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Variable selection in ROC curve analysis with
focused information criteria

Baoying Yang
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, Xin Huang, and Gengsheng Qin

In Receiver Operating Characteristic (ROC) curve analy-
sis, many factors such as the study subject’s characteristics
or operating conditions of a medical test may affect the diag-
nostic accuracy of the test. ROC regression models are intro-
duced to accommodate effects of the covariates. If many co-
variates are available, variable selection problem arises. The
area under the ROC curve (AUC) is a popular one-number
summary index of the discriminatory accuracy of a medical
test. In this paper, we propose a variable selection method
based on the Focused Information Criteria (FIC) with focus
on the AUC index. In particular, the FIC is developed in
a placement-value model for ROC regression. The proposed
method is illustrated through simulation studies and a real
data example.
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1. INTRODUCTION

Diagnostic tests have been developed in medical studies,
and it is important to assess the diagnostic accuracy of the
tests (Swets and Pickett, 1982). Suppose that a diagnostic
test produces a continuous measurement Y for an individual.
For a given threshold value c, the individual will be classified
into the diseased group if Y > c, otherwise he/she will be
classified into the non-diseased group. The Receiver Operat-
ing Characteristic (ROC) curve of the diagnostic test is the
plot of sensitivity versus one minus specificity for all pos-
sible threshold values. Zhou et al. (2002) and Pepe (2003)
demonstrated that the ROC curve is a fundamental tool
for the evaluation of the diagnostic accuracy of a medical
test.

When covariates such as characteristics (age, gender, gen-
eral health status, etc.) of study subjects or operating con-
ditions of a diagnostic test are available, various ROC re-
gression models have been introduced into ROC analysis
for the evaluation or control of the possible effects of covari-
ates. For example, Faraggi and Reiser (2002) modeled the
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test results with diseased status and covariates by linear re-
gression models. Pepe and Cai (2004) directly modeled the
ROC curve on covariates based on a placement-value model.
When many covariates are available, variable selection be-
comes an important issue in ROC analysis.

In statistical analysis, a variety of variable selection meth-
ods have been proposed, which aim at selecting a best-
subset of variables associated with some criteria, and fo-
cus on explaining phenomena under investigation via the
average prediction quality, regardless of purposes of the se-
lection. The AIC (Akaike, 1973), BIC (Schwarz, 1978), and
DIC (Spiegelhalter et al., 2002), to name just a few, are
examples of such methods, with various contexts and appli-
cations. However, in ROC analysis, we are interested in the
discriminatory accuracy of the test to distinguish diseased
subjects from non-diseased subjects instead of predicting the
test results of a diagnostic test conducted on new subjects.
Since the area under the ROC curve (AUC), expressed as
AUC = P (Y D > Y D̄) with Y D̄ and Y D being the respec-
tive test results in the non-diseased group and the diseased
group, is the most popular summary index of the discrim-
inatory accuracy of a test, it is necessary to develop new
covariates selection procedures with focus on the AUC in
ROC analysis.

Claeskens and Hjort (2003) proposed the Focused Infor-
mation Criteria (FIC) with a totally different point of view
that the model selector should instead focus on the accuracy
of estimation for interest parameters. By this criterion, one
needs to estimate the mean squared error (MSE) of the focus
estimator and select the candidate model under which the
MSE is minimized. Hjort and Claeskens (2006) developed
the FIC for the Cox hazard regression model and applied it
to a study of skin cancer. More recently, Wang et al. (2011)
reported that in many clinical settings, a commonly encoun-
tered problem is to assess accuracy of a screening test for
early detection of a disease. Following their idea, we be-
lieve that the FIC can also be used for variable selection
in designing a medical test. An example is a research study
conducted to design a new screening test by selecting vari-
ables from an existing screener with a hierarchical structure
among variables.

Another motivation example is a medical study to be to
discussed in detail in Section 5 on an experimental hearing
device developed to diagnose hearing impairment. In the lat-
ter study, the test result, called distortion product otoacous-
tic emission (DPOAE), was used to measure the strength of
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the cochlear response from two sounds emitted into a single
ear at different combinations of frequencies and intensities
(Stover, Gorga, and Neely 1996; Pepe 2003; Dodd and Pepe
2003), and the audiometric threshold was used to assess the
severity of hearing impairment subjects. The potential in-
fluence factors/covariates for the DPOAE were: frequency
level, intensity level, the hearing threshold level and their
interaction terms. Evaluating the effects of these covariates
and selecting the most important covariates with focus on
the discrimination capacity could improve the diagnostic ac-
curacy of the hearing impairment. Motivated by this real
example and the need of the development of new variable
selection methods in medical and biological applications, we
will propose variable selection methods with focus on AUC
based on the FIC criteria in this paper.

The rest of this paper is organized as follows. In Section
2, we introduce the FIC with focus on the AUC. In Section
3, we develop the FIC with focus on the AUC based on a
placement value model. We examine the performance of the
FIC through simulation studies in Section 4 and through an
application to the audiology data in Section 5. We conclude
the paper with some discussion in Section 6 and relegate the
technical proofs to the Appendix.

2. FIC WITH FOCUS ON AUC

In this section, we will propose the FIC with focus on
AUC. We first introduce general model assumptions for test
results. Assume that there are n1 diseased subjects with
test results Y D

i and covariate vectors ZD
i = (ZD

i1 , · · · , ZD
iq1

)t

(i = 1, 2, · · · , n1) from the diseased population with density
function f1(y

D|ξ1,ZD), and n2 non-diseased subjects with
test results Y D̄

j and covariate vectors ZD̄
j = (ZD̄

j1, · · · , ZD̄
jq2

)t

(j = 1, 2, · · · , n2) from the non-diseased population with
density function f2(y

D̄|ξ2,ZD̄), where ξk = (θk,ηk), k =
1, 2, are the parameters in the diseased and non-diseased
models respectively, ηk = (ηk,1, · · · , ηk,qk)t are parameters
associated with the covariates, and θk includes the param-
eters appearing in all the candidate models. For example,
Faraggi and Reiser (2002) considered the following linear
regression models for test results:

Y D
i = η1,0X

D
i + ηt

1Z
D
i + ε1i, i = 1, · · · , n1,

Y D̄
j = η2,0X

D̄
j + ηt

2Z
D̄
j + ε2j , j = 1, · · · , n2,(2.1)

where εki’s follow N(0, σ2
k). XD and XD̄ can be the in-

tercept term or the variable which always included in the
model. The parameters ηk,0 and σk are always included in
the models and can be denoted as θk = (ηk,0, σk), k = 1, 2,
and the parameters ηk = (ηk,1, · · · , ηk,qk) for k = 1, 2 are
the regression coefficients associated with the covariates.

In practice, more information on covariates is usually ob-
tained for diseased subjects (i.e., q1 ≥ q2). When q1 > q2,
we can set ZD̄

j = (ZD̄
j1, · · · , ZD̄

jq2
, 0, · · · , 0)t where the num-

ber of 0’s equals q1 − q2. So, without loss of generality, we

assume that q1 = q2 = q in the rest of the paper. Our
goal is to select most important covariates using the FIC
with focus on AUC in the assumed models for the test re-
sults. Similar to Claeskens and Hjort (2003), we assume that
ξ0k = (θ0

k,η
0
k) are fixed parametric vectors of a null model

for the test results, and ξk = (θk,ηk) = (θ0
k,η

0
k + δk/

√
nk)

with δk = O(1) are unknown parametric vectors of the true
models which are in a local neighborhood of the null model.
Obviously, the null model is the true model with δk = 0,
and the true model and the null model are close to each
other when sample size is big because ηk is not far from η0

k

with the departure δk/
√
nk = O(1/

√
nk). The local model

used here is a natural extension of the null model.
There are many candidate models in the model selec-

tion for test results. One is called the full model which
includes all the available covariates. Another is called the
narrow model which is a special case of the full model
in which ηk = (ηk,1, · · · , ηk,q) with some known ηk,i’s.
Let S be an index set indicating which covariate variables
are selected in the model. The full model is indexed by
S = {1, 2, · · · , q}. If S is a subset of {1, 2, · · · , q}, then the
model indexed by S is a sub-model representing a candi-
date model between the full model and the narrow model
excluding all the covariates. Let πS be the projection matrix
mapping a vector (a1, · · · , aq)t to vector (al, l ∈ S)t. Then
ηk,S ≡ πSηk = πSη

0
k + πSδk/

√
nk, and (θk,ηk), (θk,ηk,S)

are the parameter vectors of the full model and sub-model
respectively.

As mentioned in Section 1, we consider the FIC with
focus on the AUC. Note that the covariate-specific AUC at
a covariate vector Z0 = (Z0,1, · · · , Z0,q) can be expressed as

AUC(Z0) = P (Y D > Y D̄|Z0)

= g(θ0
1,η

0
1 + δ1/

√
n1,θ

0
2,η

0
2 + δ2/

√
n2|Z0)

≡ g(Z0),

where g(·) is a non-negative function with values in (0,1).
Since the parameters in the models for the test results are
unknown, this covariate-specific AUC is still unknown but
can be estimated. Let (θ̂k, η̂k,S) be estimators of (θk,ηk,S)
under a candidate (sub-model) model S for the test re-
sults. Then the covariate-specific AUC under this model can
be estimated by ĝS(Z0) = g(θ̂1, η̂1,S , θ̂2, η̂2,S |Z0). Target-
ing on covariates selection with focus on AUC, we define
the value of the FIC under model S at a covariate vector
Z0 as an estimate of the asymptotic mean square error of√
n1 + n2(ĝS(Z0)−g(Z0)). We will select the model with the

smallest FIC value among all the possible candidate models.
To state our main theorem, we first introduce some nota-

tion. Assume that the Fisher information matrix of the full
model, evaluated at the null point (θ0

k,η
0
k), is non-singular.

The log-likelihood function based on test results from the
diseased population can be written as

l1 =
1

n1

n1∑
i=1

log f1(Y
D
i |θ1,η1,Z

D).
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Then the information matrix evaluated at the null point
is

JD
full = lim

n1→∞
V ar

( √
n1

∂l1
∂θ1

(θ0
1,η

0
1)

√
n1

∂l1
∂η1

(θ0
1,η

0
1)

)
≡

(
JD
00 JD

01

JD
10 JD

11

)
,

and the inverse matrix of JD
full can be written as

(JD
full)

−1 =

(
J00,D J01,D

J10,D J11,D

)
,

where the sub-matrix J11,D of (JD
full)

−1 can be expressed as
J11,D = JD

11 − (JD
00)

−1JD
01 ≡ KD.

Similarly, we can find the Fisher information matrix eval-
uated at the null point for sub-model S:

JD
S =

(
JD
00 JD

01π
t
S

πSJ
D
10 πSJ

D
11π

t
S

)
,

and its inverse matrix:

(JD
S )−1 =

(
J00,D
S J01,D

S

J10,D
S J11,D

S

)
,

where J11,D
S = (πS(K

D)−1πt
S)

−1 ≡ KD
S .

The following lemma, adopted from Claeskens and Hjort
(2003), provides the asymptotic distribution of the MLEs
for the parameters in sub-model S.

Lemma. Under the ordinary regularity conditions given in
Claeskens and Hjort (2003), we have that

√
n1

( ∂l1
∂θ1

(θ0
1,η

0
1)

∂l1
∂η1

(θ0
1,η

0
1)

)
d−→

(
JD
01

JD
11

)
δ1 +

(
MD

ND

)
,

and

√
n1

(
θ̂1,S − θ0

1,S

η̂1,S − η0
1,S

)
d−→

(
AD

S

BD
S

)
≡ (JD

S )−1

(
JD
01δ1 +MD

πSJ
D
11δ1 +ND

S

)
∼ Np+q

(
(JD

S )−1

(
JD
01

πSJ
D
11

)
δ1, (J

D
S )−1

)
,

where

(
MD

ND

)
∼ Np+q(0, J

D
full), N

D
S = πSN

D.

Let HD
S = (KD)−

1
2 πt

SK
D
S πS(K

D)−
1
2 , and ωD =

JD
10(J

D
00)

−1 ∂g

∂θ1
− ∂g

∂η1
, where the partial derivatives are eval-

uated at null point (θ0
1,η

0
1). Here and hereafter, we can de-

fine similar notations for the non-diseased sample with the
subscript D replaced by D̄. From the above lemma, we can
derive the approximate mean squared error of the covariate-
specific AUC estimator ĝS .

Theorem 1. If sub-model S is fitted, and n2/n1 → ρ
(0 < ρ < ∞), then

√
n1 + n2(ĝS(Z0) − g(Z0)) converges

in distribution to

ΛS = c1(
∂g

∂θ1
)t(JD

00)
−1MD + c2(

∂g

∂θ2
)t(JD̄

00)
−1M D̄

+c1(ω
D)t

[
δ1 − (KD)

1
2HD

S (KD)−
1
2 (δ1 +WD)

]
+c2(ω

D̄)t
[
δ2 − (KD̄)

1
2HD̄

S (KD̄)−
1
2 (δ2 +W D̄)

]
,

where c1 =
√
1 + ρ, c2 =

√
1 + ρ−1, MD ∼ Np(0, J

D
00),

WD ∼ Nq(0,K
D) with MD and WD being independent,

M D̄ ∼ Np(0, J
D̄
00), W D̄ ∼ Nq(0,K

D̄) with M D̄ and W D̄

being independent, and the partial derivatives are evaluated
at null point (θ0

1,η
0
1).

The proof of Theorem 1 is regelated to the Appendix.
From Theorem 1, it can be verified that

E(ΛS) = c1(ω
D)t

[
I − (KD)

1
2HD

S (KD)−
1
2

]
δ1

+c2(ω
D̄)t

[
I − (KD̄)

1
2HD̄

S (KD̄)−
1
2

]
δ2,

V ar(ΛS) = τ20 + c21(ω
D)t(KD)

1
2HD

S (KD)
1
2ωD

+c22(ω
D̄)t(KD̄)

1
2HD̄

S (KD̄)
1
2ωD̄,

and the MSE of ĝS(Z0) is

γ(S) = τ20 + c21(ω
D)t

(
I − (KD)

1
2HD

S (KD)−
1
2

)
δ1δ

t
1

×
(
I − (KD)−

1
2HD

S (KD)
1
2

)
ωD

+c21(ω
D)t(KD)

1
2HD

S (KD)
1
2ωD

+c22(ω
D̄)t

(
I − (KD̄)

1
2HD̄

S (KD̄)−
1
2

)
δ2δ

t
2

×
(
I − (KD̄)−

1
2HD̄

S (KD̄)
1
2

)
ωD̄

+c22(ω
D̄)t(KD̄)

1
2HD̄

S (KD̄)
1
2ωD̄,

where τ20 = c21(
∂g

∂θ1
)t(JD

00)
−1 ∂g

∂θ1
+ c22(

∂g

∂θ2
)t(JD̄

00)
−1 ∂g

∂θ2
.

The MSE γ(S) of ĝS(Z0) is still unknown. But it can
be consistently estimated after obtaining the correspond-
ing estimators K̂D, K̂D

S , ĤD
S , K̂D̄, K̂D̄

S , ĤD̄
S , ω̂D, ω̂D̄, and

δ̂k (k = 1, 2) under the full model. Furthermore, we can get

values of these estimators at points (θ̂
0

1,η
0
1) and (θ̂

0

2,η
0
2),

where θ̂
0

1 and θ̂
0

2 are the MLEs of θ0
1 and θ0

2 under either
narrow model or full model.

Finally, we obtain the FIC with focus on AUC at a co-
variate vector Z0 as follows:

FIC = (ψ̃full − ψ̃S)
2 + 2

[
ĉ21(ω̂

D
S )tK̂D

S (ω̂D
S )(2.2)

+ĉ22(ω̂
D̄
S )tK̂D̄

S (ω̂D̄
S )

]
,

where ω̂D
S = πSω̂

D, ω̂D̄
S = πSω̂

D̄, ĉ1 =
√
1 + n2

n1
,

ĉ2 =
√
1 + n1

n2
, ψ̃full = ĉ1(ω̂

D)tδ̂1 + ĉ2(ω̂
D̄)tδ̂2,
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and ψ̃S = ĉ1(ω̂
D)t(K̂D)

1
2 ĤD

S (K̂D)−
1
2 δ̂1 +

ĉ2(ω̂
D̄)t(K̂D̄)

1
2 ĤD̄

S (K̂D̄)−
1
2 δ̂2.

This FIC can be used to do variable selection in ROC
regression model. For a ROC regression model with q co-
variates, there are 2q sub-models between the full model
and the narrow model. Under each sub-model, the value of
FIC can be calculated at covariates Z0 by using (2.2). With
the FIC focused on AUC, the sub-model with the smallest
FIC value is selected as the best sub-model. In other words,
we select the set of the most important covariates which has
the biggest effect on AUC estimation.

As an example, we apply Theorem 1 to the linear regres-
sion model (2.1) considered by Faraggi and Reiser (2002).

In the variable selection, We always keep the inter-
cepts and the variances parameter (i.e., θk = (ηk,0, σk))
in the models, while explanatory variables (i.e., ηk =
(ηk,1, · · · , ηk,q)t ) need to be selected. At Z0, AUC(Z0) is

g(θ1,θ2,η1,η2|Z0) = Φ

(
μD − μD̄√
σ2
1 + σ2

2

)
,

where μD = η1,0X0 + ηt
1Z0, μ

D̄ = η2,0X
D̄
0 + ηt

2Z0, and Φ(·)
is the distribution function of N(0, 1).

Under the linear regression models (2.1), the information
matrix evaluated at null points (θ0

k,η
0
k), k = 1, 2, with η0

1 =
0 and η0

2 = 0, for diseased and non-diseased samples are

1

σ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
n1

n1∑
i=1

3εD0,i
σ2
1

− 1 1
n1

n1∑
i=1

2εD0,i
σ1

1
n1

n1∑
i=1

2εD0,i
σ1

ZD
i

1
n1

n1∑
i=1

2εD0,i
σ1

1
n1

n1∑
i=1

XD
i

1
n1

n1∑
i=1

ZD
i

1
n1

n1∑
i=1

2εD0,i
σ1

ZD
i

1
n1

n1∑
i=1

ZD
i

1
n1

n1∑
i=1

(ZD
i )(ZD

i )t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

1

σ2
2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
n2

n2∑
j=1

3εD̄0,j
σ2
2

− 1 1
n2

n2∑
j=1

2εD̄0,j
σ2

1
n2

n2∑
j=1

2ε0,i
σ2

ZD̄
j

1
n2

n2∑
j=1

2εD̄0,j
σ2

1
n2

n2∑
j=1

XD̄
j

1
n2

n2∑
j=1

ZD̄
j

1
n2

n2∑
j=1

2εD̄0,j
σ2

ZD̄
j

1
n2

n2∑
j=1

ZD̄
j

1
n2

n2∑
j=1

(ZD̄
j )(ZD̄

j )t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

respectively, where εD0,i = Y D
i − η1,0X

D
i , and εD̄0,j = Y D̄

j −
η2,0X

D̄
j with η0

1 = 0 and η0
2 = 0 at the null points.

The partial derivatives of g, which are included in ωD

and ωD̄, evaluated at the null points are(
∂g(·|Z0)

∂σ1
,
∂g(·|Z0)

∂η1,0
,
∂g(·|Z0)

∂η1

)
=φ

(
μD − μD̄√
σ2
1 + σ2

2

)
1√

σ2
1 + σ2

2

(
− (μD − μD̄)σ1

σ2
1 + σ2

2

, 1,Zt
0

)
,

(
∂g(·|Z0)

∂σ2
,
∂g(·|Z0)

∂η2,0
,
∂g(·|Z0)

∂η2

)
=φ

(
μD − μD̄√
σ2
1 + σ2

2

)
1√

σ2
1 + σ2

2

(
− (μD − μD̄)σ2

σ2
1 + σ2

2

,−1,−Zt
0

)
,

where φ(·) is the density function of N(0, 1).
The explicit formula of the FIC for the linear regression

models can be derived based on Theorem 1 by using the
above information matrix and the derivatives of g.

3. FIC BASED ON PLACEMENT VALUE
MODELS

It is well known that the ROC curve can be viewed as the
probability distribution of the placement value defined by
U = 1− F D̄(Y ) = P (Y D̄ > Y ) (Hanley and Haijian-Tilaki,
1997; Pepe and Cai, 2004). The placement value U is a trans-
formation of Y that standardizes the distribution in the ref-
erence (non-diseased) population. It can be interpreted as
the proportion of the reference population with values larger
than Y . The distribution of the placement value in the non-
disease (reference) population U D̄ = 1−F D̄(Y D̄) is U(0, 1)
by definition, and UD = 1 − F D̄(Y D) = P (Y D̄ > Y D) is
the placement value in the diseased population. The distri-
bution of UD measures the separation between the diseased
and non-diseased populations. If setting u = 1−FD̄(y) as a
false positive rate, ROC(u) = P (UD < u). The correspond-
ing AUC can be expressed as AUC = E(1− UD).

Accounting for covariates can improve the diagnostic ac-
curacy of a test. In this section, we consider the following
placement-value model (see also Pepe and Cai, 2004):

Hα(UD) = −η0X
D − ηtZD + ε,(3.3)

where UD = 1−F D̄(Y D), XD can be the intercept term or
the variable always included in the model,ε has a specified
distribution gγ with parameter vector γ, Hα is an increas-
ing function with parameter vector α, and η = (η1, · · · , ηq)t.
The covariate-specific AUC at Z0 = (Z0,1, · · · , Z0,q) is

g(η0,η
t,α,γ|Z0) = E(1− UD|Z0).

Our goal is to select a set of important covariates from
(Z0,1, · · · , Z0,q) for model (3.3).

Let {(UD
i ,ZD

i ), i = 1, · · · , n1} be i.i.d. variables with the
density function f(UD|θ,η,ZD), where θ = (η0,α,γ)t and
η = (η1, · · · , ηq). The full model includes all available co-
variates, while the narrow model is the one with η0 = 0.
The true model for the placement-value takes the form
f(UD|θ0,η0 + δ/

√
n1,Z

D), where δ = (δ1, · · · , δq)t. Un-
der these model assumptions, the covariate-specific AUC at
Z0 = (Z0,1, · · · , Z0,q) is g(Z0) = g(θ0,η0 + δ/

√
n1|Z0). Let

(θ̂, η̂S) be the MLE of (θ,ηS) under a sub-model S, then
the covariate-specific AUC estimator under the sub-model
is ĝS(Z0) = g(θ̂, η̂S |Z0).
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Under sub-model S, the information matrix and its in-
verse at (θ0,η0) are

JS =

(
J00 J01,S
J10,S J11,S

)
and J−1

S =

(
J00,S J01,S

J10,S J11,S

)
.

The above matrices without subscript S are those corre-
sponding to the full model. Denote K = J11, KS = J11,S ,
HS = K− 1

2 πt
SKSπSK

− 1
2 , ω = J10J

−1
00

∂g

∂θ
− ∂g

∂η , where the

partial derivatives are evaluated at the null point (θ0,η0).
Similar to Theorem 1, we have the following theorem for the
placement value model.

Theorem 2. Assume that sub-model S is fitted for the
placement value. Then,

√
n1(ĝS(Z0) − g(Z0)) converges in

distribution to

ΠS = (
∂g(·|Z0)

∂θ
)t(J00)

−1M

+ωt
[
δ −K

1
2HSK

− 1
2 (δ +W )

]
,

where M ∼ N(0, J00), W ∼ N(0,K), M and W are inde-
pendent.

The proof of Theorem 2 is relegated to the Appendix.
From Theorem 2, it can be verified that E(ΠS) =

ωt
(
I −K

1
2HSK

− 1
2

)
δ and V ar(ΠS) = ( ∂g

∂θ
)tJ−1

00
∂g

∂θ
+

ωtK
1
2HSK

1
2ω. We can derive the FIC with focus on AUC

at covariate Z0 as follows:

FIC = (φ̃full − φ̃S)
2 + 2(ω̂S)

tK̂Sω̂S ,(3.4)

where ω̂S = πSω̂, φ̃full = ω̂tδ̂full, and φ̃S =
ω̂tK̂

1
2 ĤSK̂

− 1
2 δ̂full. Using (3.4), we will choose the sub-model

with the smallest value of FIC at covariate Z0 among all the
possible candidate models.

As an example, let’s consider the following model for the
placement value:

Φ−1(UD|ZD) = −η0X
D − ηtZD + ε,(3.5)

where η = (η1, · · · , ηq)t, ε follows N(0, σ2).
Under model (3.5), θ = (η0, σ

2), and the density function
of UD can be expressed as

f(UD|ZD) =
1

σ
exp{− ε2

2σ2
+

[Φ−1(UD|ZD)]2

2
}.

Then the information matrix evaluated at the null points
(θ0,η0) is

1

σ2

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1
n1

n1∑
i=1

3ε0,i
σ2

− 1 1
n1

n1∑
i=1

2ε0,i
σ

1
n1

n1∑
i=1

2ε0,i
σ

ZD
i

1
n1

n1∑
i=1

2ε0,i
σ

1
n1

n1∑
i=1

XD
i

1
n1

n1∑
i=1

ZD
i

1
n1

n1∑
i=1

2ε0,i
σ

ZD
i

1
n1

n1∑
i=1

ZD
i

1
n1

n1∑
i=1

(ZD
i )(ZD

i )t

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

where ε0,i = Φ−1(UD
i )+η0X

D
i with η0 = 0 at the null point.

For given Z0, denote Q0 = 1
2

(
[Φ−1(UD|Z0)]

2 − ε20
σ2

)
.

Then the derivatives of g, which are included in ω, eval-
uated at the null points (θ0,η0) are

∂g

∂σ
(·|Z0) =

∫
(1− UD)(− 1

σ2
+

1

σ4
ε20) exp(Q0)dU

D,

∂g

∂η0
(·|Z0) =

∫
(1− UD)(− 1

σ3
)ε0 exp(Q0)dU

D,

∂g

∂η
(·|Z0) =

∫
(1− UD)(− 1

σ3
)ε0Z

D
0 exp(Q0)dU

D.

Therefore, we can derive the explicit formula of FIC for
placement value model by using (3.4).

4. SIMULATION STUDIES

In this section, based on the placement value model,
we conduct simulation studies to evaluate the finite sam-
ple performances of the AIC, BIC and FIC in terms of the
Mean Square Error (MSE) and the Mean Absolute Devia-
tion (MAD) of the estimators for AUC index.

For the diseased sample, the AIC and BIC under a sub-
model S can be expressed as (See Hjort and Claeskens,
2003):

AICD
S = −δ̂full(K

D)−
1
2HD

S (KD)−
1
2 δ̂full + 2|S|,(4.6)

BICD
S = −δ̂full(K

D)−
1
2HD

S (KD)−
1
2 δ̂full + log(n)|S|,(4.7)

respectively, where |S| is the number of elements in S.
Based on expressions (4.6) and (4.7), we choose the mod-

els with the smallest AIC and BIC value as the best one.
Using the FIC criteria, we choose the model with the small-
est FIC value focused on AUC as the best one. In simulation
studies, we compare performances of the AIC, BIC, and FIC

criteria through comparing the estimates ̂AUC(Z0) of AUC

at the given covariates Z0, the MSE and MAD of ̂AUC(Z0)
over M=1000 simulation runs under each simulation setting,

where MSE(Z0) = 1
M

∑M
m=1(

̂AUCm(Z0) − AUC(Z0))
2,

MAD(Z0) = 1
M

∑M
m=1 |̂AUC(Z0)m − AUC(Z0)|, and

̂AUC(Z0)m is the estimate for AUC(Z0) based on the m-th
simulated sample.

We use the following placement value model in examples
1–5:

Φ−1(UD|ZD) = −η0X
D − ηtZD + ε,

where ε ∼ N(0, σ2). The simulated data are generated from
the models with different simulation settings.

Example 1: We set XD = 1. The q dimension covariates
ZD are generate from ZD ∼ N(μ,Σ), where μ = (1, · · · , 1),
and the covariance matrix Σ = (Σij) with Σii = ρ|i−j|,
1 ≤ i 
= j ≤ q. The correlation coefficient ρ is chosen to be 0.
We choose θ = (η0, σ) = (0.8, 0.1), and η = (0.5, 0.3, 0.2, 0)
with q = 4. The diseased sample size is n1 = 300.

Variable selection in ROC curve analysis with focused information criteria 233



Example 2: The model is the same as that in example 1
except that the sample size is n1 = 500;

Example 3: The model is the same as that in example 1
except that the sample size is n1 = 1000;

Example 4: The model is the same as that in example 1
except that η = (0.5, 0.3, 0, 0, 0, 0, 0.4, 0) with q = 8;

Example 5: To consider the robustness of the proposed
method, we consider a case in which the error term doesn’t
follow the normal distribution, but the simulation is still
conducted under the assumption that the error follows the
normal distribution. The placement values are generated
from the following model:

Φ−1(UD|ZD) = −η0X
D − ηtZD + ε,

where XD = (1, ξ)t with ξ ∼ N(0, 1), ZD are generated
from the same distribution as that in example 1. The coef-
ficients η0 = (0.2,0.1) and η = (0.5,0,0.3,0.2,0,0). The
true distribution of error term is ε ∼ 0.1t(3), where t(3) is
a t-distribution with 3 degree of freedom.

For given Z0, AUC can be expressed as AUC(Z0) =
g(θ0,η0 + δ/

√
n1|Z0) = E

(
1− UD|Z0

)
. Using the simu-

lated data from the true placement value models described
in examples 1–5, we estimate AUCs at 100 different covari-
ates Z0 and the corresponding MSE(Z0)’s and MAD(Z0)’s
under the selected models by using AIC, BIC and FIC over
M=1000 simulation runs, respectively.

Figures 1–5 display the results for AUC, MSE amd MAD
comparisons by using the AIC, BIC and FIC. From these
figures, we can see that the true AUC is varying with Z0, and
the estimates of AUC based on FIC are much closer to the
true AUC than the AIC and BIC based estimates. Figures
1–5 show that the MSE(Z0) and the MAD(Z0) based on
the FIC selected models are smaller than those based on
the AIC and BIC selected models in most cases considered
here, which indicates that the FIC has better finite sample
performances than the AIC and BIC in variable selection of
placement value model.

In examples 1–5, we also consider cases with ρ = 0.5 and
ρ = 0.8, the simulation results are similar to those with
ρ = 0. To save space, the figures with ρ = 0.5 and 0.8 are
put in the supplemental file of this article: http://intlpress.
com/site/pub/pages/journals/items/sii/content/vols/0010/
0002/s001.

5. ANALYSIS OF THE AUDIOLOGY DATA

In this section, the audiology data from the DPOAE test
described in Section 1 are used to evaluate the diagnostic
accuracy of the test with the hearing device. The study in-
volved 107 hearing impaired and 103 normally hearing sub-
jects who were examined at three frequencies (f) and three
intensity (L) settings of the DPOAE device. The effect of
severity of hearing impairment is also of interest. An au-
diometric threshold can be yielded at each setting. If the
audiometric threshold is greater than 20 dB HL, the disease

Figure 1. Example 1: Comparison with n1 = 300 and ρ = 0.

variable D = 1; otherwise D = 0. Each subject was tested in
only one ear. The test result is the negative signal to noise
ratio, −SNR.

In this dataset, the covariates to be selected are Z1 =
frequency HZ/100, Z2 = intensity dB/10, and Z3 =
(hearing threshold − 20)dB/10. Z1 takes three values:
10.01, 14.16, and 20.02. Z2 also takes three values: 5.5,
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Figure 2. Example 2: Comparison with n1 = 500 and ρ = 0.

6.0, and 6.5. Z3 is a centered continuous variable. We de-
note the 25% sample quantile of Z3 as Z3,1, the 50% sam-
ple quantile of Z3 as Z3,2, and the 75% sample quan-
tile of Z3 as Z3,3. In order to encourage the model selec-
tion, we incorporate two-way interaction terms, i.e. ZD =
(Z1, Z2, Z3, Z1Z2, Z1Z3, Z2Z3). We select three covariate

Figure 3. Example 3: Comparison with n1 = 1000 and ρ = 0.

vectors Z0: (10.01, 5.5, Z3,1, 10.01∗5.5, 10.01∗Z3,1, 5.5∗Z3,1)
(case i), (14.16, 6.0, Z3,2, 14.16 ∗ 6.0, 14.16 ∗ Z3,2, 6.0 ∗ Z3,2)
(case ii), and (20.02, 6.5, Z3,3, 20.02 ∗ 6.5, 20.02 ∗ Z3,3, 6.5 ∗
Z3,3) (case iii) as the specific values of the covariates to illus-
trate the proposed FIC method. The placement value model
(3.5) is used to fit this DPOAE dataset.
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Figure 4. Example 4: Comparison with n1 = 300, ρ = 0, and
q = 8.

Tables 1–2 show the models selected by using the AIC,
BIC and FIC with focus on AUC, and estimates for the
model parameters as well as predictions of AUC(Z0) at the
three given covariate vectors of Z0. Based on the AIC (or
BIC) selected model, we estimate the AUC value at the three
given covariates (denoted as (i), (ii), and (iii)). Based on the

Figure 5. Example 5: Comparison with n1 = 300, ρ = 0,
q = 6 and ε ∼ 0.1t(3).

FIC selected models, we also can estimate the AUC values at
the three given covariates. It is shown in Table 1 that both
the AIC and BIC methods select the same final model. In
Table 2, we can see that FIC method selects different vari-
ables at different Z0’s. The estimated AUC values (which
are 0.9438, 0.9639, 0.9914) based on the selected placement
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Table 1. Variable selection in placement value model for the DPOAE data based on AIC and BIC criteria

based on AIC based on BIC

sub-model 0 0 1 1 0 1 0 0 1 1 0 1

η̂ (0, 0, 0.1707, 0.0566, 0, 0.0238) (0, 0, 0.1707, 0.0566, 0, 0.0238)

θ̂ (1.4027,0.4817) (1.4027, 0.4817)
̂AUC i 0.9278 0.9278

ii 0.9539 0.9539
iii 0.9847 0.9847

Table 2. Variable selection in placement value model for the DPOAE data based on FIC criteria

based on FIC

sub-model η̂ θ̂ ̂AUC

i 0 0 1 0 1 1 (0, 0, 0.1696, 0 0.0201, -0.0238) (1.4196, 0.5318) 0.9438

ii 0 0 1 0 0 1 (0, 0, 0.1703, 0, 0, -0.0238) (1.4089, 0.5318) 0.9639

iii 0 0 1 1 1 0 (0.0282, 0.0708, -0.0055, 0) (1.3982, 0.5318) 0.9914

value model are closer to 1 and higher than those (0.9278
0.9539 0.9847) based on the AIC and BIC selected model.
These results show that the final model selected by the FIC
results in higher covariate-specific AUC estimates than the
AIC and BIC selected model in this example.

6. DISCUSSION

In this paper, we have discussed how to select important
covariates in ROC analysis with focus on improving diagnos-
tic accuracy of a test. In diagnostic testing, instead of pre-
dicting test measurements of the test conducted on new in-
dividuals, we are interested in the diagnostic accuracy of the
test to distinguish diseased subjects from non-diseased sub-
jects. The classical variable selection criteria such as AIC,
BIC may not be suitable for this purpose. Claeskens and
Hjort (2003) claimed that the variable selector should focus
on the accuracy of the parameter of interest, and proposed
the FIC criteria. Since AUC is the most popular summary
index of the discriminatory accuracy of a test, we have con-
sidered variable selection with focus on AUC based on the
placement value model. From our simulation studies and a
real data analysis, we observe that the proposed FIC per-
forms better than the AIC and BIC in placement value
model selection. Therefore, we recommend the FIC based
model selection method for placement value models in ROC
analysis in estimation of a covariate-specific AUC.

APPENDIX: PROOFS

Proof of Theorem 1.
After some algebra, we can further simplify AD

S and BD
S

in Lemma 1 as follows

AD
S = (JD

00)
−1JD

01(I − (KD)
1
2HD

S (KD)−
1
2 )δ1

+(JD
00)

−1MD − (JD
00)

−1JD
01(K

D)
1
2HD

S (KD)−
1
2WD

BD
S = KD

S πS(K
D)−1(δ1 +WD).

Under sub-model S, the density is f1(y
D|θ1,η1,S ,Z

D).

By Taylor expansion at null points (θ0
1,η

0
1,S) and (θ0

2,η
0
2,S),

we get that

√
n1 + n2

(
ĝS(θ̂1, η̂1,S , θ̂2, η̂2,S)

−g(θ0
1,η

0
1,S +

δ1√
n1

,θ0
2,η

0
2,S +

δ2√
n2

)

)
=

√
n1 + n2√

n1

(
∂g(θ0

1,η
0
1,S ,θ

0
2, η

0
2,S)

∂θ1

√
n1(θ̂1 − θ0

1)

+
∂g(θ0

1,η
0
1,S ,θ

0
2, η

0
2,S)

∂η1,S

√
n1(η̂1,S − η0

1,S)

)

+

√
n1 + n2√

n2

(
∂g(θ0

1,η
0
1,S ,θ

0
2,η

0
2,S)

∂θ2

√
n2(θ̂2 − θ0

2)

+
∂g(θ0

1,η
0
1,S ,θ

0
2,η

0
2,S)

∂η2,S

√
n2(η̂2,S − η0

2,S)

)

−
√
n1 + n2√

n1

∂g(θ0
1,η

0
1,S ,θ

0
2,η

0
2,S)

∂η1,S

δ1

−
√
n1 + n2√

n2

∂g(θ0
1,η

0
1,S ,θ

0
2,η

0
2,S)

∂η2,S

δ2

= c1(
∂g

∂θ1
)t(JD

00)
−1MD + c2(

∂g

∂θ2
)t(JD̄

00)
−1M D̄

+c1(ω
D)t

[
δ1 − (KD)1/2HD

S (KD)−1/2(δ1 +WD)
]

+c2(ω
D̄)t

[
δ2 − (KD̄)1/2HD̄

S (KD̄)−1/2(δ2 +W D̄)
]
.

Denote

WD = J10,DMD + J11,DND

= KD(ND − JD
10(J

D
00)

−1MD),

where MD ∼ N2(0, J
D
00). It is easy to get that E(MD) = 0,
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E(WD) = E(J10,DMD + J11,DND) = 0, and

E(WDMD) = E(KD(ND − JD
10(J

D
00)

−1MD)MD)

= KD
(
JD
10 − JD

10(J
D
00)

−1JD
00

)
= 0,

E(WD(WD)t) = E
[
(KD(ND − JD

10(J
D
00)

−1MD)

(KD(ND − JD
10(J

D
00)

−1MD)t
]

= KD
(
JD
11 − JD

10(J
D
00)

−1JD
10

)
(KD)t

= KD.

Then Theorem 1 follows from the independence between
WD and MD, and WD ∼ N(0,KD).

Theorem 2 can be proved by following the proof of The-
orem 1. Theorem 2 can also be proved by direct use of
Claeskens and Hjort (2003)’s method.
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