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Box dimension estimation of multi-dimensional
random fields via wavelet shrinkage

ALl REZA TAHERIYOUN AND YAZHEN WANG*

Computation of the box dimension for high-dimensional
surfaces is much more complicated than the one-dimensional
case. To obtain a fast computation, we employ the relation-
ship between the box dimension and the wavelet coefficients
of a surface through the local oscillation. This approach
gives an appropriate consistent estimator of box dimension
for noisy paths. The behavior of convergence is also stud-
ied under Holder continuity assumption for the family of
index-f Gaussian fields. We show that the precision of the
estimation procedure is not affected by the growth of dimen-
sion of the sample path. We finally examine the properties
of the proposed estimator using a simulation study and a
real dataset on equlibration of a particular solution.
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1. INTRODUCTION

1.1 General aspect

Put a surface in an XY Z Cartesian system and con-
sider XY plane as time index while Z represents the sur-
face height in each index. We therefore analyze the surface
as a noisy path of a random field. This idea would be ex-
tended similarly to higher dimensional real value data, which
mainly appear in specially astronomical problems. Regard-
less of physics theories on the noise creation due to uncer-
tainty, noise is an inseparable part of observations even in
precise tools. We then often confront with noisy time plots
which may cause misunderstanding in exploring the pattern
of the surface. There are many spatial adaptation methods
to approximate the model of smooth surfaces. On the other
hand, for a rough surface, it would be very complicated to
attribute a specific model to observation; therefore, it seems
important to measure the lack of smoothness. The source of
roughness in many surfaces is the stochastic fractal struc-
ture [24, Chapter 9] which makes it difficult to employ the
simple Lebesgue measure and its derivatives such as dimen-
sion, length and cross-section. Particularly, the dimension of
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such surface is called fractal dimension. Different approaches
to computing fractal dimension yield different criterion like
Hausdorff and box dimension. The Hausdorff dimension is
based on Hausdorff measure and box dimension uses simple
variation with respect to the scale of gridding.

Box counting is one of the simplest methods of comput-
ing the erraticism [the phrase was coined by 1, Ch.8 to
denote the measure of nervousness| of a graph or a set. Let
A be a non-empty bounded subset in R¥*!, N € N, and
Cs5(A) be the smallest number of sets of diameter lower than
¢ which cover A. Only for better imagination, and only here
consider these sets as the grid boxes of side § = M 7, where
M > 1 and j > 1 are integer numbers. This means that
at level j, only the cubes of side M~/ or greater are vis-
ible. As a characteristic of the erraticism, the box count-
ing method suggests counting the minimum number of re-
quired boxes of side (or diameter) M7 to cover A. Let
N4(j) be the minimum number of such boxes. The scaling
law indicates that N4(j) tends to infinity when j — oo;
however, the power law precisely indicates an exponential
relationship between the N4(j) and j. This fact was for-
mally introduced by Mandelbrot [18] when he reexamined
the observed data of [25] to show the effect of scale of a
ruler in measuring the length of the coastlines of Britain.
But, historically he mentioned that Richardson himself had
pointed out this fact in 1920’s. According to the linear rela-
tionship between N(j) and jlog M, although the fraction
log Na(j)/(jlog M) varies by change of small values of j, it
is expected to be fixed and equal to the slope of the linear
relationship for large enough j’s. Therefore, the erraticism
of A can be measured through the limit behavior of slope
by

log Na(j
(1) im —O_g A(]),
j—oo  jlog M
when the limit exists. Replacing the cubes with any arbi-
trary set of diameter § brings forward the formal definition
of the box dimension of A that is

(2) log C(;(A)

dimg A = lim “Togd

6—0
liminf and limsup are computed when the limit does not
exist. The results are then called lower and upper box di-
mensions and denoted by dimp and dimg, respectively. If the
limit (2) exists the limit (1) will also exists [14]. It follows
by (2) that dimg A < N + 1 and there is nothing to guar-
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antee that the dimension remains an integer number. The
definition of box dimension formulates the difficult concept
of dimension using the simple geometric concept of minimal
d-cover without involving the effect of the induced measure
of the random object. In the field of surface analysis, such
simple and comprehensive definition has made it as one of
the most interesting subjects to work on. In relative applied
mathematical surveys, many other concepts (e.g. oscillation,
Fourier coefficients and Hélder continuity) have been linked
to the box dimension which return more useful versions of
(2).

An intrinsic method in computing dimg for any set
in RY¥*! is covering the set by sub-cubes with volume
M~—(N+1) " Therefore, the diameter of each sub-cube is
VN +1/M and tends to zero as M — oo. Thus, Cs
is estimated by the number of sub-cubes and conse-
quently the asymptotically unbiased estimator of dimpg
is log(number of sub-cubes)/log(v/N + 1/M). There are
many other ways to construct sub-cubes and the question is
what kind of gridding yields a better result? The discussion
becomes more complicated when one is interested in the ge-
ometry of subsets in covering the set. For instance, one may
apply the same procedure by using other sub-volumes than
cubes. To the best of our knowledge, there is no familiar the-
oretical computation for the risks of estimators with respect
to different covering methods. Thus, numerical study is the
remaining approach for the comparison of estimators. Nev-
ertheless, when the limit (2) exists, then dimpy A < dimpg A
where dimy is Hausdorff dimension. Thus, applying this in-
equality, it is possible to improve the risk of box dimension
estimators by reseting the out-range values to the estimated
Hausdorff dimension. Also, one may use an improved lower
bound which was developed by [12].

There is a close direct relation between the number of
elements of d-cover of sets (here, assumed to be a path of a
random field) and the variation of the path. On the other
hand, one way to recognize the jumps and sudden changes
in the values of a function is using wavelet coefficients [7],
which is reviewed in Section 3. Linking the box dimension to
wavelet coefficients is the basis of our estimator. This link-
age was performed by Deliu and Jawerth [6] for real value
functions on a bounded interval I C R [see 20, Chapter 6,
for details]. The result is generalized here for real value func-
tions on I C RY and then a consistent estimator grows up by
applying an inferential solution to the ideal spatial adapta-
tion problem. This procedure was introduced by Wang [30]
for one-dimensional stochastic processes which is corrected
and extended here.

A variety of approaches has been proposed for comput-
ing the box dimension of signals or surfaces. We refer to [2,
Chapter 5] and [26] for an equivalent capacity based defi-
nition of fractal dimension which motivated the estimation
of box dimension. A theoretic discussion on the computa-
tional algorithms for this kind of dimension was considered
n [13]. Although the box dimension has been widely used
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in physics, engineering and geology, the statistical litera-
tures containing theoretical approaches to accomplish good
estimators are restricted and we mention [29] and [22] as es-
sentially opening solutions for the statistical box dimension
estimation. Statistical results such as asymptotic variance
and bias of capacity based box dimension were motivated
by Hall and Wood [11]. There is a collection of the frac-
tal dimension estimation of one-dimensional stochastic pro-
cesses and some extensions to higher moments in [10]. We
also refer to [10] and all the references therein for a compre-
hensive literature review of the fractal estimation including
an estimator based on the box counting method. The main
problem in this collection is estimating the Hurst index and
hence the Hausdorff dimension instead of box dimension.
According to the inequality N < dimg A < dimg A, the
variances of our method and the methods mentioned by [10]
are not comparable. To the best of our knowledge, the box
counting method has been employed only to estimate the
Holder or Hurst index in the literature of random fractal
surfaces. The novelty of our method is estimating box di-
mension of surfaces directly and this a brand-new approach
in multi-dimensional random fields.

1.2 Practical problem

Suppose that some small mass particles float in a fluid at
a given thermodynamic temperature. The position of ¢ mass
have been formulated many times in physics theory and it
has been traditionally referred to [9]. To analyze the mo-
tion equation of one particle, the path is usually considered
as a realization of a three-dimensional Brownian motion.
Thus, one may simply achieve the Hausdorff dimension of
the Brownian motion (and generally the fractional Brownian
motion) to compute the erraticism. For the case of more than
one particle we intend to analyze a perspective motion of the
whole suspension. This study is useful for some particular
chemical reactions in such a way that the resulting product
is collected as a sediment at the bottom of the container.
At the beginning of the experiment, two liquid solutions are
well shaken in a container and the nano-scale crystals of the
final product are created as the result of the chemical reac-
tion of the solutions. Passing the time, crystals connect to
each other and constitute micro-scale crystals that are heav-
ier and this phenomenon causes to the sedimentation of the
product. In fact the particles of the product float in the lig-
uid and the force of gravity yields to the sedimentation of
particles. Obviously, the product is not extractable unless
the suspension of the solid product and liquid container be-
comes stable with no movement of the solid particles. The
aim of this study is introducing a method to determine the
time of equilibrium in the suspension and hence the time of
extraction of the product. To this end, we glint a thick light
beam through the fluid and transfer the reflected beams to
a transducer. We then have a perspective image in the ap-
posite side of the glinted beam (see Figure 1). In fact, the
positions of particles in a 3-dimensional Cartesian system
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Figure 1. Observing the perspective of the whole particles.

is projected onto the 2-dimensional plane of the transducer.
According to the large amount of the solid particles, the
transducer will show a gray-scale image where the darkness
of each pixel of this image indicates the density of solid
points at the corresponding coordinate. After the stability,
all the dark pixels gather at the bottom of image and there-
fore the mentioned gray-scale image is almost partitioned
into a white and a black rectangle with a narrow unrecog-
nizable border. A crucial problem in the product extraction
is assessment of the true time of equilibrium and hence dis-
charging the product. The larger width of the border states
that the equilibrium is not achieved and we have to wait
more. The irregularity of the particles motions in this bor-
der reflected to the gray-scale image and thus wide border
(no equilibrium) produces an image with more erraticism.
The box dimension estimation helps us to decide whether
the equilibrium is acquired or not.

Returning to the problem of finding an appropriate model
for the motions of crystals we look at the models suggested
for the motion of a particle. The Brownian motion satis-
fies the Holder continuity and then the first idea is to fit
a random field satisfying the Holder condition of a known
order. This approach is not advisable since it brings forth a
new parameter estimation problem. Meanwhile, under lab-
oratory situations, the size of the image is worthwhile, and
thus computing the intrinsic estimator of box dimension is
time-consuming. Particularly, the computational procedure
becomes considerably huge by examining the interaction be-
tween the irregularity of floated particles and the consumed
time for equilibration of the heap in the fluid.

The outline of the paper will be organized as follows: In
the following section we present the relationship between
total oscillation and box dimension for multivariate func-
tions. It also reviews the computation of box dimension us-
ing wavelet coeflicients. A consistent estimator for noisy ob-
servations is introduced in Section 3. We also study the be-

havior of the estimator for random fields satisfying Holder
conditions in this section. The last section is devoted to a
simulation study and a solution to the performed practical
problem.

2. PRELIMINARIES

Let X(t), t € RN, be an N-dimensional random field
and let z(t) be a realization of X (t). Practically, the reg-
ular observations are collected through a bounded sub-
set of RN, hence without loss of generality, assume that
t € Ip = [0,1]V. At a resolution j = (ji,...,jny1) € NVFL
and translation k = (kq,...,kx) € NV let Qjx be a dyadic
sub-cube of Ij i.e.

k; ki +1
Q= {t € To| 75 I

izl,...,N;ki:07.__,Mji_1}7

<t <

[ —

where M is an integer number greater than one. Since the
resolution will be employed in covering the graph of random
field, we let j € NV*1. To the best of our knowledge, almost
all literatures used a special resolution (7, ..., j), whereas in
many practical problems, particularly in topographic maps,
the resolution elements are different. Generally, there is no
restriction to construct sub-cubes with equally scaled edge
and one can replace M by M;; however, following the pro-
cedures in Section 3.1, the results are the same. We also
denote the oscillation of x over the set ) by

osc(z; Q) = sup{z(t) — z(s)|t,s € Q} = supz — inf z.
Q Q Q

Let j. = Zfil j; and assume that, Iy is gridded by N7/
numbers of the disjoint sub-cubes with the same volumes.
Thus, the total oscillation of x over 1o, with respect to the
gridding constructed by N/ numbers of dyadic sub-cubes is
defined by

Osc(z;]) = osc(z; @),

>

lQl=a-3.

where the summation is over all dyadic sub-cubes @ with
volume equal to M ~J-. Define G,(A) := {(t,z(t))|t € A}
which is the graph of x on A. Kamont and Wolnik [16]
showed that

Crr-i. (G2(To)) ~ M- + M7N+1Osc(x; ),

where A ~ Bif A= O(B) and B = O(A). For the particular
case j = (4,...,J), the equivalence is changed to

(3)

where the resolution (j,...,7) will be denoted in Osc and
index of sub-cube @ by j for the sake of convenience. The re-
maining is the relationship between oscillation and wavelets
which traces back to [6] where the oscillation of z is related

CM—Nj (Gx(]:o)) ~ MNI + MjOsc(x;j),
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to the Besov space of particular index. The results were con-
fronted by a counter-example by Kamont and Wolnik [16]
and have been corrected by Jaffard [15].

Let S(RY) be the set of all C°>°(RY) functions whose
derivatives are bounded when multiplied by any polynomial
and S’(R™) be the linear space generated by the all contin-
uous functionals in S(RY). Consider ¢ € S(RY) with finite
vanishing moments where support of the Fourier transform
of ¢ is equal to {t € RY|1/2 < [[t|| < 2}. Then, for any
function x € S'(RY), there exists ¢ € S(RY) such that

(4) L= Z <1'7 @Q>¢Q7

QeQ

where @, , () = 20./2p(23.—k), 20 = (271,...,2/¥) and Q is
the set of all dyadic sub-cubes @Qj k. The summation repre-
sents the wavelet decomposition of z, and ¢ is called mother
wavelet or wavelet, briefly. The sequence wg = (z,¢q) is
also called wavelet coefficient.

According to [15], the oscillation is linked to the wavelet
by

log Osc(z, j)

(5) hjn_l)ggf log2—3
. 1Og Ek SupQ 1 k! ‘ij/ K/ |
= lim sup — — .
o0 Jjlog2

Employing (3) and (5) or directly from [15], for any contin-
uous real value sample path = on [0, 1]Y we have

")

= max {N7 1 + lim sup

j—o0

dimpG, ([0,

(6)

log Yy supg,  lwa, | }
jlog2 ’
with probability one. Also, replacing j by j, the other ver-

sion of this theorem is obtained. Thus, the equation (6) is

changed to
dimpG,([0,1]V)

= maX{N, 1+ limsup

j—oo

(7)

IOg Zk Suij/Yk/ ‘ij’,k’ ‘ }
log 2J. ’

with probability one. Moreover, we may obtain (6) under
Holder continuity assumption instead of continuity. How-
ever, we apply this theorem only on continuous Gaussian
fields where more details are discussed for index-£ family in
Section 4.

3. FRACTAL DIMENSION ESTIMATION

3.1 Consistent estimation

Suppose that y is a noisy path of the random field X.
Thus, y could be decomposed into x, as a sample path of
X, and a simple white noise. On the other hand, in many
experimental samples from random fields, the sample path
is observed on an N-dimensional lattice I with respect to
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Figure 2. A noisy realization of X, using linear approximation
within four neighboring nodes.

a given resolution. Within each generated sub-cube in form
of (k1 /M7, (ky +1)/M7) x ... x (kn /M~ (kxy +1)/MIN),
the linear approximation is applied due to the resolution
restriction in data gathering. Figure 2 shows the linear ap-
proximation for N = 2. Therefore, our sample includes the
values of x only on the nodes of the lattice I and there is
no observation within sub-cubes.

Since wq is essentially an integration using x, according
to the sample path, there is no sufficient information to com-
pute the exact wavelet coefficients. Using spatial adaptation,
we may explore the empirical wavelet coefficients to employ
(6). Let n = (ng,...,ny) be the gridding level which means
that the interval [0, 1] on the ith axis of the Cartesian system
divided into n; = 27! equidistant parts where J; > 1 is an
integer number. For convenience, let 1/n denotes the node
(lh/n1,...,In/ny) for 0 <1; <n;, i =1,...,N. The fore-
going sampling assumptions confirms that the data y(1/n)
is observed from the nonparametric regression model

(3) =) +<(2)

for 1/n € L where ¢(1/n) are independently distributed as
N(0,0?) and z is the real path of X which we would like
to find the wavelet coefficients for. In fact the normality
is a mild assumption assumption in this nonparametric re-
gression and we will see that eliminating this assumption
does not harm the estimation procedure. A simple solu-
tion is recovering x by applying spatially adaption meth-
ods and let & denotes the recovered function. Then, com-
pute the wavelet coefficients of & as an estimation of w. We
employ the wavelet method to estimate the x function in
this nonparametric regression. Simply speaking, the empiri-
cal wavelet coefficients of Y is computed using the observed
surface, y, which is decomposed into the empirical wavelet
coeflicients of the parameter function, z, and the wavelet
coefficients of the noise term. Considering the white noise

(8)



assumption, the wavelet coefficients of € are identical and
thus it suffices to remove it from the wavelet coefficients of
y. To this end, thresholding the wavelet coefficients of y is
suggested by Donoho and Johnstone [7]. Let wg, denotes
the empirical wavelet coefficients of Y. A simple extension
to higher dimension for an algorithm of discrete wavelet
transformation of [17] has been explored in [21, Chapter 3].
Threshold w’Q by a soft or hard thresholding rules according
to the functions ng(w’) = sgn(w’)(Jw'| — A\pn,) or ng(w') =
|w [1(Jw'| > An,), respectively where n, = vazl n; is the
sample size. Let us now reconstruct the function by the
generated coefficients. This function estimation was intro-
duced by Donoho and Johnstone [7] and was called Wavelet
shrinkage. Employing the soft threshold by universal thresh-
old \,, = 0(2logn,)/?, returns the VisuShrink estimation
which provides better visual features.

With reference to [7] and due to some restrictions for
dyadic sub-cubes we have

, 1

(9) W = we A=,
where u is the empirical wavelet coefficient of . For N-
dimensional sample path on the gridding level n, since the
maximum resolution for ith element is J; = logn; — 1, thus
we denote the resolution by jn = (Jin,,---»JNny)-

Theorem 3.1. Under the model (8) if y is a continuous
noisy sample path of X on [0,1]N, then
o8, ( Sisuvay st 1)

1+ -
Jn

T(yajn) =

(10)

L> di—mBGX([07 1]N)a

as jn — 00 where jn =, jin,-

A proof is given in Appendix A.

Employing (10), one may estimate the upper box di-
mension of the graph of a noisy random field, consistently.
When the resolution and griding are the same in all di-
rections of the Cartesian system, i.e. n = (n,...,n) and
Jn = (Uns---,Jn), the similar procedure can be performed
by employing (6) to obtain

log, (Zk [supg, ns(w&gmkﬂ)

In

1+
NN mBGx([O, 1]N),
as Jn — 00.

3.2 Diagnosis of the noise term

The normality assumption of the white noise plays a cru-
cial role in achieving the minimaxity of the estimated func-
tion [see 8]. However, the lack of normality only targets the
minimaxity and not the whole estimation procedure. There

are plenty of empirical tests of normality in the literature of
physics particularly for the Gaussianity tests of cosmic back-
ground waves [see 19, and the references therein]. However,
the rejection area for the normality assumption in almost all
of them are based practical experiences or they strongly re-
quire the stationarity assumption. To diagnose the assump-
tions of the noise term we first begin with the white noise
assumption. Reconstruct & by applying the inverse wavelet
transform on the thresholded empirical wavelet coefficients
ns(wg). Define the residual by r(1/n) = y(I/n) — 2(1/n),
for 1/n € L. A frequency domain approach could be use-
ful in testing the white noise assumption. Set A as a dis-
crete lattice obtained from gridding [0, 2] into n, suit-
able nodes by dividing the ith edge into n; parts. For a
given constant v, define distinct points in A, D, say, by
D, = {Ag;k=1,...,v}, where for any j # k < v and any
Aj, Ak € Dy, Aj is not equal to Ay neither is it to 2w — Ay,
where 27 is an N-dimensional vector with elements equal to
2m. The N-dimensional periodogram of the residual process
at the Fourier frequency A € D,, is defined as

2 J\aT.s
IT A; = — — ‘n
(m) = 23 r(d e

*

n
9’
=1

where AT is the transpose of AT, Under some mild con-
ditions [see 23, 27, for details], {I,A}rcp, are asymptot-
ically 7¢d random variables from the exponential distribu-
tion. Thus, a rejection rule for the white noise assumption
is defined by the rejection area of the hypothesis testing

Versus

Hoy : {I;A}xep, g Exponential H; : not Hy,

that is a simple goodness-of-fit test.

Once the white noise assumption is passed, under the
normality assumption, the residuals are iid random vari-
ables from N(0,0?). Thereupon, the normality is examined
according to the testing problem of

Ho : {r(1/n)}1/neL %! Normal versus Hj :not Hy,
where it is again a simple goodness-of-fit test.

3.3 Properties for index-3 family

For an N-dimensional random field, let E[X(t +s) —
X (s)]? be the incremental variance function. It is also called
stationary incremental variance function when it does not
change by s and is denoted by ¢2(t). A zero-mean continu-
ous Gaussian process with stationary increments belongs to
index-f family if there exists 0 < § < 1 such that

f = sup{afo(t) = o([[t[|*), as [[t] | O}.

The index-f family satisfies the stochastic Holder condition
of order @ < 8 which means that every sample path of X
as an index-3 family, satisfies

|z(t +h) —x(t)| < c[h],
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for every @ < 8 where ¢ > 0 is a constant [see 1, Chapter 8.
Therefore, the wavelet coefficients for @k may be rewritten
as

‘ij,k| |<'T790Q>|
N .
< (I122) [ le® - 2ot o2~ 10 at
i=1
< @ [l lptto2 - 10 dt,

where o is simple point-wise or Hadamard product. Note
that in previous inequalities, we assumed that the mother
wavelet ¢ has vanishing moments i.e.

/t’fl () db =0,

for some ai,...,any € N. By making change of variables
v; = (t;29 — k;) in the integration and applying Minkowski
inequality, we have

woul < 272 [z (v (v av
< 2 [z ov] lo(v)] dv
+ 22k’ [ o) av.

Now let jy = min{ji,...,jn}. Then the last inequality

yields
wonl < @920 [v)P o) av
+ ezt i P [ o) av.

It seems that in high resolutions the results will be more
reliable; nevertheless, for index-8 fields the Holder con-
dition may cause some misleadings in the results. Since
JIIv[I? Je(v)| dv < oo, the order of wg,, for index-f fields
at resolution j is 277/2-8ia) | Hence, for very high resolu-
tions w’ is dominated by wu; this means that by increasing
the resolution the effect of w is faded by w. The order of
noise term in [30] is n=/2 while it is constant here. There-
upon, our estimator is more flexible in constructing precise
decisions by using high reolutions. Note that the method of
computing the empirical wavelet coefficients is different from
the one used by [30]. On the other hand, in low resolutions
the variation of w’ is controlled by w. It is worth mentioning
that in low resolutions the new problem is letting j to infin-
ity which may cause failure in preparing a large enough j to
hold the convergence true. Thus, a noticeable point is the
behavior of convergence. Surprisingly, the order of noise, is
not affected by dimension growth of the random field. More
precisely, the noise term affects on estimation only via 2.
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4. NUMERICAL RESULTS

We partition this section into two main parts. To make
a visual sense for the behavior of estimation, a simulation
study is presented by employing the observations of Gaus-
sian random fields. The second part contains a solution pro-
cedure for the practical problem and a discussion about it.

4.1 Simulation study

There is an exact computation of Hausdorff dimension for
index-# family of known Holder index. Therefore, to con-
struct the lower boundary introduced in Section 1, one of
the numerical studies is dedicated to this family to study
the out range property of the estimator presented by (10).
To study the effect of Holder index we repeat the numerical
computations for the fractional Brownian sheet (fBs).

Using the circulant embedding method, realizations of
the 2-dimensional Gaussian field are generated with respect
to the stable covariance function:

E[X(t)X(0)] = exp(—c|it]|*),

where ¢ > 0 is well-known as topothesy parameter. The fBs
is characterized by its variogram that is

E|X(t) - X(0)]* = cl|t]|”,

where ¢ and 3 are the same as the stable model. The size
of each realization is 1024 x 1024. If x is a realization with
respect to this covariance function, then [see 1, Chapter §]

dlmH(Gz) =3- ﬂ

We add the generated path to a noise matrix constructed
by independent standard Gaussian random variables. For
c=1,and g = 0.1,0.3,0.5,0.7 and 0.9, the box dimen-
sion estimation is computed based on (10). Furthermore,
to obtain the standard deviation, the estimation procedure
is replicated 100 times. The results are shown in Table 1.
Since there is not another box dimension estimator for multi-
dimensional random fields, in addition to the results of our
wavelet-based estimator we present the results for five other
well-known estimators of Hausdorff dimension. The first two
estimators are intrinsic estimators based on line-transect
method. In theses methods, the Hurst index is estimated
in each row (for horizontal direction) and/or column (for
vertical direction) of the gray-scale image data. The final
estimate is the median of the results in each direction. The
line-transect estimator employs the variation or a variant
that uses the second difference (such as oscillation) where
the root mean squared errors (RMSE) of both are given in
Table 1. This table also contains the RMSFE of the Haus-
dorff estimators of Davies and Hall [5], Chan and Wood
[3] and Zhu and Stein [31]. All the computations according
to the other estimators have been implemented using the
R package fractaldim. The numbers in the parenthesis in-
dicate the number of times which T'(y;j) exceeded dimpy.



Table 1. The box dimension estimation and the corresponding standard deviations. The numbers mentioned in parenthesis are
the number of out-range estimators

model g Wavelet-based MSFE of the other estimators
T(y;(9,9)) SD line-transect  second differences Davies-Hall [5] Chan-Wood [3] Zhu-Stein [31]

stable 0.1 2.8719 .04550(5) .0118 0.0126 .0129 .0118 .0120
0.3 2.6344 0.04590(7) .0019 .0030 .0031 .0022 .0024
0.5 2.4769 0.03874(5) .0015 .0013 .0015 .0018 .0012
0.7 2.2828 0.03381(11) .0654 .0312 .0304 .0799 .0659
0.9 2.0811 0.03051(13) .2423 7315 .0700 .2863 .2425

fBs 0.1 2.9581 0.04959(3) .0012 .0007 .0010 .0017 .0013
0.3 2.7200 0.05001(3) .0013 .0008 .0008 .0013 .0007
0.5 2.6154 0.04637(6) .0010 .0013 .0011 .0017 .0007
0.7 2.4925 0.03696(10) .0020 .0076 .0081 .0016 .0017
0.9 2.1645 0.03141(11) .0024 .0080 .0088 .0020 .0020

The estimator is decreasing in 8 and therefore increasing
in roughness. A simple reason for the growth of standard
deviation by reduction of § is the direct relationship be-
tween roughness and the fractal dimension. The Hausdorff
estimators do not follow this behavior. The RMSFE is de-
creasing when § < 1/2 and increasing in 8 > 1/2. This
behavior returns to the change of the dependence structure
of index-{ family from the short-range to the long-range de-
pendence when the Holder index crosses 1/2. Furthermore,
due to the restriction of the Holder index according to the
inequality N < dimpg A(= N + 1 — ) < dimp A, we expect
the greater variance for the estimator of dimpg in compari-
son with the variance of the estimators of the Holder index.
Based on the discussion above, the variance of two estima-
tors are not comparable. We are not also able to report the
bias of the box dimension estimator since the true param-
eter is unknown. Moreover, the numeric study shows that
the problem of fractal dimension estimation is somehow dif-
ferent from the estimation of the Holder index. Both the
fBs and the stable Gaussian fields have the same Hausdorff
dimension for identical . The RMSFE of Holder index es-
timators strongly depend on the models, while the features
of the box dimension estimation remain constant for both
models. This observation demonstrates the main difference
between the features of box dimension and Hausdorff dimen-
sion estimators. It seems that the box dimension estimation
is more appropriate than the Holder index estimation when
the aim of study is measuring the geometrical consequences
of the erraticism. On the other hand, even the Holder in-
dex of a fBs is equal with the index of a stable model, the
Holder index estimation does not reflect the same erraticism
for theses models.

4.2 Practical problem (continue)

Studying the behavior of particles motion, one may be
interested in the self-similarity of the resulting image. Since
the path of a particle motion is a fractal, it is expected
that this behavior remains in whole paths of particles. Thus,

Table 2. The means of box dimension estimations for
perspective images of solutions at every two minutes

time mean T(y;(9,9)) SD
2 2.7186 0.1698
4 2.6999 0.1868
6 2.7030 0.1515
8 2.6087 0.1486
10 2.5368 0.1357
12 2.4025 0.1311
14 2.3722 0.1289
16 2.4453 0.0784
18 2.1351 0.0342
20 2.0102 0.0071

estimating fractal dimension may show the accuracy of this
assumption.

Simple digital capturing with high resolution and speed,
was used to take 96 frames per second of 1024 x 1024 pictures
along 20 minutes. The video capturing has been replicated
30 times and in order to gather the same data, the sus-
pension is well-shaken before each trial. A huge amount of
data (3.456 x 105 pictures with 1024 x 1024 nodes) has been
gathered. We need to take 96 x 60 x 20 = 115200 averages of
roughness measurements using packages containing 30 pic-
tures. Simply speaking, we have a random sample containing
30 pictures with respect to each frame of digital capturing.
In addition to the theoretical restrictions in employing Haus-
dorff dimension, the cost of computing would be very high.
To discover the difficulties of Hausdorff dimension computa-
tion for images see [4] and [28]. We employ the fast wavelet
transformation to compute surface roughness using the box
dimension estimation introduced by (10). The means of the
estimated dimensions at every two minutes are provided in
Table 2. The suspension becomes more stable by increasing
the time and gravity causes the particles to gather in lower
levels of the fluid. The pictures which have been taken dur-
ing the last two minutes are then almost partitioned into a
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Figure 3. The rescaled captured image (x) when exactly 60s
passed from the beginning of the experiment (a) and its
VisuShrink wavelet estimate (b) or &; The corresponding

residual r = © — & (c) and its periodogram (d).

white rectangle above and a dark one beneath. Thus, they
are appeared smooth enough to get an integer dimension.
The results show that the dimension of the pictures tend to
2 when we are patient enough. Although the linear pattern is
well-fitted between time and dimension, theoretically, better
results have been expected from logarithmic curve fitting.
One may obtain this claim by means of the box dimension
definition. For a given small enough diameter §, the box di-
mension is a logarithmic function of Cs and cubic polynomial
regression strongly determines the relationship between Cs
and time.

Concerning the model diagnosis, we only demonstrate the
procedure for two specific times of the experiment: 1) the
gray-scale image generated after 60 seconds; 2) the gray-
scale image generated after 19 minutes from the beginning
of the experiment. Figures 3(a) and 4(a) demonstrate two
observed gray-scale perspective images after one and 19 min-
utes from shaking the suspension, respectively. Only for bet-
ter demonstration we show the pictures in 256 x 256 resolu-
tion while the original images are constructed by 1024 x 1024
pixels. Noe that the images are rescaled and so the areas of
the yellow parts (which estimate the volume of particles)
are not equal in 3(a) and 4(a). However, Figure 4(a) shows
the equilibration or sedimentation in the floor of the con-
tainer. Daubechies wavelet with three vanishing moments
is used for estimating x (Figures 3(b) and 4(b)) and the
corresponding residuals are shown in Figures 3(c) and 4(c).
Figures 3(d) and 4(d) show the periodograms of the residu-
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Figure 4. The rescaled captured image (x) when exactly 19
minutes passed from the beginning of the experiment (a) and
its VisuShrink wavelet estimate (b) or &; The corresponding
residual r = x — & (c) and its periodogram (d).
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Figure 5. The histograms of residuals after 60 seconds (a)
and after 19 minutes (b) from the beginning of the
experiment.

als and we have identical values of periodograms for almost
all the frequencies particularly when A\ is far enough from
the edges of the window. In fact, the small frequency-varying
behavior in these figures are due to the edge effect in apply-
ing the fast Fourier transform during the computation of the
periodogram.

Figures 5(a) and 5(b) represents the histograms of the
residuals detected in previous figures. The histograms visu-
ally verify the normality assumption that is also accepted us-
ing the Kolomogorov-Smirnov test. The p-values of the nor-
mality test of the residuals of the images captured after 60
seconds and 19 minutes are respectively 0.9101 and 0.5156.
The positive small skewness of the Figure 5(a) makes us cu-



rious to replace the normality assumption with the skewed-
normality in the null hypothesis of the Kolmogorov-Smirnov
test. Again the null hypothesis of the skewed-normality is
not rejected for both the residuals with p-values equal to
0.5848 and 0.8743, respectively. As mentioned at the begin-
ning of Section 3.2, this uncertainty between the normality
and the skewed-normality only make us suspicious about the
minimaxity of the universal threshold A, «.

5. DISCUSSION

One may denoise the surface before performing any es-
timation procedure to ensure that the estimated parameter
of roughness measurement is specialized to the surface and
is not affected by noise. An efficient method of denoising
is based on the wavelet approximation. Projecting the sur-
face onto spaces generated by mother and father wavelets,
this method decomposes the surface into two approximation
and detail parts, respectively. Since the surface is observed
on discrete nodes of the lattice, the projection is strongly af-
fected by the width of the windows which used for estimat-
ing the approximation coefficients with respect to mother
wavelet. Just like our method, the problem of resolution is
arisen here again. In low resolutions, we may loose some
parts of the surface and in high resolutions the approxi-
mated surface is not well-denoised. According to the wavelet
shrinkage technique, denoising is succeeded optimally. After
denoising, we will confront the difficulties of using intrinsic
estimators discussed in Section 1. Therefore, if denoising is
based on wavelet methods, it can be seen an equivalence
between this approach and the one introduced in this pa-

per.

APPENDIX A. PROOF OF THEOREM 3.1

The technique of the proof is similar to one mentioned by
Wang [30]. According to the definition of soft threshold, we
have

Z sup \w’an’k\ —20m), <
K Qj’,k’

(11)
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Since ¢ is a white noise, u¢ is a white noise as well and hence
>k luQ;, | = Op(27-7). Thus, by equation (9) in one hand
we have
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On the other hand,
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To remove the stochastic order part, according to (6) we
obtain

9J.n (log n*)1/2 _ 2(2—@3&)]’» Viogn,
> sup |w| Jn

as jn — oo without any further assumption on j ,
Applying (14) onto (13) and employing (13), we achieve

log, (Zk SUPQy, s |w/Qj;vk, |>
Jn
log, (Zk SUPQ;, i |w/Qj;1,k/‘ - 2j'“/\)

Jn

(14) -0,

Ly dimpG, —

L dimpG, —
where using (11) completes the proof.
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