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New tree structured survival analysis for hip

fracture of SOF data

Hua Jin* AND YING LU

Osteoporosis is a common disease among post-
menopausal women and older men. It is critical to accurately
predict osteoporotic fracture risk so that high-risk subjects
can receive appropriate treatments before fractures occur.
We want to establish classification algorithms for identify-
ing subjects at high risk of hip fracture based on prospective
cohort data from the Study of Osteoporotic Fracture (SOF).
We propose a new algorithm that is similar to the tradi-
tional forward regression for survival analysis on the basis
of restricted mean lifetime and apply it to the SOF data to
form a classification tree. We also construct the second tree
based on log-rank test statistic and the third tree using the
martingale-type residuals from the Cox proportional haz-
ards model without including any covariates of interest. We
compare the three trees to each other. All the results sug-
gest that the classification rule based upon our new method
provide a good prognostic staging system for hip fracture
both in classification efficiency and stability. Our proposed
method may be a competitive alternative to conventional
tree-structured survival analysis that uses multiple risk fac-
tors to provide powerful and understandable classification
procedures.

KEYWORDS AND PHRASES: Log-rank test, Osteoporotic
fracture, Restricted mean lifetime, Forward tree-structured
survival analysis.

1. INTRODUCTION

Osteoporosis is a common disease among post-
menopausal women and older men, which will lead to an
increase in fracture risk. It is critical to predict osteoporotic
fracture risk so that high-risk subjects can receive appropri-
ate treatments before fractures occur. Instead of the tradi-
tional Cox proportional hazards model, Lu et al. [1, 2, 3]
used tree-structured survival analysis (TSSA) based on log-
rank test statistic [2] (denoted as LRT'SSA) to study the ef-
fects of age and bone mineral density (BMD) measurements
on time to hip fracture for the first time. One limitation of
their paper was that no other clinical predictors except age
and BMD measurements were used in the data analysis.

Although conventional TSSA has the advantages of ef-
fective classification and simple interpretation, especially in
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a clinical setting, it lacks a formal statistical framework al-
lowing statistical inference. It grows a tree in a way similar
to the traditional forward selection, but it is not based on
hypothesis testing theory in variable selection. We want to
make sure that a node splitting is not by chance. The current
procedures provide few options in this respect.

Lu, Jin and Mi [3] introduced an index DOS, which is
defined explicitly by Equation (2.2) in Section 2.2, based on
restricted mean lifetime to measure the efficiency in prog-
nostic separation by a classification method, and established
a test framework to compare the efficiency of two classi-
fication methods with survival time as the endpoint. The
method was successfully applied to studies of prediction of
time to osteoporotic fractures and survival time of ovarian
cancer patients. Like tree based regression analysis that uses
variance as a criterion for node partition and pruning, the
variance of restricted mean lifetime between different groups
can be an alternative index to the log-rank test statistic in
construction of survival trees.

In this paper, we propose an algorithm that is similar
to the traditional forward regression for survival analysis.
First, we explain the methodological details for node split-
ting and stopping under a statistical framework. In the next
section, we apply the proposed method to the data from
the Study of Osteoporotic Fractures (SOF) [4, 5, 6]. In the
third section, we compare our classification rule to that of
the conventional LRTSSA. In the fourth section, we present
results of a simulation study that compared our method with
LRTSSA, which is similar to RTSSA. In the last section, we
present our discussion and conclusion.

2. METHOD
2.1 Subjects

Our data includes 7,784 women. They all had forearm,
calcaneus, hip and AP spine BMD measurements, with val-
ues presented as T-scores according to reference values de-
veloped by Lu et al. [7]. In addition to the BMD measure-
ments, other factors that have been previously identified as
predictive variables at baseline, such as height loss since
age 25, weight, body mass index, walking speed, functional
score, and vision depth, were also investigated. Time to hip
fracture after BMD measurement was also recorded and was
treated as the outcome variable. For women without a hip
fracture, the last examination was considered as a censoring
time for hip fracture.
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2.2 Statistical method

Let T be the random variable of survival time for a ran-
dom subject from a population and the corresponding sur-
vival function be

S(t) = P(T > t)

Suppose we classify the population into g mutually exclusive
and exhaustive groups. Let G be the random variable of
group indicator and p; = P(G = j),j = 1,2,...,g, be the
corresponding probability of a patient assigned to the jth
group, where Zj pj = 1.

Furthermore, let S;(t) = P(T >t | G = j) and m; =
J5° S;(t)dt be the corresponding survival function and mean
survival time of the jth group respectively. Then the mean
survival time of the population is easily shown to be

m = ijpj
J

Considering that the larger the between-group variance
in mean survival times, the larger the difference in mean
survival times between prognostic groups, Lu, Jin and Mi [3]
defined the degree of separation (DOS) index as the variance
of group mean survival times, i.e.,

(2.1)

DOS = "(m; —m)P; (2.2)

Estimation of mean survival time based on sample data
may be unfeasible because of the presence of censoring [8, 9,
10]. Several authors [11, 12, 13, 14, 15] suggested the use of
restricted mean life time with a suitably chosen finite time
LT, to replace the overall mean survival time in practical
applications. Then the restricted mean lifetime for group j,
i=1,2,..., g, is defined as m;(LT) = OLT S;(t)dt, and the
restricted mean lifetime of the population can be expressed
as

m(LT) = m;(LT)p; 2.1
J
In such a case, the corresponding index to measure the
degree of the separation becomes

DOS|LT] = Z[mj(LT) — m(LT)]’p;

J

(2.2)

Note that Equation (2.1)" and (2.2)" are similar to Equations
(2.1) and (2.2), respectively, except that the latter uses a
restricted time limit. In the rest of this article, we skip LT
in our notation for m and DOS.

2.2.1 Splitting rule

At each new separation (or split), all of the included pre-
dictive variables are reexamined. In order to make the split-
ting result simple and robust, the observed values of the
continuous predictors are first rounded to the nearest tenth,
and then used as cutoff values for partition: Subjects with
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values less than or equal to a specific value fall into the
left daughter node, whereas other subjects go to the right.
Changing the cutoff points of each predictive covariate gen-
erates many possible separations. We choose the optimal
split which results in the largest change of DOS. The details
are presented as follows:

From Equation (2.2), the contribution of group j
(i.e. node j) to the overall separation (i.e. DOS) is (m; —
m)2pj. If we partition the group j into two daughter nodes,
the change of DOS is

CDS; = (mj1 —m)’pj1 + (mjz — m)?pj — (m; —m)’p;
_ (mj1 —mp)?pjipse
(pj1 + pj2)

where p;1 and pjo are the probabilities of a subject in group
j being further classified into the left and right daughter
nodes, and m;; and mjy are the corresponding restricted
mean survival times, which satisfies p;1 + pj2 = p; and
m;1pj1 + Mj2pj2 = m;p;. So partitioning a node does not
affect any nodes other than its ancestors.

Suppose that there are n;; and n;z subjects in the left
and right daughter nodes of the jth group, then the max-
imum likelihood estimates of p;1 and pjo are pj1 = nji1/n
and p;o = njz/n respectively, where n is the total number of
subjects in the study. The estimates of the restricted mean
lifetime for the two daughter nodes of the jth group are
respectively ’/?le = fOLT Sjl(t)dt and mjg = OLT Sjg(t)dt,
where ;1 () and S;5(t) are the Kaplan-Meier estimators of
the corresponding survival functions. Then a natural esti-
mation of C DS is given by

(1hj1 — M) Dj1Dj2

CDS; = _ 4
’ Dj1 + Dj2

For this node, we select a split that results in the largest
change of DOS (i.e. CDS;). This maximizes the difference in
the restricted mean survival times between the two daughter
nodes.

2.2.2 Stopping rule

Most T'SSA use cross-validation to prune a large tree or
are based on the plot of the log-rank test statistic against
the tree size. They are either computationally intensive or
subjective. Here we adopt a direct stopping rule: Stop par-
titioning node j if either the number of subjects in the node
is less than a pre-specified minimum node size ng (for exam-
ple, 100 for a large study), or there is no significant change
of DOS to justify splitting the node, i.e. CDS; < Im, where
Im is a pre-specified limit, such as 0.1% or 0.2% of variance
of the restricted mean lifetime.

Specifically, we construct a test for Hy : CDS; < Im
versus Hy : CDS; > Im with the statistic

CDS; —Im

Z; = = =
Var(CDS,;)



where
P51 — Pjnbjz + D
Pj1pj2(Dj1 + Dj2)
&32'1/713‘1 + &]2'2/”3'2}

(g1 — My2)?

Var(CDS;) = (CDS;)? K

1
~1)a+
n

by & method, and 6%,
LT
3 r (f;7 Sji(u)du)?
0 2 =
S5,)C; ()
Kaplan-Meier estimators for Sj; and Cj;(?) in it, and let-

is a consistent estimator of ajzi =

dS;i(t) < oo by substituting the

ting C};(t) be the left continuous version of Cj;(¢) which
is the survival function for the independent and identically
distributed censoring random variables in the subnode ji,
i =1,2. More details are available in Lu, Jin and Mi [3], Gill
[9] and/or Pepe and Fleming [16, 17].

We will partition node j if and only if the node size n; >
ng and Z; > z1_,, where 2;_, is the 1 — « percentile for
the standard normal distribution. The same procedure can
be applied to other nodes until no further split satisfies the
above criterion.

2.2.3 Grouping rule

To facilitate clinical applications, we group those terminal
nodes (TNs, nodes in a tree that have no daughter nodes)
with similar survival profiles over the whole follow-up pe-
riod. Here we employ the log-rank test to determine if there
are any differences between the survival curves of those ter-
minal nodes at the significant level of 0.05. We combine
those terminal nodes with similar survival curves into one
group.

The resulting tree is denoted as DOSTSSA tree in this

paper.

3. RESULTS

3.1 The classification tree and rule by
DOSTSSA

Considering the exploratory nature of TSSA, we ran-
domly divide our data into two parts: the training data
(5,875 with 453 fractured) is used to generate survival trees
and the validation data (1,909 with 152 fractured) used to
compare the recursive partitioning algorithms.

Using the DOSTSSA method with the restricted time
LT = 12 (years), the significance level a = 0.1, the pre-
specified limit Im = 0.2%*Var(T) and minimum node
size ng = 60, we construct a classification tree using
three predictors—femoral neck BMD, age and walking speed,
which is called the DOSTSSA tree and is presented in Fig-
ure 1.

Note that we group those terminal nodes with similar
survival curves for clinical use: terminal node TN2 is the
worst risk group (Group 1); TN1, TN3 and TN5 are com-
bined to form Group 2; TN4 forms Group 3; and TN6
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Figure 1. The survival tree by DOSTSSA. The number of
subjects in each resulting subgroup, and the corresponding
probability (in %) of hip fracture in a 12 year follow up period
without parentheses resulted from the generating data used
for construction of the trees and within parentheses resulted
from the validation data.

has the best prognosis (Group 4). The final classification
of all the subjects into four different risk groups is pre-
sented in Table 1, denoted as the DOSTSSA classification
rule.

For our DOSTSSA rule, the differences in the probabili-
ties of no hip fracture (survival probability) among the four
groups increase with the length of follow-up, as shown by
Figure 2. At the end of 10 years, the probability of hip frac-
ture is 49.8% for Group 1, compared to 3.7% for Group 4.
Their ratio is the relative risk presented in Table 1. Sim-
ilarly, we present ratios of probabilities of hip fracture for
Groups 2 and 3 compared to Group 4 in Table 1, where we
also give the restricted mean survival time with LT = 10 for
each group.

The results of the DOSTSSA classification tree and rule
are reproducible on the validation data set as shown in Table
2 and by comparison of Figures 2 and 3.

From Table 2, we know that the DOS index (with LT =
12 years) of the DOSTSSA classification rule based on the
generating data is about 0.34 (year?) while the correspond-
ing DOS from the validation data reduces to 0.25 (year?).
If we use the ratio of two DOSs to describe the reproduce
performance in validation data sets, its efficiency may be
about % = 73.5%, which maybe happen to be somewhat
low. In order to see more clearly how well our method can
reproduce its performance for validation data, we employ
a 6-fold cross-validation (CV) to quantify the reliability of
this new method. We randomly divide the 7,784 women into
6 subsets such that each subset has almost the same num-
ber of subjects. We use 5 subsets to generate the tree (with
LT = 12 years) and left one subset for validation. Repeat
the procedures 6 times and the results are presented in Table
3. The corresponding efficiency (Ratio of DOS) varies from
76.9% to 89.5%, which suggest that our reproduce perfor-
mance may be good.
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Table 1. Classification of subjects by risk of hip fractures based on the DOSTSSA rule

Risk Group Terminal Node percentage of Subjects Definition RR* and RMST**
(N = 5,875) 95% C.I. (years)
G1 TN2 2.5% femoral neck BMD <= -2.8 and age > 77 13.5 7.7
and walking speed <= 1.0 13.5 (8.6, 21)
G2 TN1 17.1% neck BMD <= -2.8 and age <= 77, 5.0 9.2
TN3 neck BMD <= -2.8 and age > 77 (3.8, 6.4)
and walking speed > 1.0
or or
TNb5 -2.8 < neck BMD <= -2.2 and age > 75
G3 TN4 16.9% -2.8 < neck BMD <= -2.2 2.4 9.7
and age <= 75 (1.8, 3.2)
G4 TN6 63.5% neck BMD > -2.2 1 9.9

The original terminal nodes TN1, TN3 and TN5 were combined into Group 2 due to their similar survival profiles.
* Relative Risk (RR) for hip fracture within 10 years follow-up when risk group 4 was the reference group.
** Restricted Mean Survival Time (RMST) was computed with LT = 10 years.

Table 2. Statistical Utility for Classification Rules

Rules DOSTSSA LRTSSA RTSSA
Log-rank test statistic* 590 527 592
(123) (130) (109)
DOS (LT = 10 years)* 0.16 0.13 0.15
(0.13) (0.13)  (0.13)
DOS (LT = 12 years)* 0.34 0.30 0.33
(0.25) (0.25)  (0.24)

* Log-rank test statistic and DOS indices without parentheses re-
sulted from the generating data used for construction of the rules
and within parentheses resulted from the validation data.
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The curves from top to bottom correspond to Group 4,Group 3,Group 2 and Group 1 respectively.
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Figure 2. Kaplan-Meier survival curves for hip fractures of (a)
the Survival Tree by DOSTSSA, (b) the Tree by LRTSSA and
(c) the Tree by RTSSA based on generation data. The
differences in survival probability in the four groups increase
with the length of follow up. After 10 years, the probability of
no hip fracture was (a) 50.2% for G1 versus 96.3% for G4,
(b) 60.6% for G1 versus 97.6% for G4 and (c) 39.0% for G1

versus 96.3% for G4.

To know more about how well the results are reproduced
in the validation, we directly make a node-by-node com-
parison of the resulting DOS tree from the validation data
to that one based on the generating data. For each of the
six terminal nodes, we list the percentage of total subjects
and the corresponding restricted mean survival time with
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Figure 3. Kaplan-Meier survival curves for hip fractures of (a)
the Survival Tree by DOSTSSA, (b) the Tree by LRTSSA and
(c) the Tree by RTSSA based on validation data. The
differences in survival probability in the four groups increase
with the length of follow up. After 10 years, the probability of
no hip fracture was (a) 55.5% for G1 versus 95.6% for G4,
(b) 62.0% for G1 versus 97.5% for G4 and (c) 61.4% for G1
versus 95.6% for G4.

Table 3. Comparison of the DOS indices with LT = 12 years
based on 6-fold CV

DOS DOS0™ DOS1™ DOS1/ DOSO
1 0.320  0.268 83.8%
2 0.305  0.256 83.9%
3 0.321  0.254 79.1%
4 0311  0.265 85.2%
5 0.325  0.250 76.9%
6 0.314  0.281 89.5%

* The DOS index DOS0 was computed using
the generating data

** The DOS index DOS1 was computed us-
ing the validation data

LT = 12 in Table 4. It follows from the table that there
is little difference between them, and the corresponding six
terminal nodes match well in the ordering of the restricted
mean survival times with LT = 12.



Table 4. Node-by-node Comparison of the two DOS trees
from the generating data and the validation data

Terminal Node RMST* percentage of Subjects

(years) (%)

TN1 10.9 10.8
(10.9) (10.4)

TN2 8.6 2.5
(8.9) (2.4)

TN3 10.6 1.3
(10.3) (1.2)

TN4 11.5 16.9
(11.3) (11.7)

TNb5 10.6 5.0
(10.9) (5.5)

TN6 11.8 63.5
(17.1) (63.4)

Total 114 100
(11.4) (100)

* Restricted Mean Survival Time (RMST) was computed
with LT = 12 years.
The numbers without parentheses resulted from the
generating data used for construction of the rules and
within parentheses resulted from the validation data.

3.2 Comparisons to other two classification
trees

We also apply TSSA based on log-rank test statistic to
the same data (Figure 4, the LRTSSA tree). In addition, we
use the martingale-type residuals from the Cox proportional
hazards model without including any covariates of interest
[18, 19, 20] to construct another tree (Figure 5, i.e. RTSSA
tree). Both of them use only age and femoral neck BMD.
However, it seems that TSSA based on log-rank test statis-
tic leads to further splitting for patients with higher neck
BMD values (> —2.2) while residual-based TSSA (denoted
as RTSSA) results in more partitioning for those with lower
neck BMD values (< —2.8).

For a direct comparison, we list log-rank test statistics
and DOS indexes with different restricted times for the
three classification rules resulting from DOSTSSA, LRTSSA
and RTSSA in Table 2. The corresponding indexes of the
DOSTSSA rule are among the best of all. In fact, the
DOSTSSA and RTSSA rules were better than the LRTSSA
rule for the generation data while the DOSTSSA and
LRTSSA rules appeared slightly better than the RTSSA
rule for the validation data. Furthermore, this is reinforced
by comparison of the corresponding Kaplan-Meier survival
curves based on both generation data and validation data,
presented in Figures 2 and 3, where (a), (b) and (c) represent
the DOSTSSA, LRTSSA and RTSSA rules, respectively. On
the one hand, our DOSTSSA rule can separate more patients
with higher risk from others than the RTSSA rule. On the
other hand, it can also result in the highest risk group being
further separated from others than the LRTSSA rule. The
classification is improved by incorporating additional vari-
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Figure 4. The survival tree by LRTSSA. The number of
subjects in each resulting subgroup, and the corresponding
probability of hip fracture in a 12 year follow up period
without parentheses resulted from the generating data used
for construction of the trees and within parentheses resulted
from the validation data.

5875 (1909)

7.8% (7.9%)

Yes No

T-score of
Neck BMD
<227

2144 (699)

15.4% (14.4%) 3731(1210)

3.7% (4.4%)

1647 (541)
11.8% (11.5%)

-score of
Neck BMD
<-3.17
227(77) 1420 (464) 65 (19) 432(139)
l23-4% (19.2%) 100% (§0.3°)/..) |61.0% (38.6%) 25.4% (23.7%)
TN1 N2 TN3 TNY|
G2 G3 Gl G2

Figure 5. The survival tree RTSSA. The number of subjects
in each resulting subgroup, and the corresponding probability
of hip fracture in a 12 year follow up period without
parentheses resulted from the generating data used for
construction of the trees and within parentheses resulted from
the validation data.

able of walking speed in the sense that the corresponding
DOS index increases about 13.0% and 7.2% respectively for
the generation data and validation data.

All methods construct trees based on 43 predictors of
interests, but only DOSTSSA method can pick up three
of them to build the classification rule while the other
two cannot. In particular, DOSTSSA method can further
split subjects of the relatively high fracture risk with neck
BMD < —2.8 and age > 77 whereas the LRTSSA misses
this partition. From this view, our DOSTSSA is able to pro-
vide information missed by LRT'SSA.

In summary, all these results suggest that the classifica-
tion rule based upon the DOSTSSA method provides a good
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prognostic staging system for hip fracture both in classifica-
tion efficiency and stability.

4. A SIMULATION STUDY

Comparing the statistical utility of 2 approaches applied
to a single data set is insufficient. To test further the va-
lidity of our conclusions, we performed a limited simulation
study to investigate 1) the dependence of performance of
the DOSTSSA method on the censoring patterns and 2)
comparison of the effectiveness in selecting splits between
DOSTSSA and LRTSSA/RTSSA. Because the differences
between LRTSSA and RTSSA are minimal both in theory
and in reality [20, 21], we compare DOSTSSA only with
LRTSSA in this simulation study.

Because the RP algorithm is based on sequential splits,
comparison of a 1-step split between 2 methods is sufficient.
In our design of this experiment, we introduced 3 covari-
ates, X1, X2 and X3, that were generated independently
from uniform distribution on interval (0,1). Survival times

were generated from exponential distributions with the haz-

. log(0.31 +0.4 . .
ard functions of — 2803104205104 Thus, survival time

depended only on X; whereas X5 and X5 were nuisance vari-
ables. For X; > 0.5, the mean survival time was 28, and for
X7 < 0.5, the mean survival time was 11. Furthermore, we
investigated 3 types of censoring distributions: 1) a uniform
distribution on interval (0,18), 2) a distribution with den-

sity function of Wf”;xﬁs), and 3) a distribution with a

zl(o<x <18)

density function of . The 2nd case implied heavy
censoring early on, whereas the 3rd used heavy censoring
late in the process.

In our simulation, the top node has 500 observations. The
minimum node size of a daughter node was 20 observations,
the restricted time limit LT was selected as 10 and the
pre-specified limit Im = 0.2%*Var(T) for the DOSTSSA
method. Splits could go as deep as possible for both TSSA
methods, although there was only 1 true split. 30 trials were
conducted for each experimental condition. A method was
successful in a trial when it generated only 1 split based on
variable X;. The number of successful trials among 30 trials
is the summary statistic for our comparison.

When the censoring time is uniformly distributed, the
DOSTSSA method succeeded in 14 of 30 trials, whereas
LRTSSA succeeded only 8 times. There was no trial in which
LRTSSA succeeded DOSTSSA failed. The only failure for
DOSTSSA was no splitting. There was neither a trial suc-
cessful for 1 separation but using the nuisance variables or
using X7 in a wrong direction, nor a trial that had more
than 2 splits. However, several types of failure occurred for
LRTSSA, including no splitting and 2 or more splits. An
exact McNemar test suggested that DOSTSSA has a sig-
nificantly higher success rate than LRTSSA (P = 0.03).
The results were the same whether there was heavy censor-
ing early or late: DOSTSSA had an overall success rate of
about 44%, almost twice that of LRTSSA. This simulation
suggests that the DOSTSSA approach is not as dependent
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on the censoring mechanism and can split nodes successfully
more often than LRTSSA, under our experimental setting.

5. DISCUSSION

Based upon the variance of the restricted mean lifetime
between groups, we have established a formal statistical
framework for tree construction, under which a nonpara-
metric TSSA different from the conventional methods is
proposed. The new method employs DOS for node parti-
tion and uses a direct stopping rule with obvious statistical
meanings rather than the usual cross-validation method.

The index DOS measures the difference of the restricted
mean lifetime between groups. It is similar to the Least
Squares criterion in CART for regression tree, or log-rank
test statistics in LRT'SSA. However, it is more intuitive for
node partitioning and tree construction for survival data.
Gordon and Olshen [22, 23, 24, 25] have previously devel-
oped T'SSA based on the distance between the two Kaplan-
Meier curves using Lp Wasserstein metrics. Although their
approach enjoys a theoretical advantage of convex function
of distance function and compares survival profiles over the
whole range of interest, the numerical implementation is dif-
ficult. Our approach is much easier to calculate.

Our method has a format of forward regression analy-
sis. However, there is a big difference between DOSTSSA
and forward regression. In forward regression, we must check
type III p-values for all the covariates in the equation after
a new one has been entered. Different than this situation,
our statistical test for node splitting has no impact on any
other nodes except its ancestors and hence, no type 3 p-value
reassessment is necessary.

The limiting time LT is critical to node partition and
tree construction as well as comparison of two DOS indices.
However, we believe the result of the final tree will remain
stable if a suitable LT is selected. Because of the nonpara-
metric nature of our approach and limitations introduced
by censoring, we could not estimate mean survival times
beyond the LOL (largest observed lifetime) [13]. Naturally,
LOL could be chosen as Lt. Lu and others [3] discussed some
possible choices of a suitable Lt. In our example in this ar-
ticle, the survival probability of the censoring time drops
sharply from about 40% at 11 years to 18% at 12 years. We
set Lt at 12 years, at which time the survival function of the
censoring time is relatively large so that the DOS indices are
still robust. In fact, we also construct a survival tree with
LT set at 10 years. It resembles the tree presented in Figure
3 in this paper, where LT is selected as 12 years.

We would like to point out that the final tree size depends
not on the significance level of the hypothesis test, but on
the pre-specified limit lm. The larger the significance level,
the more nodes we may split. On the other hand, the bigger
the pre-specified limit, the smaller the tree we will construct.
Hence, there is a trade off between these two parameters. For
example, if we select the significance level to be 0.15, then we
have one more node split. However, the SOF data suggests
0.10 be a reasonable choice for the significance level.



In conclusion, we propose a new method for nonparamet-
ric TSSA that first directly connects single node partition to
total tree construction based upon a formal statistical test
framework. It can result in a classification tree competitive
with conventional methods such as TSSA based on log-rank
test statistic or residual-based TSSA. Our example shows
its useful application in medical research.
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