
Statistics and Its Interface Volume 10 (2017) 1–3

Introduction to this special issue

Shouyang Wang, Heping Zhang, and Anatoly Zhigljavsky

This special issue can be roughly divided into three parts.
The first part includes papers [1–6] and is devoted to the
methodology and theory of the time series analysis tech-
nique which is called Singular Spectrum Analysis (SSA).
The second part contains papers [7–10] and deals with some
other methodological aspects of time series analysis. The
third part is composed of papers [11–14], where the main
attention is paid to applications of time series analysis tech-
niques.

The key methodology, which the majority of papers in
this issue are related to, is SSA. The most common version
of SSA is called ‘Basic SSA’. A short description of it is
given below.

Let x1, . . . , xN be a time series of length N . Given a win-
dow length L (1<L<N), we construct the L-lagged vec-
tors Xi=(xi, . . . , xi+L−1)

T , i = 1, 2, . . . ,K=N−L+1, and

compose these vectors into the matrix X = (xi+j−1)
L,K
i,j=1 =

[X1 : . . . : XK ] . This matrix has size L × K and is of-
ten called ‘trajectory matrix’. It is a Hankel matrix, which
means that all the elements along the diagonal i+j= const
are equal. The columns Xj ofX can be considered as vectors
in the L-dimensional space R

L. The singular value decom-
position (SVD) of the matrix XXT yields a collection of L
eigenvalues and eigenvectors. A particular combination of
a certain number l of these eigenvectors determines an l-
dimensional subspace L in R

L, l < L. The L-dimensional
data {X1, . . . , XK} is then projected onto the subspace L

and the subsequent averaging over the diagonals yields some
Hankel matrix X̃ which is considered as an approximation
to X. The time series x̃1, . . . , x̃N , which is in the one-to-one
correspondence with the matrix X̃, provides an approxima-
tion to the original series x1, . . . , xN .

The reconstructed time series x̃1, . . . , x̃N can be used for
extraction of trends and periodics, for constructing a ‘sum
of dumped sinusoids’ model, see [6] in this issue, for fore-
casting, for monitoring structure of time series, for testing
causality in multivariate series and for many other tasks.
Methodological aspects of SSA have been discussed in many
publications including the majority of papers in the special
issue of the Statistics and Its Interface (2010, vol. 3, No. 3),
which was fully devoted to SSA and its applications. For a
comprehensive discussion of SSA methodology we refer to
the monograph [15]; for a short 4-page introduction to SSA,
see [16].

In this issue, SSA is being developed in the following di-
rections.

In [1], the basic version of SSA is modified by considering
a different matrix norm, in place of the standard Frobe-

nius norm, at the SVD step of SSA. It is demonstrated on
a few examples that the quality of SSA approximation im-
proves if the matrix weights are chosen to obtain approxi-
mately equal weights for the individual observations in the
equivalent problem of time-series least-squares approxima-
tion. Moreover, the question of convergence of the iterated
SSA (the method known in signal processing as ‘Cadzow it-
erations’) is investigated. This question was a source of some
controversy in the literature in signal processing, see [1] for
references.

In [2], the SVD step of the basic version of SSA is sug-
gested to be replaced by a solution of an low-rank approx-
imation problem in the nuclear norm rather than in the
standard Frobenius norm. The main suggestion in [2] tries
to emulate the success of so-called matrix completion prob-
lem (the problem of imputing missing values of a matrix),
where the use of the nuclear norm is now a common thing.
Application of the modified in this way SSA to to imputing
missing data and forecasting are discussed. A method simi-
lar to the Cadzow iterations but based on the nuclear norm
is discussed and illustrated on a number of real-world time
series.

Multivariate SSA is a direct extension of the standard
SSA for simultaneous analysis of several time series. As-
sume that we have two series, X = {x1, . . . , xN} and
Y = {y1, . . . , yN}. The (joint) trajectory matrix of the two-
variate series (X,Y ) can be defined as either Z = (X,Y) or

Z = (X,Y)
T
, where X and Y are the trajectory matrices

of the individual series X and Y . Matrix Z is block-Hankel
rather than simply Hankel. Other stages of MSSA are iden-
tical to the ones of the univariate SSA except that we build
a block-Hankel (rather than ordinary Hankel) approxima-
tion Z̃ to the trajectory matrix Z. Multivariate SSA may be
very useful for analyzing several series with common struc-
ture and for establishing causality between two series. Mul-
tivariate SSA is analysed in [3]. This paper is a follow-up
of [17] where a general approach to asymptotic proximity of
unperturbed and perturbed signal subspaces in Multivari-
ate SSA has been developed. It is assumed in [3], that each
coordinate of a multidimensional signal produces the same
signal subspace. For such signals, the authors of [3] suggest a
solution for an asymptotic extraction of this subspace from
the perturbed multidimensional signal series and illustrate
this technique on several examples.

The topic of stability of Multivariate SSA under random
perturbations of the input time series is also studied in [4]
with the main emphasis on the stability of forecasts. In [4],
the reconstruction kernel of SSA is considered as a convolu-
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tion filter and concise formulae for the variance under per-
turbations of SSA forecasts are derived. On the base of the
behaviour of these variances under scaling of the support
series, the authors of [4] formulate and study a natural cri-
terion of supportiveness of one series by the other; this can
also be considered as a causality criterion.

In [5], a modification of the Basic SSA, called SSA with
projection, is proposed. This version of SSA is able to
take into consideration a structure given in advance. SSA
with projection includes preliminary projection of rows and
columns of the trajectory matrix X to given subspaces. A
natural application of SSA with projection is the extraction
of polynomial trends. It is demonstrated in [5] that SSA with
projection can extract polynomial trends much more accu-
rately than Basic SSA, especially in the case of linear trends.
Numerical examples, including comparison with the least-
squares polynomial regression, are presented which confirm
that the proposed version of SSA could be extremely useful
for analyzing time series where an additional information
about trend is available.

As mentioned above, the main model of the signal in SSA
is the ‘sum of dumped sinusoids’ model. The authors of
[6] postulate this model and apply Lipschitz optimization
methods for fitting this model. They show that the aris-
ing optimization problem is very difficult in view of pres-
ence of many local minima in the objective function. It is
shown in [6] how Lipschitz-based deterministic methods can
be adapted for studying these challenging global optimiza-
tion problems, when a limited computational budget is given
and some guarantee of the found solution is required.

In [7] a model of time series, very much related to the
SSA model, is considered. It is assumed that the time series
contains a trend, a seasonal component and a periodically
correlated time series. For analyzing such series, a semipara-
metric three-step method is proposed. The seasonal compo-
nent and trend are estimated in [7] by means of B-splines,
and the Yule-Walker estimates of the time series model co-
efficient are calculated via the residuals after removing the
estimated seasonality and trend. The oracle efficiency of the
proposed Yule-Walker type estimators is established. Simu-
lation studies confirm the theoretical findings. The proposed
method is used for the analysis of the monthly global tem-
perature data provided by the National Space Science and
Technology Center.

The authors of [8] notice that econometric and financial
data often take the form of a collection of curves observed
consecutively over time. Such curves can be viewed as func-
tional time series. A fundamental issue that must be ad-
dressed, before an attempt is made to statistically model
or predict such series, is whether they can be assumed to
be stationary with a possible deterministic trend. This pa-
per extends a well-known KPSS test to the setting of func-
tional time series. Two testing procedures are proposed in
[8]: Monte Carlo and asymptotic. The limit distributions
of the test statistics are specified, the procedures are algo-

rithmically described and illustrated by application to yield
curves and daily price curves.

In [9] the problem of efficient financial surveillance is
considered aimed at quickest detection of structural breaks
in live-monitored financial time series. A semi-parametric
multi-cyclic change-point detection procedure is proposed to
promptly spot anomalies as they occur in the time series un-
der surveillance. The proposed procedure is a modification
of the well-known likelihood ratio-based Shiryaev-Roberts
procedure. It is compared with the celebrated CUSUM test
on a set of real-world financial data. While both procedures
perform well, the proposed method shows slightly better re-
sults.

In [10], the problem of estimation of parameters in the
harmonic regression with cyclically dependent errors is ad-
dressed. Asymptotic properties of the least-squares esti-
mates are analyzed by simulation experiments. In partic-
ular, the authors establish that consistency and asymptotic
normality of the least-squares estimator of unknown param-
eters hold under different scenarios.

In [11], A hybrid transfer learning model is suggested
for crude oil price forecasting. While most of the existing
models for oil price forecasting only use the data in the
forecasted time series, the authors of [11] propose a hybrid
transfer learning model. It first selectively transfers some re-
lated time series in the source domain to assist in modeling
the target time series by transfer learning technique, and
then constructs the forecasting model by the so-called ana-
log complexing method. The optimal match between two
important parameters in this model is found numerically
using some global optimization techniques. Two main crude
oil price time series, West Texas Intermediate crude oil spot
price and Brent crude oil spot price are used for empirical
analysis, and the results show the effectiveness of the pro-
posed model.

In [12], a time-heterogeneous generalised Pareto distribu-
tion is fit to the flood heights in the lower Limpopo River
basin of Mozambique. The maximum likelihood method is
used for parameter estimation. An in-depth review of the
merits of peaks-over-threshold and block maxima is pro-
vided. A relationship between generalised extreme value dis-
tribution and the generalised Pareto distribution is stud-
ied. Nonstationary time-dependent models with a trend
in the scale parameter are also considered. The results
show overwhelming evidence in support of the existence
of a linear trend in the scale parameter of the generalised
Pareto distribution models at all the three sites in the
lower Limpopo River basin. The models developed in [12]
seem to be more reliable than their stationary counter-
parts for planning and decision making processes in Mozam-
bique.

In [13], the forecasts of Earth temperature records made
in [18] are compared with the data actually observed during
2010–2014. It is demonstrated that the forecasts made in [18]
are quite accurate. In the second part of [13], the SSA-based
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change-point detection algorithm proposed in [19] is applied
to the same temperature records data. The results show that
the data does not have essential structural breaks except
perhaps a small rise of the general level of temperatures at
around 1998.

The authors of [14] have continued the research started
in their previous paper [18]. They have applied SSA to fore-
cast the Earth temperature records taken from the web-
site of the National Space Science and Technology Center,
USA, NASA. They have demonstrated that the forecasts of
[18] were quite accurate. The Earth temperatures are also
forecasted for the next several years. These forecasts show
that the temperatures are not going to be too different from
the ones we observe at present so that in a near future the
Earth temperatures are not likely to visibly increase or de-
crease but will continue to be volatile. This SSA analysis
of temperatures is complemented in [14] with analysis of
the Oceanic Nino Index and Arctic and Antarctic sea ice
extents.

We believe this special issue will be a valuable addition to
the literature on time series analysis and many readers will
find interesting papers related either to the methodology of
time series analysis or particular applications.
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