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SSA analysis and forecasting of records for Earth
temperature and ice extents
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In this paper, we continued the research started in [6].
We applied the so-called Singular Spectrum Analysis (SSA)
to forecast the Earth temperature records, to examine cross-
correlations between these records, the Arctic and Antarc-
tic sea ice extents and the Oceanic Nino Index (ONI). We
have concluded that the pattern observed in the last 15
years for the Earth temperatures is not going to change
much, found very high cross-correlations between a lagged
ONI index and some Earth temperature series and noticed
several significant cross-correlations between the ONI index
and the sea ice extent anomalies; these cross-correlations
do not seem to be well-known to the specialists on Earth
climate.

AMS 2000 subject classifications: Primary 62M20.
Keywords and phrases: Singular Spectrum Analysis,
Stability of forecasts, Long-horizon forecasting, Retrospec-
tive forecasts, SSA vector forecasting.

1. INTRODUCTION

This paper has the following purposes.

(1) Further investigation of stability of SSA forecasts for
the series with no apparent structure.

(2) Learning about the behaviour of the major series repre-
senting the Earth temperatures during the last 35 years.

(3) Evaluation of the quality of the SSA forecasts of the
Earth temperature series that we have made five years
ago.

(4) Forecasting these temperature series for the next 5
years and assessing stability of the forecasts.

(5) Investigating the Oceanic Nino Index (ONI) and study-
ing inter-dependence between the ONI series and tem-
perature records.

(6) Application of SSA for the analysis and forecast of the
series representing the Arctic and Antarctic sea ice ex-
tents and studying inter-dependence between these se-
ries and the series representing the temperatures on the
North and South poles respectively.

The research on SSA analysis of Earth temperature
records has started in our previous paper [6]. In the present
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paper, we assess the results published in [6] and advance
the research further by analysing many more real-life series.
By doing this, we get more confidence in the performance
of SSA for the analysis and forecasting of series with no
or little structure. Methodological and theoretical princi-
ples of the basic version of SSA, that we use in this research
project, have been carefully considered in [3, 5]. In these
books, however, the performance of SSA has been verified
only on a series (real-life and simulated) with clear struc-
ture. For most of the series we analyse in this paper, there
is no apparent structure and in this case many methods of
time series analysis may not show any sense or stability. As
we see in numerous graphs below, SSA performance is very
stable and therefore SSA can be considered as a reliable tool
for analyzing these kind of series.

In Section 2, we briefly consider SSA and our method-
ological principles. In Section 3, we consider the tempera-
ture records representing the average temperature on Earth
and its parts during the last few decades. First, we evaluate
the quality of the SSA forecasts of Earth temperature series
that we have made 5 years ago and published in [6]. Then
we make a large number of SSA forecasts of these tempera-
tures for the following 5 years. To achieve the robustness of
forecasts, we choose a wide range of parameters of SSA.

In Section 4, we correlate the main temperature series of
Section 3 with ONI, the Oceanic Niño Index. We show that
some of the temperature series are very highly correlated to
a lagged ONI series. As is widely known (see, for example,
[7, Chapter 6]) the origins, timings (except the observation
that both El Niño and La Niña are usually strongest during
December – April) and intensities of the El Niño and La
Niña are still big mysteries for modern science so that the
ONI series should be currently considered as unpredictable.
This series, however, has the major effect on the dynamics
of many of the Earth’s temperature series. An implication
of the results of Section 4 confirms one of the learnings from
Section 3 saying that most of the Earth’s temperature series
are lacking structure.

In Section 5, we use SSA for the analysis and forecast
of the series representing the Arctic and Antarctic sea ice
extents and correlate these series to the series representing
the temperatures on the North and South poles respectively.
The series showing Arctic and Antarctic sea ice extents have
much structure related to their seasonality. This seasonality
is very easy to extract with the help of SSA. After extraction
of the main seasonality, in Section 5 we try to study the
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inter-dependence between the residuals from the ice extent
data and temperature records, as well as the ONI series.

2. THE METHODOLOGY

2.1 Singular Spectrum Analysis

Singular Spectrum Analysis (SSA) is a well-known tool of
analyzing and forecasting time series in climatology in gen-
eral and the analysis of temperature records in particular,
see e.g. [2, 4, 5, 8, 9]. It is a nonparametric method that does
not require standard assumptions about the time series and
analyses the data in the phase space. The non-parametric
nature of SSA is a very attractive property for the analy-
sis of the Earth temperature records as it seems that these
records do not follow any simple pattern or model.

There are several versions of SSA. We shall use the most
common one which is often called Basic SSA. A short de-
scription of this algorithm is given below, see [3] and [5] for
details.

2.1.1 Short description of basic SSA

Let x1, . . . , xT be a time series of length T . Given a win-
dow length L (1<L<T ), we construct the L-lagged vectors
Xi = (xi, . . . , xi+L−1)

T , i = 1, 2, . . . ,K = T −L+1, and
compose these vectors into the matrix

X = (xi+j−1)
L,K
i,j=1 = [X1 : . . . : XK ] .

This matrix has size L × K and is often called ‘trajectory
matrix’. It is a Hankel matrix, which means that all the
elements along the diagonal i+j=const are equal.

The columns Xj of X can be considered as vectors be-
longing to the L-dimensional space R

L. The singular-value
decomposition (SVD) of the matrix XXT yields a collec-
tion of L eigenvalues and eigenvectors. For a given inte-
ger r, 1 ≤ r < L, we choose the r largest eigenvalues and
corresponding eigenvectors of XXT . The chosen eigenvec-
tors determine an r-dimensional subspace in R

L; call this
subspace Sr. The L-dimensional data {X1, . . . , XK} is then
projected onto this r-dimensional subspace Sr and the sub-
sequent averaging over the diagonals gives us some Hankel
matrix X̃, which we consider as an SSA approximation toX.

2.1.2 SSA forecasting

There are several ways of constructing forecasts based
on the SSA decomposition of the series described above,
see Chapter 2 in [3] and Chapter 3 in [5]. The most ob-
vious way is to use the linear recurrent formula which the
last terms of the series reconstructed from X̃ satisfy. We
however prefer to use the so-called ‘SSA vector forecast’
([3], Sect. 2.3.1). The main idea of this forecasting algo-
rithm is as follows. Selection of r eigenvectors of XXT leads
to the creation of the subspace Sr. SVD properties allow
us to assert that the L-dimensional vectors {X1, . . . , XK}
lie close to this subspace. Consider the vectors Z1, . . . , ZK

where Zi defined as the projection of Xi onto the subspace
Sr. The vector forecasting algorithm then sequentially con-
structs the vectors {ZK+1, ZK+2, . . .} so that they stay in
the chosen subspace Sr and the hankelization of the matrix
(Z1, . . . , ZK , ZK+1, ZK+2, . . .) gives the vector forecast.

2.1.3 Choice of SSA parameters

In the examples below, the length of the series is T = 440
and the forecasting horizon is h ∈ [60, 100].

Basic SSA described above has two parameters: L, the
window length and r, the dimension of the subspace Sr. Let
us discuss the choice of these two parameters in the analysis
of the temperature series.

Choice of L. If the structure of the series is assumed
stable then large values of L, of the order L ∼= 80, should be
preferred to small values, of the order L ∼= 10. We, however,
do not make the assumption that the structure of the series
is stable; on the contrary, we believe that this structure may
be rather unstable. In this case, large values of L would
make SSA too rigid and lacking flexibility. On the other
hand, for very small values of L, SSA may be too sensitive
to the noise and small variations in the trend. It is therefore
natural to select values of L somewhere in-between. Our
choice is 20 ≤ L ≤ 50, which we believe is a rather broad
range.

Choice of r. The choice of r should depend on what do
we intend to forecast. For example, if we observe some sea-
sonal variations in the data and we want to forecast these
variations, then we have to choose r large enough to cap-
ture these variations. There are several automatic proce-
dures (see e.g. [5]) helping in choosing the most suitable
value of r (roughly speaking, r should be the smallest among
those values of r for which the residuals after signal ex-
traction pass the chosen statistical tests for being a noise).
These procedures, however, are often not very reliable as
they require a few conditions for the time series to satisfy
and are not well suited for the long and medium range fore-
casting.

In what follows, we choose r = 5, 7. Whatever the rule
for selecting r, some values of r are too small, which im-
plies that some part of the signal will be missed, but other
values of r are too large, which implies that a significant
part of the noise will be included into the ‘reconstructed
signal’. This, however, goes in line with one of the main
aims of our study which is checking the stability of the fore-
casts.

Summarizing, for all temperature series we choose param-
eters 20 ≤ L ≤ 50 and r ∈ {5, 7}. This choice is independent
of the structure of the series. This is done for consistency
and for ensuring the fairness of the analysis. Despite a better
forecast (with better stability) can be obtained if we opti-
mize the domains of parameters L and r for each individual
series, we have fixed the domains to show the robustness of
results. Furthermore, the results of our study are very stable
with respect to these domains.
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2.2 Stability of forecasts

2.2.1 Forming the samples of forecasts

Assume that we have a family of SSA forecasts which is
parameterized by a parameter θ ∈Θ= {θ1, . . . , θm}, where
θ = (L, r) and m is the total number of chosen pairs of
parameters (L, r). For each time moment t≤ T , any g > 0
and any θ ∈ Θ we can build a g-step ahead forecast x̂t+g(θ)
based on the information x1, . . . , xt. Hence for any t≤T we
may compute the following set of forecasting results:

Xt = {x̂T+g(θ) : g ∈ [h1, h2], θ ∈ Θ},

where 0 < h1 ≤ h2 are some numbers. The number of ele-
ments in the samples Xt is M=m(h2−h1+1).

To summarize, our forecasting procedure gives us T −
T0 + 1 samples Xt = {f (t)

1 , . . . , f
(t)
M } at all t = T0, . . . , T ,

where T0 is the first time moment we make the forecasting.

2.2.2 Comparison of the samples

We now need to compare the samples Xt (t = T0, . . . , T )
to evaluate the stability of the corresponding forecasts and
decide whether at t = T we have reached an acceptable level
of stability.

The mean values of the samples Xt are f̄t =

(f
(t)
1 + . . .+ f

(t)
M )/M . As the future is unknown, it is not

possible to check whether the mean values f̄t give good ap-
proximations to the true values ExT+h. Hence the values
f̄t do not provide much information about the quality of
forecasts.

As measures of stability, we must consider the behaviour
of some characteristics of variability of the samples Xt. The
most common among these characteristics is the (empirical)
standard deviation of Xt:

st =

[
1

M − 1

M∑
i=1

(f
(t)
i − f̄t)

2

]1/2

.

Another important characteristic of the sample variability
is the so-called range of the sample Xt:

Rt = max
i=1,...,M

f
(t)
i − min

i=1,...,M
f
(t)
i .

3. ANALYSIS OF THE EARTH
TEMPERATURE RECORDS

3.1 Characteristics of forecast quality

We consider the Earth temperature records from the
web-site http://vortex.nsstc.uah.edu/ (National Space Sci-
ence and Technology Center, NASA, USA). The records
represent the temperature on Earth and some of its parts
since December 1978. We did not not present the analysis
of longer temperature records as there is some controversy
around earlier temperature records, see [7]. The series con-

Figure 1. Earth temperature. The time series (gray), the SSA
approximation and the forecast for L = 50 and r = 7 (black).

tains the temperature anomalies rather than the absolute
temperatures.

Note that in [6] we have used the the temperature anoma-
lies computed relative to the base period 1951–1980. Cur-
rently, the temperature anomalies have been recomputed
and are given in http://vortex.nsstc.uah.edu/ relative to the
new annual cycle 1981–2010.

For a given series of monthly data records zy+m (where y
refers to the year and m (1 ≤ m ≤ 12) denotes the month)
and a reference period of several years, the respected series
of anomalies is defined as the difference between the origi-
nal time series zy+m and the series of monthly averages z̄m,
where the monthly averages z̄m (1 ≤ m ≤ 12) are computed
for the reference period. If the reference period is not spec-
ified (as in Section 5.2) then the averages z̄m are computed
for the whole period of observations.

Working with anomalies rather than with absolute tem-
perature records is customary in climatology, see for exam-
ple publications and web-sites of the Goddard Institute for
Space Studies. In the present subsection we follow [6] and
use the data from December 1978 to July 2015 so that alto-
gether we have T = 440 data points. The first time moment
we start the forecasts is January 2005 implying T0 = 314.
We forecast the series until 2020 (longer-term forecasts are
very similar) by setting h1 = 97, h2 = 99. As mentioned
above we use L ∈ [20, 50] for the SSA window length L and
choose the first r ∈ {5, 7} eigenvectors.

To illustrate our analysis, consider the series of the
global temperature on Earth and Northern Hemisphere
temperature. These two series of temperatures are dis-
cussed most often. We have done similar analysis for some
other series; the results are presented at the web-site
http://earth-temperature.com/forecasting/. For each of the
three chosen temperature series we plot the following.

(i) Figures 1 and 4: the series itself, the SSA approximation
and SSA forecast for L = 50 and r = 7 computed at
the last point t = T (December 2009).

(ii) Figures 2 and 5 (left): the series −f̄t, standard devi-
ations st (light grey), ranges Rt (dark grey) for t =
314, . . . , 430 (the averages f̄t are always plotted with
the minus sign for the purpose of clarity of display).

(iii) Figures 2 and 5 (right): box-plots of the samples Xt for
t = 325, 337, 349, 361, 373, . . . , 421, 433.
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Figure 2. Earth temperature. Top: averages −f̄t (black),
standard deviations st (light grey), ranges Rt (dark grey).

Bottom: box-plots of the samples Xt.

Figure 3. Forecasts for the Earth temperature at Jan 2018;
L = 20, 30, 40, 50 and r = 5 (top) and r = 7 (bottom).

(iv) Figures 3 and 6: forecasts for the temperature at
January 2018 using the series x1, . . . , xt for L =
20, 30, 40, 50, r = 5, 7 and all t = 314, . . . , 433.

Note that the markers on the x-axis in all plots correspond
to Januaries. To compare the forecasted values of the tem-
peratures with recent values, note the average values of
these temperatures for 2000–2009: 0.222 for Earth; 0.312
for Northern Hemisphere.

Figure 4. Northern Hemisphere temperature. The time series
(gray), the SSA approximation and the forecast for L = 50

and r = 7 (black).

Figure 5. Northern Hemisphere temperature: Top: averages
−f̄t (black), standard deviations st (light grey), ranges Rt

(dark grey). Bottom: box-plots of the samples Xt.

Figures 2, 3, 5 and 6 are extensions of the corresponding
figures we have provided in [6] to cover the time periods up
to 2015.

3.2 Assessing accuracy of forecasts made in
2009

In Figure 7 we can see that during the period Jan 2010
to Sep 2014 the global Earth temperatures roughly followed
a typical forecast given in [6].

Figure 8 shows that for the global Earth temperatures,
all forecasts made in [6] for the period from Jan 2010 to Dec
2020 were very similar and the actual global Earth tempera-
ture during the whole period from Jan 2010 to Sept 2014 was
well inside the family of forecasts. Figure 8 also shows that
the forecasts made in Dec 2009 do not show any significant
change in the level of temperatures.

Figure 9 is similar to Figure 8 but shows the North pole
temperatures (rather than the global Earth temperatures).
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Figure 6. Forecasts for the Northern Hemisphere temperature
at Jan 2018; L = 20, 30, 40, 50 and r = 5 (top) and r = 7

(bottom).

Figure 7. Global Earth temperature. Gray: the original time
series from http://vortex.nsstc.uah.edu/ for the period Dec
1978 to Sept 2014. Black: the SSA approximation until Dec

2009 and the forecast from Jan 2010 onwards. SSA
parameters: L = 50 and r = 7.

Again, all forecasts made in 2009 for the period from Jan
2010 to Dec 2020 were very similar and the actual global
Earth temperature during the whole period from Jan 2010
to Sept 2014 was well inside the family of forecasts. Unlike
Figure 8, Figure 9 shows that the forecasts made in Dec
2009 indicate a very small increase in the level of temper-
atures in the North pole. This figure should be compared
with Figure 16 where revised forecasts are shown. Note also
that despite the forecasts were unable to catch the volatil-
ity of the actual series, these forecasts have shown the main
trend (more precisely, the absence of any trend) quite accu-
rately.

Figure 10 is similar to Figures 8 and 9. It shows the South
pole temperatures. Unlike the global Earth and North pole
temperatures, the South pole temperatures never exhibited
any trend and were very volatile. The volatility did not ex-
hibit any patterns and this was reflected in the SSA fore-

Figure 8. Global Earth temperature. Top: the original time
series for the period Dec 1978 to July 2015 (gray) and the
family of forecasts from Jan 2010 defined by L = 20, . . . , 50
and r = 5, 7 (black). Bottom: an extraction from the top

graph showing the period Jan 2010 to Dec 2015.

Figure 9. North Pole temperatures. Top: the original time
series for the period Dec 1978 to July 2015 (gray) and the
family of forecasts from Jan 2010 defined by L = 20, . . . , 50
and r = 5, 7 (black). Bottom: an extraction from the top

graph showing the period Jan 2010 to Dec 2015.

casts: all these forecasts were very close to a constant. Fig-
ure 10 shows that the South pole temperatures continue to
be volatile with no apparent tendency.

Figures 11, 12, 13 and 14 are similar to Figures 8, 9
and 10 and deal with Northern hemisphere, Southern hemi-
sphere, Earth land and Earth ocean temperatures respec-
tively. These pictures are self-explanatory. They show the
good quality of the SSA forecasts made in 2009 and the fact
that the temperatures continued to be volatile but did not
rise in the last three years.
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Figure 10. South Pole temperatures. Top: the original time
series for the period Dec 1978 to July 2015 (gray) and the
family of forecasts from Jan 2010 defined by L = 20, . . . , 50
and r = 5, 7 (black). Bottom: an extraction from the top

graph showing the period Jan 2010 to Dec 2015.

Figure 11. Northern hemisphere temperatures. Top: the
original time series for the period Dec 1978 to July 2015

(gray) and the family of forecasts from Jan 2010 defined by
L = 20, . . . , 50 and r = 5, 7 (black). Bottom: an extraction

from the top graph showing the period Jan 2010 to Dec 2015.

3.3 Forecasting from the present time until
Jan 2020

In the figures that follow we show the families of the
SSA forecasts of temperatures of different parts of Earth
from Aug 2015 until Jan 2020. To make the forecasts we
use SSA with the same parameters as above; that is, L =
20, . . . , 50 and r = 5, 7. The data used is the corresponding
temperature series from Dec 1978 until July 2015; thus, the
length of all series is 440.

Figure 12. Southern hemisphere temperatures. Top: the
original time series for the period Dec 1978 to July 2015

(gray) and the family of forecasts from Jan 2010 defined by
L = 20, . . . , 50 and r = 5, 7 (black). Bottom: an extraction

from the top graph showing the period Jan 2010 to Dec 2015.

Figure 13. Earth land temperatures. Top: the original time
series for the period Dec 1978 to July 2015 (gray) and the
family of forecasts from Jan 2010 defined by L = 20, . . . , 50
and r = 5, 7 (black). Bottom: an extraction from the top

graph showing the period Jan 2010 to Dec 2015.

Figures 15, 16, 17, 18, 19, 20 and 21 show forecasts (con-
structed using the most recent data) of the temperatures
for the Earth overall, North pole, South pole, Northern
hemisphere, Southern hemisphere, Earth land and Earth
ocean temperatures, respectively. The new forecasts have
been made using the data until Sept 2014 (that is, the most
recent data available at the time of submission of the present
paper). These figures complement Figures 8, 9, 10, 11, 12,
13 and 14, respectively. All forecasts do not show any ten-
dencies for temperature increase. There show, however, a lot
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Figure 14. Earth ocean temperatures. Top: the original time
series for the period Dec 1978 to July 2015 (gray) and the
family of forecasts from Jan 2010 defined by L = 20, . . . , 50
and r = 5, 7 (black). Bottom: an extraction from the top

graph showing the period Jan 2010 to Dec 2015.

Figure 15. Earth temperature. The time series (gray) until
July 2015, the family of forecasts (black) from Aug 2015.

Figure 16. North pole temperature. The time series (gray)
until July 2015, the family of forecasts (black) from Aug 2015

for L = 20, . . . , 50 and r = 5, 7.

of volatility and even a possibility of insignificant decrease
of some temperatures.

4. ONI INDEX

The National Oceanic and Atmospheric Administration
(NOAA) is a federal agency focused on the condition of the
oceans and the atmosphere. De-facto, the standard tool used
by NOAA for identifying El Nino (warm) and La Nina (cool)

Figure 17. South pole temperature. The time series (gray)
until July 2015, the family of forecasts (black) from Aug 2015

for L = 20, . . . , 50 and r = 5, 7.

Figure 18. Northern hemisphere temperature. The time series
(gray) until July 2015, the family of forecasts (black) from

Aug 2015 for L = 20, . . . , 50 and r = 5, 7.

Figure 19. Southern hemisphere temperature. The time series
(gray) until July 2015, the family of forecasts (black) from

Aug 2015 for L = 20, . . . , 50 and r = 5, 7.

Figure 20. Earth land temperature. The time series (gray)
until July 2015, the family of forecasts (black) from Aug 2015

for L = 20, . . . , 50 and r = 5, 7.

events in the tropical Pacific is the so-called Oceanic Nino
Index (ONI) discussed in this section. It is the running 3-
month mean SST anomaly for the Nino 3.4 region (i.e., 5oN-
5oS, 120o–170oW).

Monthly data of the ONI index is taken from the website
http://ggweather.com/enso/oni.htm.
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Figure 21. Earth ocean temperature. The time series (gray)
until July 2015, the family of forecasts (black) from Aug 2015

for L = 20, . . . , 50 and r = 5, 7.

Figure 22. The ONI index.

Figure 23. Earth temperature (gray) and the scaled ONI
index (black). Middle: Smoothed Earth temperature (gray)

and the scaled ONI index (black). Bottom left:
Cross-correlation between the ONI index and Earth

temperature. Bottom middle: Cross-correlation between the
ONI index and smoothed Earth temperature. Bottom right:
Cross-correlation between the differences of the ONI index

and the differences of smoothed Earth temperature.

In Figure 22 we plot the ONI index.
In Figure 23 we plot Earth temperature and the scaled

ONI index. We can see an amazing similarity between these

Figure 24. North pole temperature (gray) and the scaled ONI
index (black).

Figure 25. South pole temperature (gray) and the scaled ONI
index (black).

two time series. Note that the ONI index has highest cor-
relation with the Earth temperature if we apply a delay of
3–4 months to the ONI series.

In Figures 24–30 we compare temperatures for different
parts of Earth and the ONI index.

By looking at Figure 28 we observe an almost perfect
similarity between Tropics temperature and the ONI index.
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Figure 26. Northern hemisphere temperature (gray) and the
scaled ONI index (black).

Figure 27. Southern hemisphere temperature (gray) and the
scaled ONI index (black).

Let ρONI,Tr(k) be the cross-correlation between the ONI in-
dex and Tropics temperature for a lag k. The largest cross-
correlation between Tropics temperature and the ONI index
is ρONI,Tr(3) = 0.7277, while the largest cross-correlation be-
tween the ONI index and Earth temperature is ρONI,Ea(4) =
0.3044. Also note that the largest cross-correlation be-
tween the ONI index and smoothed Earth temperature is
ρONI,smoothedEa(4) = 0.3278.

Figure 28. Tropics temperature (gray) and the scaled ONI
index (black).

Figure 29. Earth land temperature (gray) and the scaled ONI
index (black).

5. ARCTIC AND ANTARCTIC SEA ICE
EXTENTS

5.1 Analysis and forecasting of ice extent
series

In this section, we study Arctic and Antarctic sea ice
extents from 1979 to present. The sea-ice extent (unit:
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Figure 30. Earth ocean temperature (gray) and the scaled
ONI index (black).

Figure 31. Monthly average values of Arctic sea ice extent
from Nov 1978 to Nov 2014.

106 square Km) is calculated as the areal sum of sea ice
covering the ocean where sea-ice concentration (SIC) ex-
ceeds a threshold (15% for AMSR-E). SICs are derived
from various satellite-borne passive microwave radiometer
(PMR) sensors using the algorithm developed and pro-
vided by Dr. Comiso of NASA GSFC through a cooper-
ative relationship between NASA and JAXA. Daily data
of Arctic and Antarctic sea ice extents is taken from
http://nsidc.org/data/seaice index/archives.html.

On the base of this daily data, we compute monthly time
series by taking the average for each month.

In Figure 31 we can see that Arctic sea ice extent during
summer months of last decade was smaller than Arctic sea
ice extent for the period from 1980 to 2000. However, this
decrease of Arctic sea ice extent is compensated by Antarctic
sea ice extent so that their sum has very stable behaviour
over all periods from 1980 to the present time, as can be
seen in Figure 36.

In Figure 37 we can see that periodics of eigenfunctions
are very stable: there is no changes in amplitude, frequency
or phase.

Figure 32. Monthly average values of Antarctic sea ice extent
from Nov 1978 to Nov 2014.

Figure 33. The annual average values of Arctic sea ice extent
from 1980 to 2014.

Figure 34. The annual average values of Antarctic sea ice
extent from 1980 to 2014.

Figure 35. The annual average values of the sum of Arctic
and Antarctic sea ice extents from 1980 to 2014.

Figure 36. Monthly average values of the sum of Arctic and
Antarctic sea ice extents.

In Figure 38 we can see that the periods of the recon-
structed components are also very stable. The first recon-
structed component shows a slight decrease in average of
the total sea ice extent from 25.6 ·106 square Km in 1980 to
24.6 · 106 square Km in 2014.
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Figure 37. Scatterplots of leading eigenfunctions obtained by
SSA with L = 216 for the sum of Arctic and Antarctic sea ice

extents.

Figure 38. Leading reconstructed components obtained by
SSA with L = 216 for the sum of Arctic and Antarctic sea ice

extents.

Figure 39. The first leading reconstructed component
obtained by SSA with L = 24 for the sum of Arctic and

Antarctic sea ice extents.

In Figure 39 we depict the first leading reconstructed
component for the sum of Arctic and Antarctic sea ice ex-
tents obtained by SSA with small L = 24 which helps us to
see the accurate trend of the time series. We can see that the
sea ice extent was minimal in 2006 and 2011 and recovered
in 2014 to typical values.

In Figure 40 we show the multivariate SSA forecast of
Arctic and Antarctic sea ice extents from Dec 2014 to Jan
2020. We can see that the forecast has a regular periodic
pattern.

Figure 40. The multivariate SSA forecast from Dec 2014 and
original time series of Arctic (black) and Antarctic (grey) sea

ice extents obtained by SSA with L = 36 and r = 8.

Figure 41. The scaled ONI index (gray) and the inverted
smoothed Arctic ice extent anomaly (black). Bottom left:
Cross-correlation between the ONI index and the inverted

smoothed Arctic ice extent anomaly. Bottom right:
Cross-correlation between the differences of the ONI index

and the differences of the inverted smoothed Arctic ice extent
anomaly.

5.2 Ice extent anomaly

In this subsection we study the time series of the sea ice
extent anomaly which is the difference between the origi-
nal time series of ice extent and the series of corresponding
monthly averages. As an increase of temperatures leads to
a decrease of sea ice extent, we consider the inverted sea ice
extent anomaly which is obtained by changing the sign of
the sea ice extent anomaly.

We investigate the relationship between the inverted sea
ice extent anomaly and other time series such as the ONI
index (see Figures 41 and 42) and temperatures at North
and South poles (see Figures 43 and 44).

In Figures 41 and 42 we can notice several significant
correlations between the ONI index and the sea ice extent
anomalies. We tried to find a confirmation of the existence
of such correlations in the literature on Earth climate but
we failed. This can be for one of the following three reasons:
(a) we did not look hard enough (as we are not specialists in
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Figure 42. The scaled ONI index (gray) and the inverted
smoothed Antarctic ice extent anomaly (black). Bottom left:
Cross-correlation between the ONI index and the inverted
smoothed Antarctic ice extent anomaly. Bottom right:

Cross-correlation between the differences of the ONI index
and the differences of the inverted smoothed Antarctic ice

extent anomaly.

Figure 43. Smoothed North pole temperature (gray) and the
inverted smoothed Arctic ice extent anomaly (black). Bottom

left: Cross-correlation between the smoothed North pole
temperature and the inverted smoothed Arctic ice extent
anomaly. Bottom right: Cross-correlation between the

differences of the smoothed North pole temperature and the
differences of the inverted smoothed Arctic ice extent

anomaly.

climatology), (b) the correlations found by us are spurious,
and (c) the correlations are meaningful and hence they will
be rediscovered and explained by the specialists in climate
and earth science. We shall leave this to the specialists in
climate to resolve.

From Figure 41 we can observe that the ONI index has
small influence on the Arctic sea ice extent with delay 2
months. An increase of the ONI index anomalies is followed
by a decrease of the Arctic sea ice extent at North Pole
(delayed by 2 months).

In Figure 42 we can see that the Antarctic sea ice extent
has influence on the ONI index with delay 2 months. A de-

Figure 44. Smoothed South pole temperature (gray) and the
inverted smoothed Antarctic ice extent anomaly (black).

Bottom left: Cross-correlation between the smoothed South
pole temperature and the inverted smoothed Antarctic ice

extent anomaly. Bottom right: Cross-correlation between the
differences of the smoothed South pole temperature and the
differences of the inverted smoothed Antarctic ice extent

anomaly.

crease in anomalies of the Antarctic sea ice extent is followed
by an increase of the ONI index (delayed by 2 months).

In Figure 43 we can see that the North pole tempera-
ture has strong influence on the Arctic sea ice extent. This
phenomena can easily be explained.

In Figure 44 we can see that the South pole tempera-
tures have a moderate influence on the Antarctic sea ice
extent with delay about 3 months. This can also be easily
explained.

CONCLUSIONS

The main results and finding of this paper are as follows.

• We have made a further investigation of stability of SSA
forecasts for the series with no apparent structure. We
have observed that the behaviour of SSA forecasts for
such series does not change much when we vary the two
SSA parameters within a reasonable range.

• We have evaluated the quality of the SSA forecasts of
the Earth temperature series that we have made in [6].
We have found out that our forecasts made five years
ago were very accurate.

• We have made forecasts of Earth temperature series
for the next 5 years and assessed stability of these fore-
casts. We claim that the pattern observed in the last
15 years for the Earth temperatures is not going to
change much. This implies, for example, that sharp rise
of Earth temperatures is very unlikely.

• We have analysed cross-correlations between the Earth
temperature records and the Oceanic Nino Index
(ONI). We have found very high cross-correlations be-
tween a lagged ONI index and some Earth temperature
series.
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• We have applied SSA for the analysis and forecast of
the series representing the Arctic and Antarctic sea ice
extents and studied cross-correlations between anoma-
lies of sea ice extents, the ONI index and the series
representing the temperature anomalies on the North
and South poles. In particular, we have noticed several
significant correlations between the ONI index and the
sea ice extent anomalies which are not well-known in
the literature on Earth climate.
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