7. The kernel function K(·) ≥ 0 has a compact sup-

port and satisfies the Lipschitz condition of order 1,∫
K(u)du = 1,

∫
uK(u)du = 0,

∫
K2(u)du

< ∞, and
∫
|u|2K(u)du < ∞.

Conditions C1 and C3 are standard in the context of sur-
vival analysis. Condition C2 ensures the identifiability of the
transformation and regression parameters, and the unique
parameterization of the transformation. Condition C4 en-
tails the identifiability of β0(τ) and furthermore, the consis-

tency of β̂(γ̂, τ). Condition C5 is needed for the estimable
problem for the 100τth quantile from the data. Condition
C6 is needed to ensure the consistency of the local Kaplan-
Meier estimator and Condition C7 is routinely made in non-
parametric smoothing.

For brevity, let ‖ · ‖ and ‖ · ‖∞ be Euclidean norm and
the supreme norm metric, respectively. Define

UG
n (b, τ, γ) =n−1/2

n∑
i=1

δi
G0(Xi|Zi)

Zi

{
I(Hγ(Xi) ≤ bTZi,

εi = 1)− τ

}
,

Ũn(b, τ, γ) =n−1/2
n∑

i=1

Zi

{
Pr

(
Hγ(Ti) ≤ bTZi,

εi = 1|Zi

)
− τ

}
,

and Ψ(b, τ, γ) = E
{
n−1/2Ũn(b, τ, γ)

}
. We denote Ψ0γ ,Ψ0b

as the row-vector gradients of Ψ with respect to (γ,b) eval-
uated at the true parameters (γ0,β0(τ)). Condition C2,
with assuming γ = γ0, implies that Z is linearly inde-
pendent. Combining with condition C4, we can show that
E(ZΨ0b) is positive definite. That is, for some ρ0 > 0 and
c0 > 0, inf

b∈B(ρ0)
eigminE(ZΨ0b) ≥ c0, where B(ρ0) = {b :

inf
τ∈[τL,τU ]

‖b − β0(τ)‖ ≤ ρ0} and eigmin(u) is the minimum

eigenvalue of u.

Theorem 3.1. Under conditions C1–C7, with probability
1, it holds

|γ̂ − γ0|+ sup
τ∈[τL,τU ]

‖β̂(γ̂, τ)− β0(τ)‖ → 0.

Theorem 3.2. Under conditions C1–C7, we have

√
n

(
γ̂ − γ0

β̂(γ̂, τ)− β0(τ)

)
D−−→ N(0,Σ)

for τ ∈ [τL, τU ], where Σ is given at the end of the Appendix.

It is cumbersome to compute the covariance estimator of
the parameter estimates directly by plug-in estimators, be-
cause the structure of covariance is quite complicated. To
lighten the computational burden, we adopt a nonparamet-
ric bootstrap method [6].

Another important issue is the choice of bandwidth. We
adopt the L-fold cross-validation method for selecting hn.
Specifically, one can first divide the data set into L parts,
which are of almost the same size. For the mth part, we fit
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the model by using the rest L − 1 parts of the data, and
then evaluate the quantile loss from predicting the τth con-
ditional quantile of T on the uncensored data that are left
out. Repeating the above procedure for m = 1, · · · , L, the
optimal bandwidth hn is obtained by minimizing the aver-
age quantile loss. Fortunately, in our empirical studies, the
proposed estimator is not sensitive to the choice of band-
width.

4. SIMULATION STUDIES

We conduct simulation studies to assess the finite-sample
performance of the proposed methods. We consider p = 2,
and the covariate vector Z̃ = (Z(1), Z(2))T is generated
as Z(1) ∼ Uniform(0,1), Z(2) ∼ Bernoulli(0.5). The dis-
tribution of (T, ε) satisfies Pr (ε = 1|Z) = p0I

(
Z(2) = 0

)
+

p1I
(
Z(2) = 1

)
,

Pr (T ≤ t|ε = 1,Z) = Φ
(

Hγ0 (t)−θT
0 Z

sd

)
,

Pr (T ≤ t|ε = 2,Z) = Φ
(

Hγ0 (t)−αT
0 Z

sd

)
,

where Φ(·) is the standard normal distribution function,
(p0, p1) = (0.9, 0.7), α0 = (0, 0.2)T , θ0 = (1, 0.5)T and
sd = 0.5. Hence, the underlying quantile regression model
takes the form

Hγ0 {Q1 (τ |Z)} = Φ−1 (τ/p0) ∗ sd + θ
(1)
0 Z(1)

+
{
θ
(2)
0 +Φ−1 (τ/p1) ∗ sd− Φ−1 (τ/p0) ∗ sd

}
Z(2).

We consider two types of censorships: covariate-
independent censoring and covariate-dependent censoring.

(1) Covariate-independent censoring:
The censoring variable C is generated independently
form a mixture of Uniform (0, du) and a point mass at
du, that is,

Pr (C ≤ x) = 0.8 (x/du) I (0 ≤ x < du) + I (x ≥ du) .

(2) Covariate-dependent censoring:
C is generated from Uniform(0, cuZ

(1)).

In each scenario, we consider two transformation parame-
ters γ0 = 0 and γ0 = 0.5, and two different censoring rates
C% = 10% and C% = 30% by controlling the constants
du or cu. For each configuration, we replicate 500 data sets
with sample size n = 200. We set τ = 0.1, 0.2, 0.3, 0.4, and
M = 105, which is proposed in [21]. For simplicity, we use

β̂(·) to represent the estimated β̂(·)(γ̂, τ) in the below ta-
bles. To obtain the standard errors (SE) of the parameter
estimates, we use the nonparametric bootstrap method with
500 resampled data sets.

We report the empirical bias (Bias), the empirical stan-
dard deviation (SD), the average of estimated standard
errors (SE) and the 95% coverage probability (CP) in

Figure 1. Plots of mean square errors versus hn for n = 200
observations with γ = 0.5 and censoring rate of 30%. The

MSEs of each regression coefficient are presented: β(1) (black
solid ‘—’), β(2) (red dashed ‘-’), β(3) (green longdash ‘–’)

and γ (blue twodash ‘-.-’).

each table. Tables 1 and 2 show the results for covariate-
independent censoring for γ0 = 0 and γ0 = 0.5, respectively.
From Tables 1–2, all the estimators are unbiased and have
small mean square errors, the estimated standard errors are
close to the empirical standard deviations, and the coverage
probabilities are close to the nominal levels.

For the covariate-dependent censoring case, the results
are summarized in Tables 3–4. The results are similar to
those for covariate-indpendent censoring case. In summary,
the results from our simulation indicate that the propsoed
estimators have good performance in finite samples. Here,
motivated by the asymptotic result, the bandwidth is set as
hn = n−1/3+0.001. Additional simulations show that the re-
sults are not very sensitive to the bandwidth and the kernel
function.

To investigate the sensitivity of the proposed method to
hn, we investigate the mean square errors of the proposed
estimators with hn ∈ [0.01, 0.15]. Figure 1 plots the MSE
of the proposed estimates versus hn in covariate-dependent
censoring case with γ0 = 0.5 and n = 200 with the censoring
rate of about 30%. One can observe that the performance
of the proposed method is not sensitive to the choice of hn.

We also conduct the comparison between the proposed
estimator and the Peng and Fine’s estimator by [21] in
both the covariate-independent censoring and covariate-
dependent censoring. The results are tabulated in Table 5
for γ0 fixed under censoring rate 30%. From Table 5, the
proposed estimator is comparable with the Peng and Fine’s
estimator when covariate-independent censoring, whereas
the proposed estimator has smaller mean square errors
(RMSE) than the Peng and Fine’s estimator when covariate-
dependent censoring.
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Table 1. Simulation results for covariate-independent censoring with unknown transformation parameter γ0 = 0

minimizing Rn(γ) minimizing R∗
n(γ)

τ C% β̂(1)(τ) β̂(2)(τ) β̂(3)(τ) γ̂ β̂(1)(τ) β̂(2)(τ) β̂(3)(τ) γ̂

0.1 10 Bias 0.014 -0.001 -0.005 -0.033 -0.012 0.041 0.018 0.036
SD 0.206 0.270 0.191 0.367 0.208 0.274 0.200 0.372
SE 0.230 0.310 0.221 0.419 0.235 0.314 0.229 0.421
CP 0.960 0.970 0.974 0.968 0.956 0.964 0.978 0.970

30 Bias 0.041 -0.013 -0.007 0.017 0.016 0.027 0.021 0.099
SD 0.215 0.295 0.206 0.422 0.213 0.291 0.214 0.428
SE 0.233 0.323 0.230 0.471 0.234 0.325 0.238 0.474
CP 0.948 0.968 0.960 0.980 0.950 0.970 0.970 0.964

0.2 10 Bias -0.003 0.015 0.011 -0.018 -0.016 0.046 0.026 0.023
SD 0.193 0.290 0.197 0.307 0.199 0.300 0.197 0.311
SE 0.223 0.344 0.238 0.364 0.223 0.344 0.242 0.365
CP 0.964 0.978 0.976 0.970 0.952 0.970 0.978 0.968

30 Bias -0.000 0.050 0.023 0.074 -0.010 0.070 0.035 0.101
SD 0.210 0.332 0.226 0.367 0.206 0.322 0.231 0.373
SE 0.229 0.372 0.260 0.433 0.227 0.374 0.264 0.435
CP 0.954 0.972 0.978 0.970 0.950 0.972 0.972 0.960

0.3 10 Bias -0.008 0.022 0.016 -0.019 -0.004 0.018 0.014 -0.015
SD 0.192 0.310 0.220 0.287 0.186 0.296 0.212 0.277
SE 0.224 0.388 0.280 0.350 0.221 0.385 0.282 0.353
CP 0.964 0.970 0.974 0.972 0.964 0.984 0.984 0.984

30 Bias 0.004 0.043 0.023 0.039 -0.013 0.090 0.047 0.098
SD 0.219 0.390 0.273 0.384 0.215 0.386 0.270 0.370
SE 0.235 0.434 0.319 0.436 0.228 0.429 0.317 0.435
CP 0.952 0.962 0.960 0.958 0.944 0.956 0.956 0.958

0.4 10 Bias -0.010 0.032 0.031 -0.015 -0.014 0.041 0.037 -0.008
SD 0.193 0.347 0.272 0.289 0.193 0.349 0.266 0.290
SE 0.222 0.426 0.348 0.351 0.219 0.420 0.350 0.354
CP 0.952 0.972 0.970 0.976 0.948 0.974 0.964 0.970

30 Bias -0.027 0.122 0.084 0.086 -0.021 0.120 0.089 0.098
SD 0.234 0.480 0.339 0.416 0.222 0.465 0.348 0.406
SE 0.238 0.493 0.416 0.452 0.228 0.482 0.416 0.451
CP 0.942 0.928 0.954 0.934 0.958 0.940 0.964 0.950

† Bias, empirical bias; SD, the empirical standard deviation; SE, the average of estimated standard errors; CP, the 95% coverage
probability.

As suggested by the Editor, to assess the effect of dimen-
sionality, we add p − 2 additional independent covariates
Z(3), · · · , Z(p) and set n = 200. Each of the added variable
is generated from Uniform(0,2). The censoring time C is
generated as C = ς0 + ς1Z

(1) + · · · + ςpZ
(p), where ςi ≥ 0,

i = 0, · · · , p, and the ςis are taken to have about 10% or
30% censoring rate. For simplicity, we took the bandwidth
hn = 0.5, 0.7 for p = 3 and 4, respectively. The transfor-
mation parameter is γ = 0. The results are summarized in
Table 6. The results for γ = 0.5 are similar, we omit them
to save space. Overall, the proposed method performs mod-
erately well.

5. A REAL EXAMPLE

We analyze the data set involving patients with follic-
ular type lymphoma [24, 23], conducted by the Princess
Margaret Hospital between 1967 and 1996, in which the

failure responses to the treatment were mainly presented
by two competing end points: first relapse (local, distant
or both) and nonrecurrence-related death. The goal of the
study was to investigate the survival time of patients af-
ter follicular type lymphoma. In this trial, total of 541 pa-
tients were diagnosed with follicular cell lymphoma, out of
which 272 individuals experienced lymphoma relapse which
was the interested event, 76 individuals were observed with
nonrecurrence-related death and the rest were lost to follow-
up. The covariates were age, haemoglobin (HGB), clinical
stage (CS, 0 for stage I; 1 for stage II), and treatment (0
for radiation and chemotherapy (RCMT); 1 for radiation
alone (RT)). We first plot the Kaplan-Meier survival curves
of the censoring time separately for patients groups strati-
fied by clinical stage, treatment, the median age (58 years),
or median haemoglobin (140 g/l).From Figure 2, we observe
that there seems to be survival difference of the censoring
time across each covariate, which indicates the censoring
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Table 2. Simulation results for covariate-independent censoring with with unknown transformation parameter γ0 = 0.5

minimizing Rn(γ) minimizing R∗
n(γ)

τ C% β̂(1) β̂(2) β̂(3) γ̂ β̂(1) β̂(2) β̂(3) γ̂
0.1 10 Bias 0.038 -0.034 -0.011 -0.089 0.017 -0.000 0.009 -0.019

SD 0.194 0.235 0.182 0.412 0.198 0.237 0.190 0.414
SE 0.198 0.242 0.181 0.445 0.199 0.244 0.187 0.451
CP 0.924 0.960 0.922 0.984 0.922 0.962 0.926 0.976

30 Bias 0.029 -0.033 -0.017 -0.116 0.021 -0.013 -0.006 -0.065
SD 0.200 0.239 0.187 0.424 0.194 0.232 0.189 0.420
SE 0.213 0.261 0.199 0.480 0.214 0.264 0.205 0.487
CP 0.946 0.950 0.958 0.972 0.948 0.966 0.972 0.972

0.2 10 Bias 0.011 -0.007 0.009 -0.038 0.008 0.001 0.016 -0.026
SD 0.179 0.250 0.189 0.356 0.183 0.257 0.202 0.377
SE 0.189 0.267 0.192 0.412 0.191 0.272 0.197 0.423
CP 0.938 0.940 0.930 0.958 0.934 0.950 0.940 0.956

30 Bias 0.025 -0.028 -0.013 -0.100 0.019 -0.008 -0.004 -0.062
SD 0.187 0.273 0.198 0.414 0.189 0.277 0.202 0.423
SE 0.205 0.289 0.209 0.457 0.205 0.292 0.215 0.464
CP 0.956 0.952 0.942 0.970 0.952 0.960 0.954 0.980

0.3 10 Bias 0.012 -0.011 0.005 -0.056 0.007 -0.000 0.016 -0.042
SD 0.173 0.285 0.215 0.375 0.181 0.296 0.231 0.394
SE 0.186 0.298 0.217 0.416 0.189 0.305 0.225 0.434
CP 0.942 0.942 0.930 0.958 0.948 0.956 0.930 0.976

30 Bias 0.029 -0.032 -0.023 -0.102 0.024 -0.018 -0.015 -0.088
SD 0.186 0.308 0.227 0.414 0.191 0.322 0.237 0.445
SE 0.199 0.318 0.234 0.465 0.200 0.323 0.240 0.476
CP 0.940 0.948 0.940 0.978 0.926 0.940 0.942 0.966

0.4 10 Bias 0.005 -0.011 0.011 -0.074 0.006 -0.007 0.017 -0.070
SD 0.182 0.341 0.273 0.417 0.182 0.345 0.283 0.435
SE 0.183 0.328 0.252 0.433 0.184 0.334 0.260 0.451
CP 0.948 0.938 0.926 0.956 0.924 0.928 0.916 0.942

30 Bias 0.032 -0.045 -0.028 -0.122 0.030 -0.034 -0.020 -0.113
SD 0.183 0.347 0.268 0.442 0.191 0.366 0.278 0.469
SE 0.191 0.345 0.274 0.488 0.191 0.351 0.282 0.498
CP 0.940 0.944 0.926 0.958 0.924 0.930 0.918 0.946

† Bias, empirical bias; SD, the empirical standard deviation; SE, the average of estimated standard errors; CP, the 95% coverage
probability.

Figure 2. The estimated Kaplan-Meier survival curves for the
follicular type lymphoma study.

time is significantly dependent on the covariates. For choos-
ing the bandwidth hn, we adopt the 10-fold cross-validation
method.

Applying the proposed power-transformed quantile re-
gression model to the lymphoma study, we estimate γ by
minimizing R∗

n(γ) and take 500 bootstrap samples for the
variance estimation. Figure 3 presents that all the relapse
cumulative incidence probabilities exceed 0.45 in the right
tail, but not attain 0.2 for the death. Hence, we postulate
the value of τ from 0.1 up to 0.45 in steps of 0.05 for the re-
lapse, and from 0.05 to 0.1 in steps of 0.01 for the competing
risk. Based on the numerical experience, we find M = 105 is
large enough. We also use it in this real dataset. Due to the
transformation on the failure time, there are distinct scales
of the covariate effects obtained from each quantile regres-
sion. It is more useful to derive the marginal covariate effects
in the original scale of the outcome [14, 18, 28]. For a given
covariate z0, we assess the marginal effects in the following
way. For the jth covariate, we consider two different cases:
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Table 3. Simulation results for covariate-dependent censoring with with unknown transformation parameter γ0 = 0

minimizing Rn(γ) minimizing R∗
n(γ)

τ C% β̂(1) β̂(2) β̂(3) γ̂ β̂(1) β̂(2) β̂(3) γ̂
0.1 10 Bias 0.012 0.002 -0.004 -0.023 -0.011 0.036 0.018 0.039

SD 0.210 0.276 0.199 0.383 0.202 0.270 0.196 0.373
SE 0.229 0.310 0.221 0.422 0.234 0.314 0.229 0.425
CP 0.958 0.966 0.972 0.972 0.956 0.976 0.966 0.970

30 Bias 0.036 -0.024 -0.003 0.019 0.009 0.024 0.021 0.109
SD 0.216 0.290 0.206 0.435 0.209 0.289 0.209 0.443
SE 0.232 0.320 0.229 0.479 0.232 0.322 0.236 0.484
CP 0.944 0.964 0.966 0.982 0.956 0.974 0.966 0.970

0.2 10 Bias -0.009 0.021 0.019 -0.004 -0.014 0.037 0.028 0.022
SD 0.192 0.291 0.200 0.320 0.196 0.293 0.200 0.316
SE 0.223 0.346 0.240 0.369 0.222 0.345 0.242 0.369
CP 0.964 0.966 0.976 0.964 0.962 0.974 0.980 0.974

30 Bias 0.001 0.033 0.013 0.062 -0.000 0.043 0.022 0.085
SD 0.213 0.336 0.220 0.382 0.201 0.320 0.224 0.385
SE 0.227 0.367 0.257 0.442 0.225 0.368 0.260 0.445
CP 0.958 0.970 0.978 0.974 0.958 0.976 0.984 0.970

0.3 10 Bias -0.006 0.016 0.012 -0.016 -0.005 0.019 0.016 -0.011
SD 0.194 0.309 0.215 0.286 0.194 0.310 0.218 0.293
SE 0.224 0.389 0.281 0.354 0.221 0.387 0.283 0.357
CP 0.968 0.974 0.978 0.976 0.960 0.976 0.984 0.974

30 Bias -0.007 0.040 0.022 0.047 -0.018 0.074 0.040 0.091
SD 0.218 0.379 0.254 0.375 0.208 0.375 0.253 0.376
SE 0.232 0.425 0.311 0.444 0.226 0.420 0.309 0.443
CP 0.946 0.964 0.972 0.964 0.954 0.964 0.966 0.958

0.4 10 Bias -0.015 0.038 0.035 -0.008 -0.017 0.049 0.042 0.002
SD 0.199 0.359 0.270 0.300 0.196 0.359 0.273 0.300
SE 0.223 0.428 0.348 0.355 0.219 0.421 0.351 0.359
CP 0.960 0.972 0.968 0.978 0.964 0.958 0.966 0.966

30 Bias -0.012 0.062 0.051 0.048 -0.007 0.062 0.057 0.061
SD 0.222 0.458 0.327 0.423 0.220 0.435 0.338 0.409
SE 0.233 0.475 0.403 0.456 0.225 0.467 0.402 0.457
CP 0.940 0.922 0.950 0.932 0.948 0.946 0.964 0.938

† Bias, empirical bias; SD, the empirical standard deviation; SE, the average of estimated standard errors; CP, the 95% coverage
probability.

Figure 3. Cause-specific cumulative incidence estimates of
relapse and nonrecurrence-related death for the follicular type

lymphoma data.

(i) When z is discrete,

Q1(τ |z0(−j), Zj = 1)−Q1(τ |z0(−j), Zj = 0),

where z0(−j) is all the components of z0 with deleting the
jth component.
(ii) When z is continuous, then

∂Q1(τ |Z)

∂Zj
|z0 =

{
βτ,j(γτβ

T
τ z0 + 1)1/γτ−1, γτ �= 0

βτ,j exp(β
T
τ z0), γτ = 0

.

Here we take z0 as particular covariates from a 58-year-
old patient with HGB = 140 g/l, CS = 1, treatment = 1.
The estimates (in bold solid lines) and the pointwise 95%
confidence bands for the marginal covariate effects and the
transformation parameter γ are displayed in Figure 4. We
can see that the patient age and haemoglobin do not appear
to significantly affect the recurrence. But the patients in
clinical stage II seem to experience recurrence sooner than
those in stage I. The estimate of the Box-Cox transformation
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Table 4. Simulation results for covariate-dependent censoring with with unknown transformation parameter γ0 = 0.5

minimizing Rn(γ) minimizing R∗
n(γ)

τ C% β̂(1) β̂(2) β̂(3) γ̂ β̂(1) β̂(2) β̂(3) γ̂
0.1 10 Bias 0.036 -0.039 -0.021 -0.108 0.026 -0.019 -0.009 -0.066

SD 0.192 0.223 0.180 0.384 0.200 0.237 0.187 0.415
SE 0.198 0.242 0.181 0.447 0.199 0.244 0.187 0.452
CP 0.926 0.958 0.920 0.982 0.918 0.952 0.928 0.972

30 Bias 0.026 -0.052 -0.017 -0.148 0.015 -0.028 -0.010 -0.091
SD 0.209 0.251 0.192 0.451 0.205 0.244 0.196 0.448
SE 0.213 0.260 0.200 0.492 0.213 0.262 0.206 0.501
CP 0.954 0.950 0.950 0.958 0.948 0.944 0.958 0.964

0.2 10 Bias 0.021 -0.022 -0.013 -0.074 0.022 -0.019 -0.012 -0.068
SD 0.184 0.260 0.182 0.375 0.191 0.274 0.188 0.404
SE 0.189 0.267 0.191 0.413 0.191 0.271 0.197 0.423
CP 0.948 0.950 0.938 0.964 0.946 0.942 0.934 0.960

30 Bias 0.018 -0.038 -0.022 -0.110 0.012 -0.025 -0.011 -0.084
SD 0.186 0.272 0.187 0.416 0.194 0.278 0.199 0.436
SE 0.205 0.288 0.210 0.470 0.204 0.289 0.214 0.476
CP 0.950 0.958 0.952 0.972 0.942 0.946 0.940 0.972

0.3 10 Bias 0.011 -0.016 -0.010 -0.072 0.018 -0.024 -0.012 -0.080
SD 0.181 0.295 0.215 0.386 0.183 0.304 0.226 0.402
SE 0.186 0.298 0.217 0.417 0.188 0.304 0.224 0.433
CP 0.940 0.938 0.946 0.968 0.938 0.948 0.924 0.970

30 Bias 0.019 -0.045 -0.027 -0.115 0.022 -0.044 -0.030 -0.118
SD 0.181 0.300 0.225 0.421 0.185 0.314 0.229 0.452
SE 0.198 0.315 0.236 0.477 0.198 0.320 0.243 0.489
CP 0.954 0.948 0.940 0.976 0.944 0.936 0.938 0.964

0.4 10 Bias 0.012 -0.028 -0.010 -0.090 0.009 -0.013 -0.003 -0.083
SD 0.173 0.316 0.247 0.397 0.183 0.345 0.263 0.444
SE 0.183 0.328 0.251 0.434 0.184 0.335 0.259 0.452
CP 0.940 0.950 0.928 0.956 0.924 0.920 0.918 0.932

30 Bias 0.019 -0.059 -0.035 -0.140 0.020 -0.060 -0.031 -0.155
SD 0.181 0.340 0.256 0.445 0.190 0.364 0.278 0.499
SE 0.191 0.344 0.292 0.501 0.192 0.350 0.300 0.513
CP 0.944 0.932 0.932 0.954 0.928 0.904 0.912 0.924

† Bias, empirical bias; SD, the empirical standard deviation; SE, the average of estimated standard errors; CP, the 95% coverage
probability.

Figure 4. Marginal covariate effects for a 58-year-old patient
with hgb=140 g/l, clinstg= II, treatment=RT based on the
quantile regression analysis of the follicular type lymphoma
relapse study with a parametric Box-Cox transformation.

parameter γ fluctuates around the horizonal zero axis but
tends to be negative for the latter quantiles (τ > 0.3).

Furthermore, Figures 5–6 describe the estimation re-
sults for relapse and nonrecurrence-related death, respec-
tively. The results suggest that the patients in clinical stage
II tend to experience relapse earlier. The treatment sig-
nificantly affects the relapse time for the first few early
quantiles (τ < 0.25). Evaluating the covariates of age and
HGB, we find no significant effects on relapse for all of
the regression quantiles. Figure 6 shows that all of the co-
variates are not significant except the age. That is, older
patients tend to experience nonrecurrence-related death
sooner.

6. CONCLUDING REMARKS

In this paper, we develop a power-transformed linear
quantile regression model for competing risks data under
both the covariate-independent censoring and covariate-
dependent censoring. Since the estimating functions are not
smooth with respect to regression parameters, we solve the
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Table 5. Comparison of the proposed estimator and Peng and Fine’s estimator when γ is fixed under censoring rate of 30% for
τ = 0.1, 0.2, 0.3, 0.4

Proposed Peng and Fine’s estimator

γ = 0 γ = 0.5 γ = 0 γ = 0.5

τ β̂(1) β̂(2) β̂(3) β̂(1) β̂(2) β̂(3) β̂(1) β̂(2) β̂(3) β̂(1) β̂(2) β̂(3)

Covariate-independent censoring
0.1 Bias 0.017 -0.037 -0.013 -0.006 -0.003 0.003 -0.008 0.015 0.007 -0.003 0.009 0.008

SD 0.154 0.130 0.155 0.159 0.132 0.161 0.155 0.130 0.148 0.154 0.129 0.154
RMSE 0.155 0.135 0.156 0.159 0.132 0.161 0.155 0.130 0.148 0.154 0.129 0.154

0.2 Bias 0.030 -0.058 -0.024 -0.004 -0.009 0.001 -0.007 0.011 0.011 -0.003 0.008 0.006
SD 0.133 0.115 0.132 0.137 0.118 0.131 0.136 0.114 0.132 0.137 0.115 0.133
RMSE 0.136 0.129 0.134 0.137 0.118 0.131 0.136 0.115 0.132 0.137 0.115 0.133

0.3 Bias 0.034 -0.069 -0.028 -0.001 -0.012 -0.004 -0.020 0.025 0.022 -0.001 0.008 0.005
SD 0.128 0.110 0.129 0.137 0.117 0.133 0.150 0.132 0.152 0.137 0.119 0.139
RMSE 0.132 0.130 0.132 0.137 0.117 0.132 0.151 0.134 0.154 0.137 0.119 0.139

0.4 Bias 0.034 -0.072 -0.027 -0.004 -0.013 0.005 -0.050 0.056 0.063 0.001 0.005 0.012
SD 0.133 0.120 0.138 0.136 0.120 0.141 0.186 0.176 0.217 0.148 0.131 0.152
RMSE 0.137 0.140 0.141 0.136 0.121 0.141 0.192 0.184 0.226 0.148 0.131 0.152

Covariate-dependent censoring
0.1 Bias -0.053 0.033 -0.008 -0.071 0.052 0.006 0.085 -0.092 0.014 0.110 -0.115 0.019

SD 0.177 0.140 0.148 0.179 0.141 0.152 0.172 0.141 0.150 0.183 0.148 0.154
RMSE 0.185 0.144 0.148 0.192 0.150 0.152 0.192 0.168 0.151 0.213 0.187 0.155

0.2 Bias -0.062 0.037 -0.011 -0.076 0.053 0.008 0.149 -0.155 0.020 0.192 -0.192 0.027
SD 0.159 0.127 0.134 0.162 0.128 0.138 0.170 0.139 0.136 0.184 0.150 0.143
RMSE 0.171 0.132 0.135 0.179 0.138 0.138 0.226 0.208 0.137 0.266 0.243 0.145

0.3 Bias -0.059 0.030 -0.010 -0.076 0.052 0.007 0.226 -0.226 0.035 0.294 -0.283 0.046
SD 0.154 0.124 0.133 0.169 0.133 0.140 0.184 0.152 0.143 0.208 0.170 0.151
RMSE 0.165 0.128 0.133 0.185 0.142 0.140 0.292 0.273 0.147 0.360 0.330 0.158

0.4 Bias -0.063 0.030 -0.010 -0.080 0.051 0.016 0.357 -0.340 0.070 0.471 -0.430 0.081
SD 0.164 0.137 0.144 0.181 0.145 0.146 0.242 0.202 0.175 0.308 0.249 0.188
RMSE 0.176 0.140 0.144 0.197 0.154 0.146 0.431 0.395 0.188 0.563 0.497 0.204

† Bias, empirical bias; SD, the empirical standard deviation; RMSE, the root mean square error.

Figure 5. Quantile regression covariate effects for the relapse
when fixing the Box-Cox transformation parameter γ = 0.

Figure 6. Quantile regression covariate effects for the
competing risks when fixing the Box-Cox transformation

parameter γ = 0.
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Table 6. The effect of dimensionality when transformation paramater is unfixed, here p is the number of non-intercept
covariates in the model (γ0 = 0)

minimizing Rn(γ) minimizing R∗
n(γ)

C% τ β̂(1) β̂(2) β̂(3) γ̂ β̂(1) β̂(2) β̂(3) γ̂

p = 3
10 0.1 Bias 0.025 -0.009 0.006 0.053 0.006 0.023 0.020 0.096

SD 0.201 0.267 0.202 0.387 0.212 0.284 0.214 0.406
0.2 Bias 0.004 0.019 0.030 0.065 -0.002 0.029 0.038 0.078

SD 0.196 0.313 0.216 0.361 0.202 0.325 0.220 0.362
0.3 Bias -0.004 0.033 0.049 0.074 0.001 0.026 0.045 0.075

SD 0.194 0.338 0.246 0.327 0.191 0.323 0.245 0.320
0.4 Bias -0.010 0.054 0.082 0.075 -0.001 0.037 0.069 0.063

SD 0.200 0.410 0.312 0.355 0.200 0.398 0.310 0.358
30 0.1 Bias 0.042 -0.095 -0.007 0.016 0.035 -0.076 0.004 0.079

SD 0.191 0.255 0.197 0.478 0.195 0.265 0.200 0.502
0.2 Bias 0.016 -0.085 0.019 0.031 0.013 -0.070 0.026 0.053

SD 0.191 0.299 0.219 0.446 0.198 0.320 0.229 0.480
0.3 Bias -0.002 -0.065 0.049 0.043 0.001 -0.069 0.044 0.024

SD 0.200 0.365 0.275 0.484 0.203 0.382 0.289 0.511
0.4 Bias -0.009 -0.102 0.047 -0.051 -0.005 -0.109 0.039 -0.073

SD 0.188 0.395 0.339 0.527 0.199 0.429 0.341 0.561

p = 4
10 0.1 Bias 0.025 -0.011 0.009 0.055 0.005 0.023 0.023 0.111

SD 0.188 0.260 0.193 0.400 0.193 0.267 0.196 0.398
0.2 Bias 0.003 0.014 0.030 0.062 -0.010 0.040 0.041 0.098

SD 0.196 0.303 0.216 0.350 0.198 0.305 0.214 0.346
0.3 Bias -0.013 0.043 0.059 0.084 -0.013 0.046 0.059 0.090

SD 0.198 0.341 0.250 0.326 0.195 0.338 0.246 0.326
0.4 Bias -0.022 0.075 0.097 0.106 -0.024 0.079 0.099 0.111

SD 0.200 0.388 0.304 0.334 0.201 0.388 0.301 0.334
30 0.1 Bias 0.032 -0.088 0.010 0.051 0.019 -0.054 0.023 0.148

SD 0.187 0.259 0.193 0.477 0.184 0.260 0.200 0.476
0.2 Bias 0.016 -0.095 0.022 0.023 0.011 -0.080 0.035 0.056

SD 0.196 0.301 0.218 0.462 0.197 0.305 0.226 0.467
0.3 Bias 0.001 -0.094 0.042 0.009 0.007 -0.111 0.033 -0.003

SD 0.197 0.348 0.270 0.486 0.195 0.325 0.260 0.468
0.4 Bias -0.015 -0.118 0.042 -0.070 -0.013 -0.126 0.041 -0.079

SD 0.203 0.407 0.336 0.526 0.207 0.410 0.346 0.539
† Bias, empirical bias; SD, the empirical standard deviation.

corresponding estimating equations in general sense by in-
volving minimizations of a series of L1-type convex objective
functions. It can be quickly and stably implemented, utiliz-
ing existing functions in software R. We also establish that
the parameter estimates are strongly consistent and asymp-
totically normal. Both simulation studies and the analysis of
follicular type lymphoma data illustrate that the proposed
model is flexible and its estimator has good performance.

For standard survival setting with randomly censored
data, quantile regression involves a serious issue of iden-
tifiability. To make sure the inference is valid, τU must sat-
isfy certain intrinsic constraints imposed by model assump-
tion (1) and regularity conditions C4 and C5. In practice,
however, we recommend to conduct some tentative anal-
ysis which may shed light on appropriate choices for τU

and τL in a τ -range of interest. Specifically, we can plot
the cumulative incidence functions, or calculate the propor-
tion of the events. Furthermore, it is worth pointing out
that the proposed method needs to estimate G0(·|Z), which
inevitably suffers from the curse of dimensionality if Z is
multi-dimensional. If the dimension of Z is high, we can
firstly consider model-based dimension reduction on esti-
mating G0(·|Z), for example using Cox proportional hazard
model between the censoring variable and covariates or de-
veloping variable selection method. That is our intention
in further research to develop methods for such case with
high dimensional covariates. In addition, the Kalpan-Meier
estimates may be unstable at the right tails. This line of
research provides the further investigation by the technique
proposed in Zhou [29].
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APPENDIX

Connection between Ln(b, τ) and Un(b, τ).
Firstly we observe that the derivative of the first term of

Ln(b, τ) wrt b equals

n∑
i=1

I (δiεi = 1)
Zi

Ĝ(Xi|Zi)

[
I{Hγ(Xi) ≤ bTZi}

− I{Hγ(Xi) ≥ bTZi}
]
,

which, after some simple calculation, can be written as

2
n∑

i=1

I (δiεi = 1)
ZiI{Hγ(Xi) ≤ bTZi}

Ĝ(Xi|Zi)

−
n∑

i=1

I (δiεi = 1)
Zi

Ĝ(Xi|Zi)
.

Suppose that M bounds |bT
∑n

l=1
−ZlI(δlεl=1)

Ĝ(Xl|Zl)
| and∣∣∣bT ∑n

k=1
2τI(δk=1)Zk

Ĝ(Xi|Zi)

∣∣∣ from above for all b’s in the compact

parameter space for β0, the derivative of the rest two terms
of Ln(b, τ) wrt b becomes

n∑
i=1

I (δiεi = 1)
Zi

Ĝ(Xi|Zi)
−

n∑
k=1

2τI(δk = 1)Zk

Ĝ(Xk|Zk)
.

Then it follows that

∂Ln(b, τ)

∂b
= 2

n∑
i=1

I (δiεi = 1)
ZiI{Hγ(Xi) ≤ bTZi}

Ĝ(Xi|Zi)

−
n∑

i=1

I (δiεi = 1)
Zi

Ĝ(Xi|Zi)

+

n∑
i=1

I (δiεi = 1)
Zi

Ĝ(Xi|Zi)

−
n∑

k=1

2τI(δk = 1)Zk

Ĝ(Xk|Zk)

= 2
√
nUn(b, τ).

Such a connection, combined with the fact that Ln(b, τ)
is a convex function of b, illustrates that the minimizer of
Ln(b, τ) is equivalent to the solution of Equation (4).

Lemma 1. Assume that conditions C4, C6 and C7 hold,
then

‖Ĝ−G0‖∞ = sup
t

sup
z

|Ĝ(t|z)−G0(t|z)|

= Op

(
(logn/n)1/2nν/2 + n−2ν

)
.

Proof. This follows directly from Theorem 2.1 of [10], and
we omit the details for saving space.

Proof of Theorem 1. Because Γ is compact, we suppose that
γ̂ → γ∗. We now show that β̂(γ̂, τ) is bounded. Otherwise,

for a subsequence, denoted by n, ‖β̂(γ̂, τ)‖ → ∞. Define

β̂∗(τ) =

{
1− 1

‖β̂(γ̂, τ)− β(γ∗, τ)‖

}
β(γ∗, τ)

+
1

‖β̂(γ̂, τ)− β(γ∗, τ)‖
β̂(γ̂, τ).

Note that β̂∗(τ) is bounded and that its distance from
β(γ∗, τ) is 1. We can further choose a subsequence to as-

sume that β̂∗(τ) has a limit β∗(τ)
Define

F =

(
δi

G0(Xi|Zi)
Zi

[
I

{
Hγ(Xi) ≤ bTZi, εi = 1

}
− τ

]
,

τ ∈ [τL, τU ], γ ∈ Γ, ‖b− β(γ∗, τ)‖ ≤ 1

)
.

The function class F is Donsker and thus Glivenko-Cantelli
class, and Ĝ(t|z) → G0(t|z) uniformly in t ∈ [0, λ]. Then,

sup
τ∈[τL,τU ],b∈B

‖n−1/2UG
n (b, τ, γ)−Ψ(b, τ, γ)‖(5)

= o(1), a.s.

where B = {b : ‖b− β(γ∗, τ)‖ ≤ 1}.
Secondly, we note that for any u ∈ Rp+1 satisfying

‖u‖2 = 1, uTΨ(β(γ∗, τ)+uη, τ, γ∗) is increasing in η. Then
for η ≥ ρ0,

uT [Ψ(β(γ∗, τ) + uη, τ, γ∗)−Ψ(β(γ∗, τ), τ, γ∗)]

≥ uT [Ψ(β(γ∗, τ) + uρ0, τ, γ
∗)−Ψ(β(γ∗, τ), τ, γ∗)] ≥ 0.
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By the Cauch-Schawarz inequality,

‖Ψ(β(γ∗, τ) + uη, τ, γ∗)−Ψ(β(γ∗, τ), τ, γ∗)‖2.‖u‖2

≥
(
uT [Ψ(β(γ∗, τ) + uη, τ, γ∗)−Ψ(β(γ∗, τ), τ, γ∗)]

)2
≥

(
uT [Ψ(β(γ∗, τ) + uρ, τ, γ∗)−Ψ(β(γ∗, τ), τ, γ∗)]

)2
≥ c20ρ

2
0.

Therefore, we have

inf
b∈B(ρ0)

‖Ψ(b, τ, γ∗)−Ψ(β(γ∗, τ), τ, γ∗)‖ ≥ c0ρ0.

Some simple algebraic manipulation shows that

Ψ(β̂∗(τ), τ, γ∗)−Ψ(β(γ∗, τ), τ, γ∗)

= n−1/2UG
n (β̂

∗(τ), τ, γ∗)−Ψ(β(γ∗, τ), τ, γ∗)

−
[
n−1/2UG

n (β̂
∗(τ), τ, γ∗)−Ψ(β̂∗(τ), τ, γ∗)

]
.

Then we can obtain that
Ψ(β̂∗(τ), τ, γ∗)−Ψ(β(γ∗, τ), τ, γ∗) = o(1) from (5).

This is a contradiction, because ‖β̂∗(τ) − β(γ∗, τ)‖ = 1.

Hence we can show that β̂(γ̂, τ) is bounded, and

sup
τ∈[τL,τU ]

‖β̂(γ̂, τ)− β(γ∗, τ)‖ → 0.

Next, if we can show that γ∗ = γ0, and β(γ∗, τ) = β0(τ),
the result is true. By the Glivenko-Cantelli theorem, for any
compact set A

sup
β∈A,γ∈Γ

∣∣∣∣∣n−1
n∑

i=1

I(Zi ≤ z)
( δi

Ĝ(Xi|Zi)
[I{Hγ(Xi) ≤ βTZi,

εi = 1} − τ ]
)
− E

{
I(Z ≤ z)[I{Hγ(T ) ≤ βTZ, ε = 1} − τ ]

}∣∣∣∣∣
a.s.−−→ 0.

Thus

n−3Rn(γ̂, τ) → E
(
E

[
I(Z ≤ z)[I{Hγ∗(T )

≤ β(γ∗, τ)TZ, ε = 1} − τ ]
]2|z = Z

)
.

Because n−3Rn(γ0, τ) → 0 and n−3Rn(γ0, τ) ≥
n−3Rn(γ̂, τ), we conclude that

E
{
I(Z ≤ z){I(Hγ∗(T )

≤ β(γ∗, τ)TZ, ε = 1)− τ}|z = Z
}
= 0,

that is Pr
[
{Hγ∗(T ) ≤ β(γ∗, τ)TZ, ε = 1}|Z

]
= τ . From con-

dition(C5.), this gives

β(γ∗, τ)TZ = Hγ∗ [H−1
γ0

{β0(τ)
TZ}].

From condition (C2.), we get that γ∗ = γ0 and β(γ∗, τ) =
β0(τ).

Proof of Theorem 2. We know that β̂(γ̂, τ) is the solution
to the equation of

n−1
n∑

i=1

δi

Ĝ(Xi|Zi)
Zi

[
I

{
Hγ̂(Xi) ≤ βTZi, εi = 1

}
− τ

]
= 0.

From the uniform expansion ([8]),

√
n{Ĝ(t)−G(t)} = n−1/2

n∑
i=1

V (Xi, δi; t) + op(1),

where V (Xi, δi; t) is the influence function for the Kaplan-
Meier estimator for the censoring distribution, that is,

V (Xi, δi; t) = −G0(t)

∫ t

0

Ĝ(u−)dMi(u)

G0(u)
∑n

i=1 I(Xi ≥ u)
,

where Mi(t) is the martingale for the censoring time. If C is
dependent on the covariates, from Theorem 2.3 of [10] and
the proof of Theorem 2 in [27], with assumptions C3, C4,
C6, and C7, we have that

Ĝ(t|z)−G0(t|z)(6)

= (nhn)
−1

n∑
i=1

K ((z − Zi)/hn)G0(t|z) ·

ϕ(Xi, δiεi, t, z) +Op

(
(logn/nhn)

3/4
+ h2

n

)
,

where

ϕ(Xi, δiεi, t, z) =

∫ Xi∧t

0

−g0(s|z)ds
{G0(s|z)}2{1− F1(s|z)}

+
I(δiεi = 0))I(Xi ≤ t)

G0(Xi|z){1− F1(Xi|z)}
.

Noting the Donsker property of the class{
δ

G0(X|Z)

[
I

{
Hγ(X) ≤ βTZ, ε = 1

}
− τ

]
:

G0 is decreasing bounded away from 0,

γ and β are in the neighborhood of γ0 and β0,

τ ∈ [τL, τU ]

}
,

we obtain that

−
√
nE

(
Z[I{Hγ̂(T )− β̂(γ̂, τ)TZ ≤ 0, ε = 1} − τ ]

)
=

√
n(Pn −P)Q0(X,Z, δ, ε) + op(1),

where Pn denotes the empirical measure, P is the expecta-
tion, and

Q0(X,Z, δ, ε)(7)
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=
δ

G0(X|Z)
Z

[
I{Hγ0(X)− β0(τ)

TZ ≤ 0, ε = 1} − τ
]

−Ẽ

(
δ̃

G2
0(X̃|Z)

Z̃
[
I

{
Hγ0(X̃)− β0(τ)

T Z̃ ≤ 0, ε̃ = 1
}

− τ
] {

Ĝ(X̃|Z)−G0(X̃|Z)
} )

.

Plugging (6) into (7), we can get that

Q0(X,Z, δ, ε)

=
δ

G0(X|Z)
Z

[
I{Hγ0(X)− β0(τ)

TZ ≤ 0, ε = 1} − τ
]

− Ẽ

{
δ̃

G2
0(X̃|Z)

Z̃
[
I

{
Hγ0(X̃)− β0(τ)

T Z̃ ≤ 0, ε̃ = 1
}

− τ
]
fz(Z̃)G0(X̃|Z)ϕ(X, δε, X̃, Z)

}
,

where (X̃, Z̃, δ̃, ε̃) are iid copies of (X,Z, δ, ε) and Ẽ(·) takes
the expectation with respect to (X̃, Z̃, δ̃, ε̃) only. Therefore,
after Taylor expansion of the left side, we have that

−
√
n

[
E {ZΨ0γ(Z)} (γ̂ − γ0)

+ E {ZΨ0b(Z)} {β̂(γ̂, τ)− β0(τ)}
]

=
√
n(Pn −P)Q0(X,Z, δ, ε) + op(1 +

√
n|γ̂ − γ0|

+
√
n‖β̂(γ̂, τ)− β0(τ)‖).

Then we obtain that

√
n [−E{ZΨ0b(Z)}]A1 (γ̂ − γ0)(8)

+
√
nE {ZΨ0b(Z)}

{
β̂(γ̂, τ)− β0(τ)

}
= −

√
n(Pn −P)Q0(X,Z, δ, ε) + op(1),

where A1 = −[E{ZΨ0b(Z)}]−1E{ZΨ0γ(Z)}.
On the other hand, we note that the class of functions{

I(Z ≤ z)
δ

G(X|Z)

[
I

{
Hγ(X) ≤ βTZ, ε = 1

}
− τ

]
:

G is decreasing bounded away from 0,

γ and β are in the neighborhood of γ0 and β0,

τ ∈ [τL, τU ]

}

is a Donsker class. Thus

sup
z,γ∈Γ

∣∣∣∣∣n−1Dn(z, γ)− E

{
I(Z ≤ z)

δ

Ĝ(X|Z)

[
I

{
Hγ(X) ≤ β̂(γ, τ)TZ, ε = 1

}
− τ

]}
−(Pn −P)

[
I(Z ≤ z)

δ

G0(X|Z){
I

(
Hγ(X) ≤ β(γ, τ)TZ, ε = 1

)
− τ

} ]∣∣∣∣∣
= op(n

−1/2).

In addition,

E

[
I(Z ≤ z)

δ

Ĝ(X|Z)

{
I

(
Hγ(X) ≤ β̂(γ, τ)TZ, ε = 1

)
− τ

}]
= E

{
I(Z ≤ z)

δ

G0(X|Z)

[
I
{
Hγ(Xi) ≤ β̂(γ, τ)TZ,

ε = 1
}
− τ

]}
− {1 + op(1)}E

[
I(Z ≤ z)

δ

G0(X|Z)2{
I

(
Hγ(X) ≤ β̂(γ, τ)TZ, ε = 1

)}
(
Ĝ(X|Z)−G0(X|Z)

)]
.

After Taylor expansion of the first term at β(γ, τ) and using

the expansion of Ĝ in (6), we obtain that, uniformly in z and
γ in a neighborhood of γ0,

n−1Dn(z, γ)

= E
{
I(Z ≤ z)

[
I

{
Hγ(T ) ≤ β(γ, τ)TZ, ε = 1

}
− τ

]}
+(Pn −P)Q1(X,Z, δ : γ, z) + E {I(Z ≤ z)Ψ0b(Z)}

(β̂(γ, τ)− β(γ, τ))

+op(|γ − γ0|+ ‖β̂(γ, τ)− β(γ, τ)‖) + op(n
−1/2),

where

Q1(X,Z, δ, ε : γ, z)

= I(Z ≤ z)
δ

G0(X|Z)

[
I

{
Hγ(X) ≤ β(γ, τ)TZ, ε = 1

}
−τ

]
− Ẽ

{
I(Z̃ ≤ z)

δ̃

G0(X̃|Z)2[
I

{
Hγ(X̃)− β(γ, τ)T Z̃ ≤ 0, ε̃ = 1

}
− τ

]
fz(Z̃)G0(X̃|Z)ϕ(X, δε, X̃, Z)

}
.

Hence,

n−3Rn(γ)

=E

([
E

{
I(Z ≤ z)

[
I

{
Hγ(T ) ≤ β(γ, τ)TZ, ε = 1

}
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− τ
]}]2

|z = Z

)
+2E

(
E

[
I(Z ≤ z)

{
I

(
Hγ(T ) ≤ β(γ, τ)TZ, ε = 1

)
− τ

}]
× (Pn −P)Q1(X,Z, δ; γ, z)|z = Z

)
+2E

(
E

[
I(Z ≤ z)

{
I

(
Hγ(T ) ≤ β(γ, τ)TZ, ε = 1

)
− τ

}]
× E {I(Z ≤ z)Ψ0b(Z)} {β̂(γ, τ)− β(γ, τ)}|z = Z

)
+ op(|γ − γ0|2 + ‖β̂(γ, τ)− β(γ, τ)‖2) + op(n

−1).

Note that in a neighborhood of γ0,

E
{
I(Z ≤ z)

[
I

{
Hγ(T ) ≤ β(γ, τ)TZ, ε = 1

}
− τ

]}
= B(z)(γ − γ0) + o(|γ − γ0|),

where

B(z) = E {I(Z ≤ z)Ψ0γ(Z)}+ E {I(Z ≤ z)Ψ0b(Z)}T A1

= A3(z) +A2(z)
TA1,

with A3(z) = E {I(Z ≤ z)Ψ0γ(Z)}, A2(z) =
E {I(Z ≤ z)Ψ0b(Z)}. Therefore n−3Rn(γ) has a quadratic
expansion near γ0 as

E{B(Z)2}(γ − γ0)
2

+ 2(γ − γ0)
[
(Pn −P)Ẽ{B(Z̃)Q1(X,Z, δ, ε; γ0, z̃)}

+ E{B(Z)A2(Z)
T }{β̂(γ̂, τ)− β(γ, τ)}

]
+ op(|γ − γ0|2 + ‖β̂(γ, τ)− β(γ, τ)‖2) + op(n

−1).

Because γ̂ minimize Rn(γ), we obtain that

E{B(Z)2}(γ − γ0) + E{B(Z)A2(Z)
T }{β̂(γ̂, τ)− β(γ̂, τ)}

= −(Pn −P)Ẽ{B(Z̃)Q1(X,Z, δ, ε; γ0, z̃)}
+ op(|γ̂ − γ0|+ ‖β̂(γ̂, τ)− β(γ, τ)‖) + op(n

−1/2).

Using the expansion of β(γ̂, τ) = β0(τ) + A1(γ̂ − γ0) +
op(|γ̂ − γ0|), we have that

√
n

{
E

[
A3(Z)

2
]
+AT

1 E [A2(Z)A3(Z)]

}
(γ − γ0)(9)

+
√
n

[
E

{
A3(Z)A2(Z)

T
}
+AT

1 E
{
A2(Z)A2(Z)

T
} ]

{
β̂(γ̂, τ)− β0(τ)

}
= −

√
n(Pn −P)Ẽ{B(Z̃)Q1(X,Z, δ, ε; γ0, z̃)}

+op(
√
n|γ̂ − γ0|+

√
n‖β̂(γ̂, τ)− β(γ, τ)‖+ 1).

Combining (9) with (8), we note that the coefficient ma-
trix

Λ =

(
−E{ZΨ0b(Z)}A1

E{A3(Z)
2}+AT

1 E{A2(Z)A3(Z)}
E[ZΨ0b(Z)]

E{A3(Z)A2(Z)
T }+AT

1 E{A2(Z)A2(Z)
T }

)
is nonsingular, because it has same rank as(

0 E{ZΨ0b(Z)}
E{B(Z)2} E{A3(Z)A2(Z)

T }+AT
1 E{A2(Z)A2(Z)

T }

)
,

which has full rank. Thus the asymptotic covariance is given
by

Σ = Λ−1E

([
Q0(X,Z, δ, ε)

Ẽ{B(Z̃)Q1(X,Z, δ, ε; γ0, z̃)}

]⊗2
)
(Λ−1)T ,

wherex⊗2 = xxT . We just consider the case in which γ is
estimated by minimizing Rn(γ), the same arguments can be
applied to the situation on R∗

n(γ).

Received 27 February 2014
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