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Word segmentation in Chinese language

processing

XINXIN SHU, JUNHUI WANG, XIAOTONG SHEN, AND ANNIE QU*

This paper proposes a new statistical learning method for
word segmentation in Chinese language processing. Word
segmentation is the crucial first step towards natural lan-
guage processing. Segmentation, despite progress, remains
under-studied; particularly for the Chinese language, the
second most popular language among all internet users.
One major difficulty is that the Chinese language is highly
context-dependent and ambiguous in terms of word repre-
sentations. To overcome this difficulty, we cast the problem
of segmentation into a framework of sequence classification,
where an instance (observation) is a sequence of characters,
and a class label is a sequence determining how each char-
acter is segmented. Given the class label, each character
sequence can be segmented into linguistically meaningful
words. The proposed method is investigated through the
Peking university corpus of Chinese documents. Our numer-
ical study shows that the proposed method compares favor-
ably with the state-of-the-art segmentation methods in the
literature.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62H30;
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KEYWORDS AND PHRASES: Cutting-plane algorithm, Lan-
guage processing, Support vector machines, Word segmen-
tation.

1. INTRODUCTION

Digital information has become an essential part of mod-
ern life, from media news, entertainment, business, distance
learning and communication, and research on product mar-
keting, to potential threat detection and national security.
With the enormous amount of information gathered nowa-
days, manual information processing is far from sufficient,
and the development of fast automatic processes of informa-
tion extraction is becoming extremely important.

In this paper, we focus on problems arising from Chinese
natural language processing, and in particular we address
problems of word segmentation. This is an important area
and quite timely, since the Chinese language has become the
second most popular language among all internet users. In
2000, there were about 22.5 million Chinese internet users.
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However, after rapid growth in the last decade, there were
over 649 million internet users in 2013 writing text docu-
ments in Chinese, consisting of 23.2% of all internet users,
compared to 28.6% in English. The online sales and enter-
tainment businesses also promote the popularity of Chinese
in the digital world. For example, Amazon.cn data (Zhang
et al., 2009) consists of 5 x 10° Chinese reviews on various
products.

However, Chinese language processing is still an area
which has been severely under-studied. This is likely due to
specific challenges caused by the characteristics of Chinese
language. Word segmentation is considered a crucial step to-
wards Chinese language processing tasks, due to the unique
characteristics of Chinese language structure. Chinese words
generally are composed of multiple characters without any
delimiter appearing between words. For example, the word
T2 “blog” consists of two characters, 1 “plentiful” and
% “guest”. If characters in a word are treated individu-
ally rather than together, this could lead to a completely
different meaning. Good word segmenters could correctly
transform text documents into collections of linguistically
meaningful words, and make it possible to extract infor-
mation accurately from the documents. Therefore, accurate
segmentation is a prerequisite step for Chinese document
processing. Without effective word segmentation of Chinese
documents, it is extremely difficult to extract correct infor-
mation given the ambiguous nature of Chinese words.

Existing methods for Chinese segmentation are essen-
tially based on either characters, words or their hybrids
(Sun, 2010; Gao et al., 2005). Teahan et al. (2000) pro-
posed a word-based method by applying forward or back-
ward maximum matching strategies. Their method requires
an existing corpus as a reference to identify exact charac-
ter sequences and then segment character by character se-
quentially, through processing documents in either a for-
ward or backward direction. This method is also developed
in Chen and Goodman (1999). One obvious drawback of
this approach is that the segmentation heavily relies on the
coverage of the given corpus, and thus is not designed for
identifying new words which are not in the corpus.

The character-based method considers segmentation as
a sequence of labeling problems (Xue, 2003). That is, the
location of characters in a word is labeled through statis-
tical modeling such as conditional Gaussian random fields
(CRF; Lafferty et al., 2001; Chang et al., 2008) or struc-
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tured support vector machines (SVM$!"%<t; Tsochantaridis
et al., 2005) based on hinge loss. Xue and Shen (2003) pro-
posed a maximum entropy approach which combines both
character-based and word-based methods. Specifically, their
idea is to integrate forward/backward maximum matching
with statistical or machine-learning models to improve seg-
mentation performance. Sun and Xu (2011) proposed a uni-
fied approach for a learning segmentation model from both
training and test datasets to improve segmentation accu-
racy.

However, these approaches suffer major drawbacks in
that they do not utilize available linguistic information
which can enhance the segmentation (Gao et al., 2005),
and/or are incapable of identifying new words not appearing
in training documents. Some current segmenters treat word
segmentation and new word identification as two separate
processes (Chen, 2003; Wu and Jiang, 2000), which may
lead to inconsistent results in segmentation. Other methods
of segmentation are embedded into other processing proce-
dures such as translation, to serve a specific purpose, for ex-
ample, Chinese-English translation (Xu et al., 2008; Zhang
et al., 2008). These methods unified with other processing
approaches have not been proposed for general use.

Although in some situations character-based methods
tend to outperform word-based methods in terms of seg-
mentation accuracy (Wang et al., 2010), the enormous va-
riety of different permutations of Chinese characters makes
the computation of segmentation intractable. In this paper,
we propose a statistical method for Chinese word segmenta-
tion by incorporating linguistic rules to restrict the possible
permutation of Chinese characters and thus alleviate the
computation burden. Specifically, an instance (observation)
is treated as a character sequence linked with a tag sequence
which represents the position of each character as the be-
ginning, middle, or end of a word. Given the tag sequence,
each character sequence can then be segmented (broken or
grouped) into linguistically meaningful words. The key chal-
lenge of segmentation is that it does not have explicit fea-
tures and the number of choices for tag sequences increases
exponentially with the length of the sequence. To circum-
vent this difficulty, a segmentation function is formulated
as a rating function measuring the meaningfulness of the
segmented words given each sequence labeling.

Specifically we utilize linguistically meaningful features
through higher-order N-gram templates in the segmenta-
tion model. Linguistical features using different-order-gram
templates are constructed to build the candidate set of fea-
tures, and select significant features from the candidate
set through minimizing a segmentation loss function. The
proposed model can achieve higher segmentation accuracy
incorporating linguistic rules while reducing the estima-
tion complexity. This is because the proposed segmentation
strategy does not completely rely on training samples which
cannot identify new words. Instead, it is built on established
linguistic rules which can segment new words more accu-
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rately, as the linguistic rules can be applied for new words
as well.

The paper is organized as follows. Section 2 proposes the
linguistically-embedded learning model. Section 3 provides
a computational strategy to meet computational challenges
in solving large-scale optimization for the proposed model.
Section 4 illustrates the proposed method through applica-
tion to the Peking university corpus in the SIGHAN Bakeoff.
The final section provides concluding remarks and a brief
discussion.

2. CHINESE LANGUAGE SEGMENTATION

One major challenge in Chinese word segmentation is
that the Chinese language is a highly context-dependent or
strongly analytic language. The major differences between
Chinese and English are listed as follows. Chinese mor-
phemes corresponding to words have very little inflection.
English, on the other hand, is rich in equipped and there-
fore more context-independent. A large number of Chinese
words have more than one meaning under different contexts.
For example, the original meaning of the word 7K4 means
“water,” but could also mean “inflated;” The word FK has
double meanings of “balance budget” or “reckoning.” Chi-
nese has no tense on verbal inflections to distinguish past
such as “-ed,” present such as “-ing” and future activities,
no number marking such as “-s” in English to distinguish
singular versus plural, and no upper or lower case marking
to indicate the beginning of a sentence. In addition, English
morphemes can have more than one syllable, while Chinese
morphemes are typically monosyllabic and written as one
character (Wong et al., 2010).

Another challenge is that the number of Chinese char-
acters is much greater than the number of letters in En-
glish. The Kangxi dictionary from the Qing dynasty in the
17th century records around 47,035 characters. Nowadays
the number of characters has almost doubled to 87,019, ac-
cording to the Zhonghua Zihai dictionary (Zhonghua Book
Company, 1994). Moreover, new Chinese characters are con-
stantly been created by internet users with the exponential
speed of the internet in this information age.

In addition, the writing of Chinese characters is not uni-
fied because there are two versions of character writing. One
is based on traditional characters and the other is simplified
character writing. Simplified characters are officially used
on the mainland of China, whereas traditional characters
are maintained by Taiwan, Hong Kong and Macau. This
leads to different coding systems for electronic Chinese doc-
uments and webpages. There are three main different coding
systems, namely, GB, Bigh, and Unicode. The GB encoding
scheme is applied to simplified characters, while Big5 is for
traditional characters. Unicode can be applied to both writ-
ing styles. One advantage of the Unicode system is that both
GB and Bigb can be converted into Unicode.

Segmentation in Chinese language processing is a crucial
step because there is no boundary delimiter among consec-



Table 1. A character can appear in different positions within
different words

position example
beginning ZE “to happen”
middle I8 &Vl “starting station”
end Sk “hair”

utive Chinese words. In fact, most Chinese characters can
appear in any position for different words. Table 1 shows an
example where the Chinese character & “happen” occurs
at three different positions.

This unique feature of the Chinese language makes it
quite challenging to determine word boundaries simply
through detecting certain types of Chinese characters, even
though the number of characters is finite. This is due to the
fact that a character appearing in different positions leads to
different meaning and interpretation of words and phrases.
For instance, a segmenter could segment the sentence MEK
FASESE T as MIEKIH/ 58/ T “Tennis racquets are sold out,”
or segment the sentence as MK /A58 /T “Tennis ball(s)
is/are auctioned.” The ambiguity of the Chinese language is
extremely challenging for Chinese language processing since
mechanical methods such as tabulating frequencies of key
words from the context are not effective for text mining.
Therefore segmentation plays a very important role in Chi-
nese language processing, since different segmentation may
lead to different sentiment analysis.

2.1 Linguistically-embedded learning
framework

In this section, we first introduce a character-based
framework, and then illustrate how to incorporate the
character-based framework into the proposed model. Let
T be the number of characters in one sentence, and the
corresponding sentence is denoted as ¢ = ¢;...cp and the
set of its segmentation locators as s = s1...sp. Here each
character ¢; corresponds to a segmentation locator s;, and
st € S. Meng et al. (2010) suggest that a simple 4-tag set
S ={B,M, FE,S} is sufficient for unique determination and
segmentation, where B, M, E, and S denote the beginning,
middle, the end of a word, and a single-character word, re-
spectively. For instance, consider the 11-character sentence
c = FATR OISR FIHTTHL “we will create a bright fu-
ture,” where T = 11, ¢; = &, co = 1,..., c11 = &, and

= BESBEBESBME. So the linguistically meaningful
segmentation is: FA1/Re /O3 /£ 4F /80 /HFT 40, The 4-tag
segmentation rule is effective in achieving segmentation ac-
curacy and computation efficiency, which are two important
and desirable properties in natural language processing.

To identify the segmentation locater for each Chinese
sentence, we construct the segmentation model based on
training data (c;,s;),, mapping from ¢ : CT — ST,
where c¢; and s; are the character and locater vectors in

the i-th sentence, and n is the number of sentences. For
instance, ¢({F,M1}) {B,E} indicating F ] is seg-
mented as a word. Here ¢ can be a discontinuous and
ultra-high-dimensional function when the size of a Chinese
document is large. To reduce the dimensionality, we intro-
duce a continuous segmentation function f, which quan-
tifies the appropriateness of segmentation for each sen-
tence. Specifically, ¢(c) = argmax, f(c,s), and f(c,s) =
Zszl Zthl Mo fr(s,c,t), where fi(s,c,t) is a linguistically
meaningful feature measuring the appropriateness of ¢ at
a specific location ¢ of s, K is the number of features and
A = (A1, -+, Ag)T are the relative importance measures
of each feature fi(c,s,t). Usually, fx(s,c,t) takes value in
{0,1}, and thus the value of f(c,s) becomes a weighted mea-
sure of all features appearing in the segmentation of s by c.
Therefore, one key idea of the proposed method is to learn
the relative importance A through the training documents,
and then apply the estimated f(c,s) to segment future doc-
uments.

To estimate A, we minimize the following cost function:

n K

T K
(1) argjx\ngL(ZZ)\kfk Si, Ci, )) +772J()\k)

i=1 t=1 k=1 k=1

where L(u) is a large margin loss function that is non-
increasing with u, J(\) is a regularizer, and 7 is a tuning
parameter. The large margin loss function can take vari-
ous forms and gives preference to a large value of f(c,s),
which mimics the optimal rule ¢(c) to achieve good estima-
tion accuracy of A. To ensure model sparsity, the choices
of J(A) include LASSO (Tibshirani, 1996), SCAD (Fan and
Li, 2001), truncated Li-penalty (Shen et al., 2012), among
others. Note that the positive constraint Ay > 0 is unnec-
essary in (1) as fi(s,c,t)’s are all non-negative and L(u) is
non-increasing in u. We obtain f (c,s) with selected impor-
tant features through mlnlmlzlng (1), and the sequence ¢
can be segmented by § = ¢(c) = argmax, f(c,s). That is,
a document is segmented by maximizing the weighted com-
bination of those important features constructed based on
each candidate segmentation. Note that the segmentation
formulation in (1) does not produce probabilistic outputs
but only the most appropriate segmentation of s. In the
literature, a number of methods have been proposed (e.g.,
Wang et al., 2008; Wu et al., 2010) to construct probabilistic
estimates for margin-based methods, which may be adapted
for segmentation formulation.

The binary linguistic features fi(s;,c;,t) is constructed
based on the N-gram templates. The unigram (or 1-gram)
templates contain I(s(0) = s, c(—1) = ¢—1), I(s(0) =
st,¢(0) = ¢;) and I(s(0) = s¢, ¢(+1) = ¢141), and bigram (or
2-gram) templates include I(s(0) = s, ¢(—1) = ¢t—1,¢(0) =
ct) and I(s(0) = s¢,¢(0) = ¢, c(+1) = ¢t41), where ¢(—1),
¢(0), ¢(+1) and s(0) denote the the previous, current and
next characters, and the tag for the current character, re-
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spectively. The unigram templates contain the single charac-
ter’s information on the previous, current or next characters
given the current segmentation locator, while the bigram
templates include two consecutive characters’ information
through combining the previous or next character with the
current character.

For illustration, let ¢ = FATRKOLERGFFIHFHL, and
s = {BESBEBESBME}. If each of any first and last
character has 2 unigram and 1 bigram features, and each
of any middle character has 3 unigram and 2 bigram fea-
tures, then this generates 31 unigram and 20 bigram fea-
tures in total. The higher-order gram templates can be de-
fined in a similar way. However, the more higher-order gram
templates are used, the more complex the model will be.
Fortunately, mastering around 3000 characters is sufficient
for understanding 99% of Chinese documents (Wong et al.,
2000). Moreover, the proportions of words with one, two,
three and four or more characters are 5%, 75%, 14% and
6% respectively. Therefore, unigram, bigram, trigram and
quadrigram templates are sufficient to capture most Chinese
words. For lexicon words, as illustrated in the above exam-
ple, we can apply unigram templates and bigram templates
to construct their binary features. For example, in the word
FA1 “we” appearing at the beginning of the above sentence,
the feature functions are

fr =1(s(0) = B, c(0) = ),

f2 = I(s5(0) = B,c(+1) = 1),
f3=1I(s(0) = B,c(0) = &, c(+1) = 1),
fa=1(s(0) = E,c(-1) = &),

fs =1(s(0) = E.c(0) = 1),

fo =1(s(0) = B, c(+) = ),
fr=1(s(0) = E,c(—1) = F&, c(0) = 11),
fs = 1(s(0) = E,¢(0) =, c(+1) = ¥)

To further facilitate the computation, we consider a surro-
gate loss function L(f,c;,s;) = L(ATF, s,), where AT Fy, g,
is the generalized function margin for multiclass classifi-
cation (Vapnik, 1998). We propose to use the hinge loss
L(u) = (1 — u)4 for segmentation formulation, which is of-
ten used in large margin classification such as the support
vector machine (SVM; Cortes and Vapnik, 1995). The hinge
loss works effectively as a loss function for large margin clas-
sification, since the more the margin is violated, the greater
the loss is. The proposed formulation with the hinge loss
has a number of advantages. First, the model (2) contains
only 2n + 1 constraints, which is on a much smaller scale
compared to the exponential order of operations required by
the conditional random fields (CRF) and structured support
vector machine (SVM?7%¢*), The CRF combines conditional
models with the global normalization of random fields, and
the SVM?®truct golves classification problems involving mul-
tiple dependent output variables or structured outputs ap-
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plicable for complex outputs problems such as natural lan-
guage parsing. However, both methods involve exponential
numbers of constraints. The proposed method makes use of
the functional representation in CRF and integrates it in
a regularization form as in SVM®"“¢t_ In a sense, it inte-
grates the strengths of both CRF and SVM$'"%<! | leading to
a much simpler formulation. Second, the optimization pro-
cess of (2) can be efficiently implemented through parallel
computing and thus make the segmentation scalable. The
details of the parallel algorithm to achieve scalable imple-
mentation is provided in Section 3. Third and most inter-
estingly, the proposed method has the potential to incorpo-
rate various linguistic rules of Chinese in constructing the
features, which may lead to an improvement in the segmen-
tation performance. More detailed discussion is deferred to
Section 5.

Specifically, the model in (1) with the hinge loss can be
formulated as

n K
(2) argmin, . Z&—FUZJ()\;C)

i=1 =1
T K

s.t. L= Mefulsireit) <&, & >0,
=1 k=1

where &; is a slack variable for the hinge loss of each sentence.

In addition, we may also consider alternative surrogate
loss functions such as the t-loss function L(u) = ¥(u) =
min(1, (1 — u)4+) (Shen et al., 2003). Although the -loss
function is non-convex, it is able to attain the optimal rate
of convergence under certain conditions and outperforms the
hinge loss in general. Intuitively, the advantage of the -
loss lies in the fact that it is much closer to the 0-1 loss
I(u > 0) in identifying segmentation error, especially when
u is negative. Consequently, the 1-loss is much less affected
by, e.g., an outlying misclassified sentence with a negative
functional margin AT F,, 5,. More detailed discussion can be
found in Shen et al. (2003).

3. ALGORITHM AND COMPUTATION

It is important to develop an efficient optimization strat-
egy together to improve computational efficiency. The key
idea of the proposed computational scheme is based on “de-
composition and combination” to meet computational chal-
lenges in solving large-scale optimization for the proposed
model. The procedure is summarized in Algorithm 1.

We apply the truncated Li-penalty (Shen et al., 2012)
for J(A), ie. J(-) = min(]| - ||/v,1), where v is a tuning
parameter. The truncated L;-penalty has the following ad-
vantages. It selects linguistic features adaptively with A and
also corrects the Lasso bias through tuning v. It is capable
of handling small A of linguistic features through tuning
v and therefore improves accuracy in segmentation. In ad-
dition, the truncated Li-penalty is piecewise linear, and is
computationally efficient in the optimization process.



Algorithm 1 Chinese word segmentation procedure based
on penalized hinge loss

1: Build features fx(s;,ci,t) with N-gram templates for every
k=1,--- ,K,i=1,--- ,nandt=1,---,T.

2: Implement the ad hoc cutting-plane algorithm to get esti-
mates A for k= 1,---, K by minimizing (2).

3: Predict segmentation locators s by maximizing f(c,s)
Zszl Zle e fr(c,s,t) for any ¢ € C.

The optimization is carried out using an ad-hoc cutting-
plane algorithm. The idea of the cutting-plane method is
to refine feasible sets iteratively through linear inequalities.
Let M be the set of constraints in model (2) and W C M
be the current working set of constraints. In each iteration,
the algorithm finds the solution over the current working set
W, searches for the most violated constraint in M\W, and
then adds it to the working set. The algorithm stops until
all violations of the constraints are smaller than the toler-
ance €. The ad-hoc cutting-plane algorithm is illustrated in
Algorithm 2.

Algorithm 2 The cutting-plane algorithm for model (2)
1: Initial n, €, set W = 0;

2: Repeat R

3: Compute A = argming Y7 &+
N J(k), st W

4: Obtain the constraint (™ € M which has the largest

violation in M given A(™;
5: Set W =W U sm;
: Until no violation is larger than ¢
7: Obtain the estimator A.

=]

The computational efficiency of the cutting-plane algo-
rithm for hinge loss has been extensively investigated by
empirical studies. Indeed, it is much faster than the conven-
tional training methods derived from decomposition meth-
ods (Joachims et al., 2009). Note that model (2) contains
a large number of features which are computationally chal-
lenging. For example, assuming that C contains the 1000
most common Chinese characters and the character locator
set S has 4 tags { B, M, E, S}, the unigram and bigram tem-
plates involve 3 x |S| x [C] + 2 x |S]| x |C| x |C| or roughly
8 x 10° features. It might be necessary to implement the
parallel computing strategy in Step 3 to accelerate the com-
putational speed.

To handle large size documents or texts, MapReduce
computation can be utilized to break large problems into
many small subproblems in a recursive and parallel manner.
In particular, we decompose our cost functions and regu-
larizers for many observations by transforming complicated
nonconvex optimization problems to many subproblems of
convex minimization. In addition, we can alleviate high stor-
age costs and increase the computational speed through par-
allel computing. To achieve this goal, we can implement

OpenMP, the multi-platform shared-memory parallel pro-
gramming platform (http://www.openmp.org), or Mahout,
a library for scalable machine learning and data mining.
These tools for solving large-scale problems allow us to an-
alyze data containing several billions (10°) of observations
on a single machine with reasonable computational speed.

We can also consider other penalty functions in model (2).
For example, if the regularizer Lo-norm penalty is applied,
then solving model (2) is a convex-function optimization
problem. This can be solved by sequential quadratic pro-
gramming (QP) or linear programming (LP). Solving the LP
problem using parallelization has been studied by Dongarra
et al. (2002), and QP parallelization can be carried out by
a parallel gradient projection-based decomposition method
(Zanni et al., 2006). The key idea of QP parallelization is to
split an original problem into a sequence of smaller QP sub-
problems, and parallelize the most demanding tasks of the
gradient projection within each QP subproblem. Through
QP or LP parallelization, we can process large-scale Chi-
nese text data of size O(107).

4. BENCHMARK: PEKING UNIVERSITY
CORPUS

In this section, we analyze the corpora obtained from
SIGHAN Bakeoff (http://www.sighan.org), which are pop-
ular corpora in Chinese language processing competitions.
There are four datesets included in SIGHAN’s International
Chinese Word Segmentation Bakeoff: Academia Sinica (AS),
City University of Hong Kong (HK), Peking University
(PK) and Microsoft Research corpora (MSR). Each cor-
pus is coded by Unicode and consists of training and test
sets. The number of words in each corpus is shown in Table
2. In the Bakeoff corpora, Out-of-vocabulary (OOV) words
are defined as words in the test set which are not present
in the training set. The contents in the corpora are care-
fully selected, and domains in the corpora are broadly rep-
resented, including politics, economics, culture, law, science
and technology, sports, military and literature. Therefore,
the corpora are sufficiently representative to assess the per-
formances of Chinese word segmentation.

We use the PK corpus in our experiments to investigate
the proposed model. Table 2 shows that the PK corpus is
well-balanced in terms of the OOV percentage and the size
of the training and test sets, compared to the other three
corpora. In the PK corpus, the training set has 161,212 sen-
tences, i.e. n = 161,212, which is about 1.1 million words;
while the test set has 14,922 sentences, equivalent to 17
thousand words. Figure 1 displays some randomly selected
documents from the training and test sets. Furthermore,
approximately 6.9% of the words in the test set are OOV,
among which 30% are new words from time-sensitive events,
such as =3jf “three links” and JF# “SARS.” In addition,
more than 85% of the new words fall into categories of 2-
character new word or 2-character word followed by another
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Figure 1. Fragments of the PK training set and test set.

Table 2. SIGHAN's corpora

corpora # training words # test words OOV (%)
(in thousands) (in thousands)
AS 5800 12 0.021
HK 240 35 0.071
PK 1100 17 0.069
MSR 20,000 226 0.002

character. Two fragments from the PK corpus training and
test sets are provided in Figure 1.

We test the proposed method based on model (2) using
two N-gram templates. The first method'? only contains the
unigram and bigram templates, while the second method!?3*
utilizes additional trigram and quadrigram templates. We
compare these two methods with the two top performers in
the Second International Chinese Word Segmentation bake-
off. The performance of Chinese word segmenters is gen-
erally reported in terms of three performance metric crite-
ria: precision (P), recall (R) and evenly-weighted F-measure
(F). The precision is the fraction of segmented words that
are correct, while the recall is the fraction of correct words
that are segmented, and the evenly-weighted F-measure is
the harmonic mean of the precision and recall defined as
F=(2«Px*R)/(P+R).

The segmentation results are shown in Table 3. The pro-
posed method has higher recall values than the two top
performers across all situations. In particular, the proposed
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Table 3. Comparison of two top performers and the proposed

method
method | precision recall F-measure
method™ 0.929 0.965 0.947
method?3* 0.951 0.969 0.960
1st in bakeoff 0.952 0.951 0.952
2nd in bakeoff 0.955 0.939 0.947

method'? using the unigram and bigram templates attains
92.9% precision, 96.5% recall and 94.7% in the F-measure,
which delivers a comparable performance against the two
top performers. Note that method'? has relatively low pre-
cision and high recall values. This is because unigram and
bigram templates only utilize the information of the consec-
utive two characters, and are unlikely to segment words with
three or more characters. When the trigram and quadri-
gram templates are used for the proposed method, a sig-
nificant improvement is achieved in performance. Specifi-
cally, the method'?3* achieves 95.1% in precision, and deliv-
ers the highest recall with 96.9%, and the highest F-measure
with 96.0%. In conclusion, the method'?3* performs the best
against the other three methods at an expense of computa-
tion time.

Our segmentation for the PK corpus data is com-
puted using an Intel processor with 2 cores, quad CPU at
2.40GHz and 4G ram memory. The quadruple-grams based
method?** requires about 1.75 times that of the bi-grams



Table 4. Taxonomy in Chinese words

category subcategory examples
LW lexical word FECER NS
MDW affixation 2]
reduplication )i
splitting nz TR
merging £
head4+morpheme EHR
FT date & time 5A3H, NARH, 128°F, =5 - T4%

number & fraction
email & website

—FZE 1P, 4897, 60%, AL, 1/6
johnson@email.com, www.google.com

NE person name %’VE, 285

location name b, BiF
organization name K3, RES1THYE

NW new word nEFE, JEE

based method'?, because of the complexity of quadruple-
grams over bi-grams. Note that run times for the two com-
petitors are not available on the SIGHAN website. The pro-
posed method outperforms the two top performers for the
PK corpus in the literature when sufficient N-gram tem-
plates are incorporated. However, higher order N-grams re-
quire higher computational cost.

5. CONSTRUCTION OF
LINGUISTICALLY-EMBEDDED
FEATURES

The segmentation accuracy can be further improved by
incorporating linguistic language rules into feature fx(s, c,t)
construction through word categorization for Chinese words.
This categorization method was first introduced by Gao et
al. (2005) with five categories: lexical words (LW), morpho-
logically derived words (MDW), factoids (FT), named enti-
ties (NE) and new words (NW). The taxonomy in Chinese
words is summarized in Table 4.

For morphologically derived words, factoids and named
entities, we use trigram and quadrigram templates such that
the five main morphological rules are incorporated. The five
rules include affixation (e.g., ZI{/] “teachers” is teacher +
plural), reduplication (e.g., B FE[E “careless” reduplicates
and emphasizes word ), splitting (e.g., 12 T iR “already
ate” splits a lexical word FZ¥X “eat” by a particle | ), merg-
ing (e.g., £ N3 “context” merges 3 “above text” and
T3 “following text”), and head morpheme (e.g., & Hif
“take out” is the head & “take” + the morphemes Hi#
“out”). For instance, the head morpheme rule yields tri-
gram template I(s(0) = B,s(+1) = M, s(+2) = E,¢(0) =
eo, (c(+1),¢(+2)) = (e1,e2)), where e is a head character
such as & “take” and il “put,” and (e, e2) chooses a value
from a set of selected morphemes such as Hi3 “out,” #
% “n” or Nk “down”; the reduplication rule leads to
quadrigram templates I(s(0) = B,s(+1) = M,s(+2) =
M, s(+3) = E,c(0) = c(+1), c(+2) = ¢(+3)).

Factoid words mainly consist of numeric and foreign char-
acters, such as a number —FZ&E — TP “1024” or a for-
eign organization “FBIL.” Given a set of numeric and for-
eign characters F, the factoid words lead to trigram tem-
plates I(s(0) = B,c(—1) ¢ F,(c(0),c(+1)) € F), I(s(0) =
M, (c(—1),¢(0),¢(4+1)) € F), and so on. Named entities in-
clude frequently-used Chinese names for persons, locations
and organizations. A person’s name requires extensive enu-
meration to identify since it does not follow any language
rules. In contrast, names for locations and organizations
can be identified by using built-in feature templates. For
example, an organization template I(s(—2) = B,s(—1) =
M, s(0) = E,c(0) € L), where L is a collection of keywords
such as &F, /& and &4, “ministry, bureau and commit-
tee”.

It is much more challenging to identify new words in Chi-
nese segmentation. There is little literature on new word
identification, though this has substantial impact on the
performance of word segmentation. Therefore, it is impor-
tant to develop good strategies to detect new words uti-
lizing linguistic rules and more updated language features.
For example, enumeration can be used to detect new fac-
toid words and named entities, as discussed above. Linguis-
tic features constructed for the lexicon and morphologically
derived words can also be employed to detect new words.
Specifically, certain characters are always located at the be-
ginning or at the end of a Chinese word, so new words
containing those characters can be easily detected by us-
ing the unigram template. For instance, /X “anti-” typi-
cally appears at the beginning of a Chinese word, so the
unigram template 1(s(0) = B,c(0) = JX) can be used to
detect new words such as X “disagree” and T “re-
sist.” In addition, if a new word satisfies the splitting rule
as discussed above, trigram templates can be utilized such as
I(s(—1) = B,s(0) = M, s(+1) = E,c(0) = T) for detecting
new words like I: T # “already complained”.

More importantly, the linguistically-embedded con-
straints can be integrated into (1), which is powerful for
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reducing the effective size of the parameter space through
ranking the importance of features. As discussed above,
some Chinese characters appear much more frequently at
the beginning of a word. For instance, 3 “read,” has a
chance of 74% to occur in the beginning position (Li et al.,
2004). Therefore we can formulate some simple constraints
to obtain the relative order of importance measures Ag’s.
E.g., for this example, we can assign the importance mea-
sure A for I(s(0) = B, c(0) = 1£) larger than that associ-
ated with I(s(0) = M,c(0) = ¥&), I(s(0) = E,c(0) = ¥%)
and I(s(0) = S,c(0) = ¥£). In addition, the existing lin-
guistic rules presented in Section 2.2 should be considered
and incorporated into the constraints as well. For example,
the merging rule implies that A, for L N3 “context” with
I(s(0) = B,s(+1) = M,s(+2) = E,(¢(0),c(+1),c(+2)) =
[ F30) should be relatively large compared to those asso-
ciated with other choices of trigram features.

Specifically, the model in (1) with the hinge loss can be
formulated as

n K
(3) argminge > &+nY_ J(\)

1=1 k=1
T K
s.t. ]-_ZZAkfk(shcht) gglv 52 207
t=1 k=1

Ak > Aj for all (k,j) € Z,

where &; is a slack variable for the hinge loss of each sentence,
and Z is comprised of all available linguistically-embedded
constraints. However, the construction of Z requires enumer-
ating all possible language rules manually, and thus can be
labor intensive and time consuming. In the current project,
we only make use of the standard N-gram features, but
leave the linguistically-embedded features as a future de-
velopment.

6. DISCUSSION

In this paper, we propose a machine-learning framework
to utilize linguistically-embedded features for Chinese word
segmentation. The proposed model is a character-based
method constructing feature functions mapping from char-
acters to segmentation locators in words. The key idea is to
build feature functions through N-gram templates, which
contain the information of the character itself in conjunction
with its consecutive characters. We apply the hinge loss to
make the model more scalable, which is effective in reducing
the number of constraints and also simplifies the constraint
forms.

In addition, computational tractability is one crucial
component in segmentation because it requires one to pro-
cess a large amount of text information in a short time pe-
riod for real life applications. One important property of
the proposed model is that the optimization process can be
efficiently implemented through transforming complicated
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nonconvex optimization problems to many subproblems of
convex minimization. This allows one to compute many
subproblems of convex optimization in a parallel fashion,
and therefore helps to achieve scalable computing for high-
volume text data.

Furthermore, there is a trade-off in between the accuracy
in segmentation performance and computational complex-
ity. Applying higher-order-gram templates leads to higher
accuracy in segmentation, but could result in an increased
amount of computational cost. For different corpora, the or-
der of grams needs to be selected carefully to meet the de-
mand of time constraints for real-life applications. Finally,
the segmentation for new words is still a challenging prob-
lem, and further research is needed on developing segmenta-
tion strategies to incorporate more complex linguistic rules.
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