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Variable selection in joint location, scale and
skewness models with a skew-t-normal
distribution
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Although there are many papers on variable selection
methods in the modeling of the mean and/or variance pa-
rameters, little work has been done on how to select sig-
nificant explanatory variables in the modeling of the skew-
ness parameter. In this article, we propose a unified penal-
ized likelihood method to simultaneously select significant
variables and estimate unknown parameters in a joint loca-
tion, scale and skewness model with a skew-t-normal (StN)
distribution when outliers and asymmetrical outcomes are
present. With an appropriate selection of the tuning param-
eters, we establish the consistency and the oracle property of
the regularized estimators. Simulation studies are conducted
to assess the finite sample performance of the proposed vari-
able selection procedure. A real example is used to illustrate
the proposed method.
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1. INTRODUCTION

Statistical distributions are basic tools for describing
some random phenomena and are also the foundation of
statistical inferences. In recent years, the quantity of data
collected and requiring statistical analysis have been increas-
ing rapidly, allowing the fitting of more complex and po-
tentially more realistic models. Because skew distributions
compared with symmetrical distributions can release timely
and accurate information, the application of skew distribu-
tions is very extensive in the fields of finance, economics,
biomedicine and so on. For this reason, skew distributions
have received considerable attention in recent years. For ex-
ample, Gómez et al. (2007) introduced a so-called skew-t-
normal (StN) distribution and claimed that it is a robust
alternative to the skew-normal (SN) distribution (Azzalini,
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2005) in modeling heavy tailed data with outliers and strong
degrees of asymmetry. They also showed that the StN distri-
bution has a wider range of skewness than the SN distribu-
tion. Cabral et al. (2008) suggested a Bayesian approach to
modeling mixtures of StN distributions by the Markov chain
Monte Carlo algorithm. Lin et al. (2009) investigated statis-
tical diagnostics for nonlinear regression models by replacing
the normal error distribution with an StN error distribution.
Ho et al. (2011) provided a maximum likelihood inference
for mixtures of StN distributions through practical EM-type
algorithms.

On the other hand, similar to the modeling of the mean
and variance parameters, the modeling of the skewness pa-
rameter itself may be of statistical interest. To achieve the
goal of effectively controlling the skewness, it may be helpful
to understand what predictors/factors affect the skewness.
Thus, the modeling of the skewness parameter is of same im-
portance as that of the mean and variance parameters. This
motivates us to develop a joint location, scale and skewness
model with an StN distribution.

Although there are many papers on variable selection
methods in the modeling of the mean and/or variance pa-
rameters, these papers cannot directly be used to select im-
portant variables in joint mean, variance and skewness mod-
els. For example, Fan and Lv (2010), Hu and Lian (2013)
and references therein only provided methods for variable
selection in the modeling of the mean of the responses. In re-
cent years, variable selection in the modeling of the variance
has gained popularity. Based on the adjusted profile likeli-
hood, Zhang and Wang (2011) proposed a new criterion,
called as PICa, to simultaneously select explanatory vari-
ables in the modeling of mean and variance parameters for
heteroscedastic linear regression models. Wu, Zhang and Xu
(2012a) proposed methods to simultaneously select signifi-
cant variables in joint mean and variance models, providing
a useful extension of the classical normal regression models.
Wu, Zhang and Xu (2012b) proposed a hybrid strategy, in
which variable selection is employed to reduce the dimen-
sion of the explanatory variables in joint mean and variance
models, and Box–Cox transformation is made to remedy
the response. Wu and Li (2012) considered variable selec-
tion for joint mean and dispersion models with the inverse
Gaussian distribution. Wu, Zhang and Xu (2013) investi-
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gated the simultaneous variable selection in joint location
and scale models with an SN distribution.

However, little work has been done on how to select sig-
nificant explanatory variables in the modeling of the skew-
ness parameter. In practice, it is also important to deter-
mine what variables have significant impact on the skewness.
This motivates us to develop a unified penalized likelihood
method to simultaneously select significant variables and es-
timate unknown parameters in the joint location, scale and
skewness models with an StN distribution when outliers and
asymmetrical outcomes are present.

The rest of this paper is organized as follows. In Sec-
tion 2, we first propose a variable selection method in the
joint location, scale and skewness models with an StN dis-
tribution. Then, penalized maximum likelihood estimators
are derived. Finally, we present some theoretical properties
on the proposed variable selection procedure, including the
consistency and the oracle property of the regularized esti-
mators. In Section 3, based on the local quadratic approx-
imations, we provide an iterative algorithm for finding the
penalized maximum likelihood estimators. The choice of the
tuning parameters is also presented. In Section 4, some sim-
ulation studies are performed and a real data set on the body
mass index (BMI) is analyzed to demonstrate the proposed
methods. Some concluding remarks are given in Section 5.
Some technical proofs are put in the two appendices.

2. VARIABLE SELECTION IN JOINT
LOCATION, SCALE AND SKEWNESS

MODELS

2.1 The joint model with skew-t-normal
distribution

A random variable Y is said to have an StN distribution
with location μ, scale σ2, skewness λ and the degrees of
freedom ν, denoted by Y ∼ StN(μ, σ2, λ, ν), if its density
function is (Gómez et al., 2007)
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respectively, where V ∼ Gamma((ν − 1)/2, ν/2). If λ = 0,
then StN(μ, σ2, λ, ν) becomes tν(μ, σ

2). That is, if the skew-
ness λ = 0, then the density of StN(μ, σ2, λ, ν) is symmetric.
If ν → ∞, then StN(μ, σ2, λ, ν) approaches to the skew-
normal SN(μ, σ2, λ) considered by Azzalini (1985). If λ = 0
and ν → ∞, then StN(μ, σ2, λ, ν) reduces to N(μ, σ2). In
this paper, we employ the parameter ν, degrees of freedom
in (1), to measure the level of robustness that adapts to the
noise, contamination, and outliers in both theoretical and
practical aspects. Theoretically, the ν acts as a robustness
parameter to tune the heaviness of the tails and to down-
weight the effect of the outliers on the estimation of param-
eters. In practice, like Lucas (1997) and Lange et al. (1989),
we also suggest taking ν = 3, 4 or 5.

We consider the following joint location, scale and skew-
ness model with the StN distribution:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Yi
ind∼ StN(μi, σ

2
i , λi, ν), i = 1, . . . , n,

μi = x�iβ,

log(σ2
i ) = z�i γ,

λi = w�
iα,

(2)

where {Yi}ni=1 are independent responses, ν (> 2) is a known
degree of freedom [the reason for considering a known ν
is similar to those as shown in Lucas (1997) and Lange
et al. (1989)], xi = (xi1, . . . , xip)

�, zi = (zi1, . . . , ziq)
� and

wi = (wi1, . . . , wir)
� are three covariate vectors for subject i,

β = (β1, . . . , βp)
� is a p×1 vector of regression coefficients in

the location model, γ = (γ1, . . . , γq)
� is a q× 1 vector of un-

known parameters in the scale model and α = (α1, . . . , αr)
�

is an r × 1 vector of unknown parameters in the skewness
model. The covariate vectors xi, zi and wi are not necessar-
ily identical. The objective is to simultaneously select sig-
nificant variables and estimate parameters in the model (2).

2.2 Penalized maximum likelihood
estimators

Let Yobs = {(yi, xi, zi, wi): i = 1, . . . , n} denote the ob-
served data in the model (2). For convenience, let θ =
(θ1, . . . , θs)

� = (β�, γ�, α�)�, where s = p + q + r. Then,
the observed data log-likelihood function of θ is given by


(θ) ∝ −1

2
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2

n∑
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log
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+

n∑
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log Φ(ki),
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where

ki =
w�

iα(yi − x�iβ)

exp(z�i γ/2)
.

Similar to Wu, Zhang and Xu (2013), we define the penalized
log-likelihood function as

L(θ) = 
(θ)− n

p∑
j=1

pτ1j (|βj |)− n

q∑
k=1

pτ2k(|γk|)

− n

r∑
m=1

pτ3m(|αm|)

= 
(θ)− n
s∑

j=1

pτj (|θj |), (3)

where pτj (·) is a pre-specified penalty function with a regu-
larization or tuning parameter τj , which can be determined
by one of the data-driven criteria such as cross-validation
(CV), generalized cross-validation (GCV, see, e.g., Fan and
Li, 2001; Tibshirani, 1996), and Bayesian information crite-
rion (BIC, see, e.g., Wang et al, 2007). In Section 3.2, we
use BIC to choose these tuning parameters. Note that the
penalty functions and regularization parameters are not nec-
essarily identical for all j. For example, if we wish to keep
some important variables in the final model, we would not
penalize their coefficients.

The penalized maximum likelihood estimators θ̂n of θ can
be obtained by maximizing L(θ) specified by (3). With ap-
propriate penalty functions, maximizing L(θ) with respect
to θ leads to certain parameter estimators vanishing from
the initial model so that the corresponding explanatory
variables are automatically removed. Hence, by maximizing
L(θ) we can achieve the goal of selecting important variables
and obtaining the parameter estimators, simultaneously. In
Section 3.1, some technical details and an algorithm are pro-
vided to calculate the penalized maximum likelihood estima-
tors θ̂n.

2.3 Asymptotic properties

To study the consistency and asymptotic normality of the
resulting penalized likelihood estimators, we let θ0 denote
the true value of θ. Furthermore, let θ0 = (θ01, . . . , θ0s)

� =

(θ
(1)�
0 , θ

(2)�
0 )�. Without loss of generality, suppose that all

nonzero components of θ0 are included in θ
(1)
0 and θ

(2)
0 =

0. In addition, we assume that the tuning parameters are
rearranged corresponding to the elements of θ0. Let s1 be

the dimension of θ
(1)
0 ,

an = max
1�j�s

{p′τn(|θ0j |): θ0j �= 0}

and

bn = max
1�j�s

{|p′′τn
(|θ0j |)|: θ0j �= 0},

where τ is denoted by τn for emphasizing its dependency on
the sample size n.

To prove the theorems below (see Appendix B), we re-
quire the following regularity conditions:

(C1) The three covariate vectors xi, zi and wi are fixed
for i = 1, . . . , n;

(C2) The parameter space is compact and the true
value θ0 is located in the interior of the parameter
space;

(C3) All xi, zi and wi are bounded, i.e., all elements
in them are bounded by a single finite real num-
ber;

(C4) yi
ind∼ StN(μi, σ

2
i , λi, ν), where μi = x�iβ0,

log σ2
i = z�i γ0 and λi = w�

iα0, i =
1, . . . , n.

Theorem 1 (Consistency). Assume that an =

Op(n
− 1

2 ), bn → 0 and τn → 0 as n → ∞. Let τn be τ1n,
τ2n or τ3n, depending on whether θ0j is a component of β0,
γ0 or α0 (1 � j � s). Under Conditions (C1)–(C4), with

probability tending to 1 there exists a local maximizer θ̂n of
the penalized log-likelihood function L(θ) in (3) such that

‖θ̂n − θ0‖ = Op(n
−1/2).

Next we consider the asymptotic normality of θ̂n. Let
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)
,
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,

where τn is identical to that in Theorem 1 and θ
(1)
0j is the

j-th component of θ
(1)
0 (1 � j � s1). Denote the Fisher

information matrix of θ by In(θ).

Theorem 2 (Oracle property). Assume that the penalty
function pτn(t) satisfies

lim inf
n→∞

lim inf
t→ 0+

p′τn(t)

τn
> 0

and Īn = In(θ0)/n converges to a finite and positive definite
matrix I(θ0) as n → ∞. Under the conditions specified in
Theorem 1, if τn → 0 and

√
nτn → ∞ as n → ∞, then the√

n-consistent estimator θ̂n = ((θ̂
(1)
n )�, (θ̂

(2)
n )�)� in Theorem

1 must satisfy

(i) (Sparsity) θ̂
(2)
n = 0;

(ii) (Asymptotic normality)
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−1cn}

L→ Ns1(0, Is1),

where “
L→” means convergence in distribution, Ī(1)

n is the

s1× s1 sub-matrix of Īn corresponding to θ
(1)
0 and Is1 is the

s1 × s1 identity matrix.
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3. COMPUTATION

3.1 Algorithm

First, we note that the first two derivatives of the log-
likelihood function 
(θ) = 
(β, γ, α) are continuous. For a
given point θ(t), 
(θ) can be approximated by


(θ) ≈ 
(θ(t)) +

[
∂
(θ(t))

∂θ

]�
(θ − θ(t))

+
1

2
(θ − θ(t))�

[
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]
(θ − θ(t)).

Also, given a scalar φ0 we can approximate the penalty func-
tion pτ (φ) by a quadratic function (Fan and Li, 2001)
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1

2
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(φ2 − φ2
0), for φ ≈ φ0.

Therefore, the penalized log-likelihood function (3) can be
locally approximated by
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Thus, the Newton–Raphson algorithm can be used to itera-
tively calculate

θ(t+1) = θ(t) +
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− nΣτ (θ
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}−1
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.

In the follows, we calculate the score vector and the Hes-
sian matrix. The score vector is given by
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∂
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and ϕ(·) is the density function of N(0, 1). The Hessian ma-
trix is

H(θ) =̂
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We summarize the calculation of the penalized maximum
likelihood estimators of the parameters in the following al-
gorithm.

Step 1. Calculate the maximum likelihood estimators of θ
without penalty, denoted by θ̂MLE = (β̂�MLE, γ̂

�
MLE,

α̂�MLE)
�. Set the initial values θ(0) = θ̂MLE and

t = 0.
Step 2. Given the t-th approximation θ(t) = (β(t)�, γ(t)�,

α(t)�)�, update θ(t+1) = θ(t) + {H(θ(t)) −
nΣτ (θ

(t))}−1{nΣτ (θ
(t))θ(t) − U(θ(t))}.

Remark 1: Note that the skew t-normal density given
by (1) is unimodal. In addition, the parameter space Θ is
compact and the true value θ0 of the parameter vector θ
is located in the interior of the parameter space Θ, which
guarantees the convergence of the above algorithm.

Remark 2: In the derivation of the proposed algorithm,
we employed the local quadratic function to approximate
the penalty function pτ (φ). A better approximation could
be achieved by using the local linear function as in Zou
and Li (2008). However, different penalties will result in dif-
ferent weighting schemes in the local linear approximation,
e.g., the LASSO gives a constant weighting scheme. For sim-
plicity, in this paper, we choose to use the local quadratic
approximation.

3.2 Choosing the tuning parameters

There are several criteria, e.g., CV, GCV, AIC and BIC,
which can be used to determine optimal tuning parameters.
Wang et al. (2007) suggested using BIC to choose the opti-
mal tuning parameter in linear models and partially linear
models with smoothly clipped absolute deviation (SCAD)

penalty, and proved its model selection consistency prop-
erty; that is, the optimal parameter chosen based on BIC
can identify the true model with probability tending to one.
We also adopt BIC to select the optimal τ ’s.

It is expected that the choice of τ1j , τ2k and τ3m should
satisfy that the tuning parameter for a zero coefficient is
larger than those for nonzero coefficients. Thus we can un-
biasedly estimate larger coefficients, and shrink the small
coefficients towards zero simultaneously. Hence, similar to
Wu, Zhang and Xu (2013), we suggest

(i) τ1j = τ/|β̂0
j |, j = 1, . . . , p,

(ii) τ2k = τ/|γ̂0
k|, k = 1, . . . , q,

(iii) τ3m = τ/|α̂0
m|, m = 1, . . . , r,

where β̂0
j , γ̂

0
k and α̂0

m are initial estimators of βj , γk and
αm respectively by maximizing the un-penalized likelihood.
Define

BIC(τ) = − 2

n

(θ̂n) + dfτ × log(n)

n
,

where θ̂n is the maximum penalized likelihood estimator of
θ, dfτ (0 � dfτ � s) denotes the number of nonzero com-

ponents of θ̂n, and 
(θ) is defined in (3). The optimal tun-
ing parameter τ̂ can be determined by minimizing BIC(τ)
over τ .

4. SIMULATION STUDIES AND A REAL
EXAMPLE

In this section, simulation studies are performed and a
real data set on the body mass index (BMI) is analyzed to
demonstrate the proposed methods.

4.1 Simulation studies

To evaluate the finite sample performance of the pro-
posed unified penalized likelihood method, we conduct some
Monte Carlo simulations. For the sake of comparison, we
consider three different penalties; that is, SCAD (Fan and
Li, 2001), least absolute shrinkage and selection opera-
tor (LASSO, Tibshirani, 1996) and the hard thresholding
penalty (abbreviated as “HARD” in the follows, see An-
toniadis, 1997). The performance of the penalized MLEs

β̂n, γ̂n and α̂n are assessed by using the mean square error
(MSE):

MSE(β̂n) = E(β̂n − β)�(β̂n − β),

MSE(γ̂n) = E(γ̂n − γ)�(γ̂n − γ),

MSE(α̂n) = E(α̂n − α)�(α̂n − α).

In the simulations, let β = (1, 1, 0, 0, 1, 0, 0, 0)�, γ =
(0.7, 0.7, 0, 0, 0.7, 0, 0, 0)� and α = (0.5, 0.5, 0, 0, 0.5, 0, 0, 0)�.
All components in covariate vectors xi, zi and wi

are independently generated from the uniform distri-
bution U(−1, 1). We independently generate yi from
StN(x�iβ, exp(z

�
i γ), w

�
iα, ν) for i = 1, . . . , n. For a given

degree of freedom ν (ν = 3, 5), a given sample size n
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Table 1. Comparisons with ν = 3 and different combinations of sample size and penalty

SCAD LASSO HARDModel n

C IC MSE C IC MSE C IC MSE

Location Model 20 4.4720 0.6640 1.2968 3.9680 0.6440 1.2542 3.7100 0.3940 1.6165
50 4.7040 0.2260 0.5235 4.0660 0.1540 0.6123 4.3920 0.1680 0.6150
100 4.8700 0.0120 0.1703 4.2540 0.0100 0.2811 4.8340 0.0120 0.1837
200 4.9250 0 0.1030 4.6000 0 0.1758 4.9300 0 0.0998
250 4.9450 0 0.0748 4.7450 0 0.1202 4.9600 0 0.0749
300 4.9650 0 0.0630 4.8450 0 0.1099 4.9620 0 0.0604

Scale Model 20 4.2980 1.8540 1.8959 4.2420 1.9100 1.3432 3.2820 1.2600 2.3897
50 4.4780 1.4460 1.2575 4.3380 1.3780 1.0151 4.0300 1.1200 1.2881
100 4.6660 0.9600 0.7654 4.4400 0.7480 0.7251 4.5600 0.7920 0.7212
200 4.7050 0.5600 0.4742 4.6150 0.4450 0.6076 4.7200 0.5350 0.4634
250 4.7400 0.4300 0.3771 4.6550 0.4200 0.6071 4.7600 0.4350 0.3782
300 4.7950 0.2600 0.2561 4.8350 0.2300 0.5412 4.8650 0.2700 0.2479

Skewness Model 20 3.5080 0.9580 2.3753 2.7580 0.5640 2.7502 2.3880 0.7260 3.0622
50 4.3260 0.8540 0.9844 2.9560 0.2620 0.5540 3.9020 0.6420 1.3357
100 4.6720 0.6380 0.3803 3.3080 0.1040 0.2196 4.7300 0.6360 0.3805
200 4.7900 0.3600 0.2264 3.5950 0.0200 0.1351 4.8600 0.3750 0.2102
250 4.8100 0.1350 0.1271 3.8400 0.0100 0.0955 4.9100 0.1650 0.1151
300 4.8400 0.0900 0.0829 4.0500 0.0050 0.0798 4.9300 0.0750 0.0772

Note: “C” denotes the average number of zero regression coefficients that are correctly estimated as zero
and “IC” denotes the average number of non-zero regression coefficients that are erroneously set to zero.

(n = 20, 50, 100, 200, 250, 300), and a given penalty (SCAD,

LASSO, HARD), we calculate the penalized MLEs β̂n, γ̂n
and α̂n and repeat the experiment 1,000 times. The sim-
ulation results are reported in Tables 1 and 2, where “C”
denotes average number of zero regression coefficients that
are correctly estimated as zero and “IC” denotes the aver-
age number of non-zero regression coefficients that are erro-
neously set to zero.

From Tables 1 to 2, we can clearly see the following con-
clusions:

(a) For a given degree of freedom ν and a given penalty,
as expected, the variable selection performs better as
the sample size n increases. The MSEs of estimators
β̂n, γ̂n and α̂n also become smaller as the sample size
n increases.

(b) For a given sample size n and a given ν, the per-
formances of both SCAD and HARD procedures are
similar in terms of model error and model complex-
ity. Furthermore, the performances of both SCAD and
HARD are significantly better than that of LASSO.

(c) For a given penalty and a given sample size n, espe-
cially for the scale model, the variable selection per-
forms better as the degree of freedom ν increases. The
MSEs of estimators γ̂n also become smaller as the de-
gree of freedom ν increases.

(d) For a given combination of ν, sample size n and
penalty, the performance of variable selection in the
location model is significantly better than that in the
scale model and in the skewness model, the skewness
model is significantly better than that in the scale

model in the sense of model error and model com-
plexity.

4.2 Application to the body mass index data

Now, we illustrate the proposed variable selection pro-
cedure by using the body mass index data for 102 male
and 100 female athletes collected at Australian Institute of
Sport (Cook andWeisberg, 1994). The BMI data set consists
of the response variable Y—BMI in weight/(height)2 and
eight predictors: X1—the red cell count; X2—the white cell
count; X3—the Hematocrit; X4— the Hemoglobin; X5—the
plasma ferritin concentration; X6—the sum of skin folds;
X7—the body fat percentage and X8—the lean body mass.
We are interested in establishing the relationship between
the body mass index Y and the important predictors.

In practice, we may treat the degrees of freedom ν as an
additional unknown parameter and its MLE can be obtained
from the following profile log-likelihood


p(ν) = 
(β̃(ν), γ̃(ν), α̃(ν), ν)

=
nν

2
log(ν) + n log Γ

(
ν + 1

2

)
− n log Γ

(ν
2

)

−ν + 1

2

n∑
i=1

log

{
ν +

[yi − x�i β̃(ν)]
2

exp[z�i γ̃(ν)]

}

−1

2

n∑
i=1

z�i γ̃(ν) +
n∑

i=1

log Φ(ki(ν)),

where β̃(ν), γ̃(ν) and α̃(ν) denote the restricted MlEs of β,
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Table 2. Comparisons with ν = 5 and different combinations of sample size and penalty

SCAD LASSO HARDModel n

C IC MSE C IC MSE C IC MSE

Location Model 20 4.4760 0.7100 1.3923 3.8740 0.7640 1.3830 3.4300 0.3920 1.9189
50 4.6960 0.2780 0.6169 3.8840 0.2640 0.7687 4.1560 0.1680 0.8013
100 4.8780 0.0260 0.2033 4.1520 0.0400 0.3571 4.8100 0.0220 0.2343
200 4.8950 0 0.1272 4.5050 0.0050 0.2461 4.9100 0 0.1295
250 4.9250 0 0.0921 4.6200 0.0050 0.1646 4.9450 0 0.0901
300 4.9650 0 0.0688 4.8050 0 0.1517 4.9650 0 0.0662

Scale Model 20 4.4880 1.9080 1.6243 4.1560 1.8060 1.2478 3.5360 1.2600 1.9244
50 4.6100 1.4960 1.1184 4.2840 1.1820 0.9296 4.2280 1.1140 1.1058
100 4.7300 0.9480 0.6928 4.4280 0.6380 0.6527 4.6640 0.7880 0.6363
200 4.8200 0.5400 0.4200 4.6250 0.3450 0.5394 4.8150 0.5000 0.4016
250 4.8300 0.3400 0.2854 4.7250 0.2250 0.4614 4.8550 0.3200 0.2738
300 4.8550 0.1914 0.2561 4.7950 0.1050 0.4082 4.8800 0.1500 0.1780

Skewness Model 20 3.4500 1.1120 2.8505 2.7040 0.7280 2.9804 2.2620 1.0180 2.9804
50 4.2080 1.0400 1.0795 2.9020 0.3500 0.6703 3.7080 0.9200 1.5409
100 4.5880 0.8460 0.5020 3.2000 0.1660 0.2934 4.5780 0.7560 0.5149
200 4.7650 0.4750 0.2759 3.5300 0.0550 0.1539 4.8000 0.5150 0.2791
250 4.7900 0.3300 0.1998 3.7800 0.0250 0.1268 4.8850 0.3800 0.1894
300 4.8250 0.1450 0.1146 4.0300 0.0200 0.0990 4.8900 0.1750 0.1158

γ and α when ν is fixed,

ki(ν) =
w�

i α̃(ν)[yi − x�i β̃(ν)]

exp(z�i γ̃(ν)/2)
.

In the current real application, we obtain ν̂ = 3.86.
Figure 1 plots the histogram and the probability density

function curve of Y , indicating that the BMI approximately
follows an StN distribution. The purpose of our modeling
may be helpful to understand what predictors/factors af-
fecting the location, scale and skewness of Y .

Therefore, we could model the BMI data by the follow-
ing joint location, scale and skewness model with an StN
distribution:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

yi
ind∼ StN(μi, σ

2
i , λi, ν), ν̂ = 3.86, i = 1, . . . , 202,

μi = β0 + β1Xi1 + β2Xi2 + · · ·+ β8Xi8,

log σ2
i = γ0 + γ1Xi1 + γ2Xi2 + · · ·+ γ8Xi8,

λi = α0 + α1Xi1 + α2Xi2 + · · ·+ α8Xi8.

We apply the proposed variable selection procedure based
on the SCAD, LASSO and HARD penalties in Section 2 to
the above model. The results are displayed in Table 3.

From Table 3, we notice that in this data example, the
SCAD and HARD based methods perform very similarly in
terms of the selected variables. We can see that our proce-
dure identified seven nonzero regression coefficients β1, β2,
β3, β4, β5, β7 and β8 in the location model, four nonzero
regression coefficients γ1, γ2, γ3 and γ7 in the scale model
and seven nonzero regression coefficients α1, α2, α3, α4, α6,
α7 and α8 in the skewness model.

Figure 1. Histogram of the body mass index and fitted StN
density function.

This indicates that the X6 (the sum of skin folds) has
no significant impact on the location of Y (the body mass
index, weight/(height)2 ); X4( the Hemoglobin), X5(the
plasma ferritin concentration), X6(the sum of skin folds),
X8(the lean body mass) have also no significant impact on
the scale of Y (the body mass index). Furthermore, X5(the
plasma ferritin concentration) has also no significant impact
on the skewness of Y (the body mass index).
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Table 3. Penalized maximum likelihood estimators of parameters for the BMI data

Model Method Const X1 X2 X3 X4 X5 X6 X7 X8

Location Model SCAD −31.4833 1.8674 −5.8179 0.3654 0.9318 −0.0110 0 0.5360 0.2492
LASSO −23.0420 1.5784 −1.9311 0.1173 0.5428 −0.0072 0 0.2581 0.1206
HARD −31.4916 1.7673 −5.7813 0.3722 0.9381 −0.0109 0 0.5371 0.2471

Scale Model SCAD 7.0534 −0.1333 0.3244 −0.0284 0 0 0 −0.0158 0
LASSO 6.5806 −0.1492 0.1300 −0.0191 0.0289 0 0 0 0
HARD 7.0544 −0.1271 0.3224 −0.0289 0 0 0 −0.0159 0

Skewness Model SCAD 13.9388 21.8682 −0.7605 1.6106 −12.0149 0 −0.0622 0.0624 0.4234
LASSO 10.6491 −0.3135 0.0893 0.2663 −0.2804 0 0.0335 −0.1760 0
HARD 13.7397 19.7302 −0.6301 1.4854 −10.9999 0 −0.0556 0.0479 0.3857

5. CONCLUSION

We proposed an efficient and unified penalized likelihood
procedure which can simultaneously select significant vari-
ables and estimate unknown regression coefficients in the
joint location, scale and skewness models with the StN dis-
tribution when the data under consideration involve heavy
tail and asymmetric outcomes. Furthermore, with proper
choice of tuning parameters, we showed that this variable
selection procedure is consistent, and the estimators of re-
gression coefficients have oracle property. Simulation studies
are performed and a real data set on the BMI data is ana-
lyzed to illustrate the proposed methods.

The proposed method is valid for the fixed number of pa-
rameters. It would be interesting to consider the case when
the number of parameters goes to infinity. In some applica-
tions, it is necessary to develop some new theories and meth-
ods to obtain the variable selection in semiparametric joint
location, scale and skewness models with the StN distribu-
tion. The proposed method for variable selection in joint
location, scale and skewness models with a skew-t-normal
distribution could be formulated under the generalized ad-
ditive model for location, scale and shape (GAMLSS) frame-
work (Rigby and Stasinopoulos, 2005).

The MATLAB codes of this paper are available on re-
quest.
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APPENDIX A: PROOF OF THE DENSITY
FUNCTION (1) BEING UNIMODAL

The density function of Y ∼ StN(μ, σ2, ν, λ) is given by

f(y) =
2

σ
tν

(
y − μ

σ

)
Φ

(
λ
y − μ

σ

)

=
2Γ((ν + 1)/2)

σ
√
πνΓ(ν/2)

[
1 +

(y − μ)2

νσ2

]−(ν+1)/2

× 1√
2π

∫ λ y−μ
σ

−∞
exp(−x2/2) dx, y ∈ R.

When λ = 0, f(y) reduces to the density of the univariate
t-distribution, which is symmetrical and unimodal. We first
consider the case of λ > 0.

When λ > 0, f(y) is unimodal if and only if the root of
the equation f ′(y) = 0 exists and is unique, where

f ′(y)

=
2Γ((ν + 1)/2)

σ
√
πνΓ(ν/2)

[
1 +

(y − μ)2

νσ2

]−(ν+1)/2
1

σ
√
2π

×
{

− ν + 1

2

[
1 +

(y − μ)2

νσ2

]−1
2(y − μ)

νσ

×
∫ λ y−μ

σ

−∞
e−x2/2 dx+ λ exp

[
−λ2

2

(
y − μ

σ

)2
]}

.

Let z = (y−μ)/σ ∈ R. That there exists a y0 ∈ R such that
f ′(y0) = 0 is equivalent to that there is a z0 = (y0−μ)/σ ∈ R

such that g(z) = 0, where

g(z) =̂ − ν + 1

2

(
1 +

z2

ν

)−1
2z

ν

∫ λz

−∞
e−x2/2 dx

+ λ exp

(
−λ2z2

2

)
. (A.1)

It is easy to see that g(0) = λ > 0 and g(z) > 0 when z < 0.
When z > 0, we have λz > 0. Since∫ λz

−∞
e−x2/2 dx

=

∫ 0

−∞
e−x2/2 dx+

∫ λz

0

e−x2/2 dx

=

√
π

2
+

∫ λz

0

e−x2/2 dx
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>

∫ λz

0

e−x2/2 dx >

∫ λz

0

min
x∈[0,λz]

e−x2/2 dx

=

∫ λz

0

dx ·
(

min
x∈[0,λz]

e−x2/2

)
= λz · e−λ2z2/2,

from (A.1), we have

g(z) < −ν + 1

2

(
1 +

z2

ν

)−1
2z

ν
· λz · exp

(
−λ2z2

2

)

+λ exp

(
−λ2z2

2

)

= λ

[
−(ν + 1)

(
1 +

z2

v

)−1
z2

ν
+ 1

]
exp

(
−λ2z2

2

)

=
λν(1− z2)

ν + z2
exp

(
−λ2z2

2

)

≤ 0, if z ≥ 1.

In particular, g(1) < 0. Since g(z) is a continuous function,
based on the zero point theorem in mathematical analysis,
there exists a z0 ∈ (0, 1) such that g(z0) = 0. In other words,
there is a y0 ∈ (μ, μ + σ) satisfying f ′(y0) = 0. Therefore,
the existence is verified.

To verify that z0 ∈ (0, 1) is the unique solution to the
equation g(z) = 0, we only need to show that g(z) is mono-
tone in the unit interval (0, 1). In fact, we have

g′(z) =
(ν + 1)(z2 − ν)

(z2 + ν)2

∫ λz

−∞
e−x2/2 dx

− λz · e−λ2z2/2

(
ν + 1

ν + z2
+ λ2

)

=̂ I1 + I2.

If 0 < z < 1, we have z2 − ν ≤ 0 and λz > 0, implying that
I1 ≤ 0 and I2 < 0. Hence, g′(z) < 0 for any z ∈ (0, 1). That
is, g(z) is monotone decreasing in the unit interval (0, 1).
The uniqueness is verified.

When λ < 0, the conclusion can be proved similarly.

APPENDIX B: PROOFS OF THE
THEOREMS

Proof of Theorem 1. For any given ε > 0, we first prove
that there exists a large constant C such that

Pr

{
sup

‖v‖=C

L(θ0 + n− 1
2 v) < L(θ0)

}
� 1− ε.

Note that pτjn(0) = 0 and pτjn(·) > 0, we obtain

L
(
θ0 + n− 1

2 v
)
− L(θ0)

=
[

(θ0 + n− 1

2 v)− n
s∑

j=1

pτjn(|θ0j + n− 1
2 vj |)

]

−
[

(θ0)− n

s∑
j=1

pτjn(|θ0j |)
]

�
[

(θ0 + n− 1

2 v)− 
(θ0)
]

− n
s1∑
j=1

[
pτjn(|θ0j + n− 1

2 vj |)− pτjn(|θ0j |)
]

=̂ K1 +K2.

We first consider K1. Using the Taylor expansion, we have

K1 = 
(θ0 + n− 1
2 v)− 
(θ0)

= n− 1
2 v�
′(θ0) +

1
2n

−1v�
′′(θ∗)v

=̂ K11 +K12,

where θ∗ lies between θ0 and θ0 + n− 1
2 v. Note that

n− 1
2 ‖
′(θ0)‖ = Op(1). By applying the Cauchy–Schwartz

inequality, we obtain

K11 = n− 1
2 v�
′(θ0) � n− 1

2 ‖
′(θ0)‖ · ‖v‖ = Op(1).

According to Chebyshev’s inequality, we know that for any

ε > 0,

Pr

{
1

n
‖
′′(θ0)− E
′′(θ0)‖ � ε

}

� 1

n2ε2
E

⎧⎨
⎩

s∑
j=1

s∑
l=1

(
∂2
(θ0)

∂θj∂θl
− E

∂2
(θ0)

∂θj∂θl

)2
⎫⎬
⎭

� Cs2

nε2
= o(1),

which implies 1
n‖
′′(θ0)− E
′′(θ0)‖ = op(1) and

K12

=
1

2
n−1v�
′′(θ∗)v =

1

2
v�
[
n−1
′′(θ0)

]
v
[
1 + op(1)

]

=
1

2
v�
{
n−1
[

′′(θ0)− E
′′(θ0)− I(θ0)

]}
v
[
1 + op(1)

]

= −1

2
v�I(θ0)v

[
1 + op(1)

]
.

Therefore, we conclude that K12 uniformly dominates K11

in ‖v‖ = C if the constant C is sufficiently large.

Next, we study the term K2. It follows from the Taylor

expansion and the Cauchy–Schwartz inequality that

K2 = −n

s1∑
j=1

[
pτjn(|θ0j + n− 1

2 vj |)− pτjn(|θ0j |)
]

= −n

s1∑
j=1

{
n

1
2 p′τjn(|θ0j |)sgn(θ0j)vj
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+
1

2
p′′τjn(|θ0j |)v

2
j

[
1 +Op(1)

]}

� √
s1n

1
2 ‖v‖ max

1�j�s

{
p′τjn(|θj0|), θj0 �= 0

}

+
1

2
‖v‖2 max

1�j�s

{
|p′′τjn(|θj0|)|: θj0 �= 0

}

=
√
s1n

1
2 ‖v‖an +

1

2
‖v‖2bn.

Since it is assumed that an = Op(n
− 1

2 ) and bn → 0, we

conclude that K12 dominates K2 if we choose a sufficiently

large C. Therefore, for any given ε > 0, there exists a large

constant C such that

Pr

{
sup

‖v‖=C

L(θ0 + n− 1
2 v) < L(θ0)

}
� 1− ε,

implying that there exists a local maximizer θ̂n such that

θ̂n is a
√
n-consistent estimator of θ0. This completed the

proof of Theorem 1.

Proof of Theorem 2.We first prove Part (i). From τmax →
0, it is easy to show that an = 0 for large n. Second, we prove

that for any given θ(1) satisfying θ(1)−θ
(1)
0 = Op(n

−1/2) and

any constant C > 0, we have

L(θ(1), 0) = max
‖θ(1)‖�Cn−1/2

L(θ(1), θ(2)).

In fact, for any θj(j = s1 + 1, . . . , s), using the Taylor ex-

pansion, we obtain

∂L(θ)
∂θj

=
∂
(θ)

∂θj
− np′τjn(|θj |)sgn(θj)

=
∂
(θ0)

∂θj
+

s∑
l=1

∂2
(θ∗)

∂θj∂θl
(θl − θ0l)− np′τjn(|θj |)sgn(θj),

where θ∗ is a point between θ and θ0. By the standard ar-

gument, we have

1

n

∂
(θ0)

∂θj
= Op(n

−1/2)

and

1

n

{
∂2
(θ0)

∂θj∂θl
− E(

∂2
(θ0)

∂θj∂θl
)

}
= Op(1).

Note that ‖θ̂n − θ0‖ = Op(n
−1/2), we have

∂L(θ)
∂θj

= −nτjn

{
τ−1
jn p′τjn(|θj |)sgn(θj) +Op(τ

−1
jn n−1/2)

}
.

According to the assumption in Theorem 2, we obtain

lim inf
n→∞

lim inf
θ→ 0+

τ−1
jn p′τjn(θ) > 0 and τ−1

jn n−1/2 → 0.

So that

∂L(θ)
∂θj

< 0, for 0 < θj < Cn−1/2

and

∂L(θ)
∂θj

> 0, for − Cn−1/2 < θj < 0.

Therefore, L(θ) achieve its maximum at θ = ((θ(1))�, 0�)�

and this completes the proof of the first part of Theorem 2.

Second, we study the asymptotic normality of θ̂
(1)
n . From

Theorem 1 and the first part of Theorem 2, there exists a

penalized maximum likelihood estimator θ̂
(1)
n that is the

√
n-

consistent local maximizer of the function L(θ(1), 0). The
estimator θ̂

(1)
n must satisfy

0 =
∂L(θ)
∂θj

∣∣∣∣
θ=(θ̂(1)�, 0�)�

− np′τjn(|θ̂
(1)
nj )|)sgn(θ̂

(1)
nj )

=
∂
(θ0)

∂θj
+

s1∑
l=1

{
∂2
(θ0)

∂θj∂θl
+Op(1)

}
(θ̂

(1)
nl − θ

(1)
0l )

−np′τjn(|θ
(1)
0j |)sgn(θ̂

(1)
0j )

−n
{
p′′τjn(|θ

(1)
0j |) +Op(1)

}
× (θ̂

(1)
nj − θ

(1)
0j ).

In other words, we have{
∂2
(θ0)

∂θ(1)∂(θ(1))�
+nAn +Op(1)

}(
θ̂(1)n − θ

(1)
0

)
+cn =

∂
(θ0)

∂θ(1)
.

Using the Liapounov form of the multivariate central limit
theorem, we obtain

1√
n

∂
(θ0)

∂θ(1)
L→ N(0, I(1)).

Note that

1

n

{
∂2
(θ0)

∂θ(1)∂(θ(1))�
− E(

∂2
(θ0)

∂θ(1)∂(θ(1))�

}
= Op(1),

it follows immediately by using Slustsky’s Theorem that

√
n(Ī(1)

n )−1/2(Ī(1)
n +An){(θ̂(1)n − θ

(1)
0 ) + (Ī(1)

n +An)
−1cn}

L→ Ns1(0, Is1).

The second part of Theorem 2 is proved.
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