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Assessment of SSA predictions of Earth

temperature records

VLADIMIR KORNIKOV

In this paper, the forecasts of Earth temperature records
made by A. Pepelyshev and A. Zhigljavsky in 2009 are com-
pared with the data actually observed during 2010-2014. It
is demonstrated that the forecasts made in 2009 are quite
accurate. In the second part, the SSA-based change-point
detection algorithm proposed by Moskvina and Zhigljavsky
in 2003 is applied to the same temperature records data. The
results show that the data does not have essential structural
breaks except perhaps a small rise of general level of tem-
peratures at around 1998.
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1. INTRODUCTION

An important paper [2] by A. Pepelyshev and A. Zhigl-
javsky published in 2009 in the Statistics and Its Interface
contains an interesting discussion concerning assessing
stability of time series forecasts with no model available
and many forecasts of the Earth temperature data. The
data were taken from http://vortex.nsstc.uah.edu/, the
web-site of the National Space Science and Technology
Center, USA, NASA. This web-site contains the so-called
monthly temperature anomalies since December 1978. In
our study, we use the data from the same website, see the file
http://vortex.nsstc.uah.edu/data/msu/t2lt /uahnede_1t_5.6.
txt. Therefore, the data plotted for 1978-2009 coincides
with the data plotted in [2].

The forecasts in the paper [2] are made at different points
of time using using the retrospective principle. The latest
time point used in [2] is December 2009. One of purposes
of this paper is to compare forecasts made in [2] from De-
cember 2009 onwards with the actual temperature records
for 2010-2014. The method used in [2] is the so-called Sin-
gular Spectrum Analysis (SSA). Description of the SSA can
be found in many publications; we refer here to the funda-
mental books [3] and [4]. In Section 2 we provide a very
brief introduction to SSA and in Section 3 we present the
comparison of forecasts.

Another purpose of this paper is to apply the SSA change-
point detection algorithm for discovering structural breaks

in temperature records. This algorithm proposed by Moskv-
ina and Zhigljavsky in 2003 has the ability to find changes
in mean, variance of noise, the amplitude, frequency and
phase of periodic components. The description of the algo-
rithm and it’s application is given in Section 4.

2. THE METHOD

Singular spectrum analysis (SSA) is a technique of time
series analysis and forecasting combining elements of clas-
sical time series analysis, multivariate statistics, multivari-
ate geometry, dynamical systems and signal processing. SSA
aims at decomposing the original series into a sum of a small
number of interpretable components such as a slowly vary-
ing trend, oscillatory components and a ‘structureless’ noise.
It is based on the singular value decomposition (SVD) of a
specific matrix constructed upon the time series.

Neither a parametric model nor stationarity-type condi-
tions have to be assumed for the time series. This makes
SSA a model-free technique and hence enables SSA to have
a very wide range of applicability.

SSA is a well-known technique for analyzing and forecast-
ing time series in climatology in general and the analysis of
temperature records in particular, see e.g. [1, 4, 6, 7]. The
version of SSA used in [2] is the so-called Basic SSA. Be-
low we give a short description of it following [8]. For more
details, see [3, Chapter 1] and [4].

The Basic SSA. Let x1,...,xn be a time series of length
N. Given a window length L (1< L < N), we construct the
L-lagged vectors X; = (z;,...,vi1r-1)7, i =1,2,..., K =
N—L+1, and compose these vectors into the matrix X =
(xl-+j_1)f7}£1 =[X;7:...: Xg|. This matrix has size L x K
and is often called ‘trajectory matrix’. It is a Hankel matrix,
which means that all the elements along the diagonal i+
j =const are equal.

The columns X; of X can be considered as vectors in the
L-dimensional space RY. The singular value decomposition
of the matrix XX yields a collection of L eigenvalues and
eigenvectors. A particular combination of a certain number r
of these eigenvectors determines an r-dimensional subspace
L in RE, 7 < L. The L-dimensional data {Xi,..., Xk} is
then projected onto the subspace L and the subsequent aver-
aging over the diagonals yields some Hankel matrix X which
is considered as an approximation to X. The time series
Z1,...,ZN, which is in the one-to-one correspondence with
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the matrix X, provides an approximation to the original

series T1,...,TN.

Forecasting. The r-dimensional subspace I constructed
by the Basic SSA yields a linear recurrent formula which
may be used for forecasting. As an alternative to this
method of forecasting we may use the so-called ‘vector
forecasting’. The main idea of the vector forecasting al-
gorithm is in the consecutive construction of the vectors
X;=(xi,...,25501)7, fori = K+ 1,K +2,... so that
they lie as close as possible to the subspace L created by
the chosen r eigenvectors.

Choice of parameters in the Basic SSA. There are
two parameters to choose in the Basic SSA which we use: the
window length L and the number r of largest eigenvectors
chosen for the approximation and forecasting. A rational or
even optimal choice of these parameters should depend on
the task we are using SSA for. A detailed discussion on this
topic can be found in [4] and [3, Section 1.6]. There are
versions of the Basic SSA where given the window length
L, the group of r indices determining the subspace L (for
extraction of either trend or periodic components) is chosen
automatically; see e.g. [4]. In the present paper we compare
the forecasts from [2] for their main parameter choices; in
most cases, this choice was L = 50 and r € {5, 7}.

3. ASSESSMENT OF ACCURACY OF
PREDICTIONS

In our study, we have used the same method as in [2]
and exactly the same software, the programm Caterpillar-
SSA downloaded from the website http://www.gistatgroup.
com/cat/programs.html.

In Figure 1 we can see that during the period from Jan
2010 to Sep 2014 the global Earth temperatures roughly
followed the most typical forecast given in [2]. Figures 2,
3,4, 6,5, 7 and 8 demonstrate the same for the tempera-
ture records for Northern hemisphere, Southern hemisphere,
Tropics, Earth land, Earth ocean, North Pole and South
Pole, respectively.

We can make the following conclusions from observing
the patterns shown in Figures 1-8:

(a) global Earth temperatures did neither significantly in-
crease nor significantly decrease anywhere;

(b) these temperatures continued to be volatile;

(c) the key SSA forecasts for the period 2010-2015 pub-
lished in [2] have captured the main pattern of the tem-
perature records for this period very well.

In Figures 1-8 we have compared the actual data against
a selected SSA forecast, namely, the forecast with parame-
ters L = 50 and r = 7. We can see a remarkable overlap of
the actual temperatures and forecasts for the period 2010-
2015. Unlike Figure 1, Figure 2 shows that the forecast made
in Dec 2009 indicates a very small increase in the level of
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Figure 1. Global Earth temperature. Gray: the original time
series for the period from Dec 1978 to Sept 2014. Black: the
SSA approximation until Dec 2009 and the forecast from Jan

2010 onwards. SSA parameters: L =50 andr = 7.
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Figure 2. North Pole temperature. Gray: the original time
series for the period from Dec 1978 to Sept 2014. Black: the
SSA approximation until Dec 2009 and the forecast from Jan

2010 onwards. SSA parameters: L =50 and r = 7.
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Figure 3. South Pole temperature. Gray: the original time
series for the period from Dec 1978 to Sept 2014. Black: the
SSA approximation until Dec 2009 and the forecast from Jan

2010 onwards. SSA parameters: top: L =50 andr = 7;
bottom: L =24 andr =1T7.

temperatures in the North pole but the actual temperature
does not grow. Note also that in Figure 3 the forecast for
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Figure 4. Northern hemisphere temperature. Gray: the original
time series for the period from Dec 1978 to Sept 2014. Black:
the SSA approximation until Dec 2009 and the forecast from

Jan 2010 onwards. SSA parameters: L = 50 and r = 7.
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Figure 6. Tropics temperature. Gray: the original time series
for the period from Dec 1978 to Sept 2014. Black: the SSA
approximation until Dec 2009 and the forecast from Jan 2010
onwards. SSA parameters: L = 50 and r = 7.
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1r Figure 7. Earth land temperature. Gray: the original time
series for the period from Dec 1978 to Sept 2014. Black: the
0.5} SSA approximation until Dec 2009 and the forecast from Jan
2010 onwards. SSA parameters: L =50 and r = 7.
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Figure 5. Southern hemisphere temperature. Gray: the
original time series for the period from Dec 1978 to Sept
2014. Black: the SSA approximation until Dec 2009 and the
forecast from Jan 2010 onwards. SSA parameters: top:

L =50 and r =7; bottom: L =50 and r = 5.
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Figure 8. Earth ocean temperature. Gray: the original time
series for the period from Dec 1978 to Sept 2014. Black: the
SSA approximation until Dec 2009 and the forecast from Jan

2010 onwards. SSA parameters: L =50 and r = 7.

L =50 and r = 5 is unable to catch the volatility of the ac-
tual time series, but this forecast has shown the main trend
(more precisely, the absence of any trend) very accurately.
However, in Figure 3 the forecast for L = 24 and r = 5
is able to catch oscillation with right frequency but wrong

amplitude. Figures 4-8 are similar to previous ones and self- ,p) and the most recently observed time se-
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explanatory. ries segment xs.t = (Lg, Ts41,...,2t) for a time series
4. SSA DETECTION OF STRUCTURAL o ZuTutly o Tupe s Ler el - Bty
BREAKS past most recent

The SSA algorithm of change-point detection was de-
veloped by Moskvina and Zhigljavsky in [5] and its
idea is the consideration of a SSA-dissimilarity measure
D(y., xst) between the past time series segment x,., =

observed in real time, where u < v < s < t and ¢ corresponds
to the present time. Here we consider online monitoring for
structural breaks and we refer to [3, Ch. 3] for the SSA
approach to offline change-point detection.
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The formal description of SSA change-point detection al-
gorithm is as follows. For a time series x1,xs,..., choose
a value of the parameter L and construct vectors X; =
(xi_r+1,...,2;)T. Then consider the trajectory matrix X =
(Xn—m, ..., X,) corresponding to past time series segment
and compute the leading eigenvectors Ui, Us,...,U, of
X. Note that the matrix U = (Uy,...,U,) describes a
‘structure’ of the past time series segment x,., with u =
n—m-—L+1and v=n.

For the same value of the parameter L, compute vectors
X;i=(vipt1,...,7)T,i € {n+p,...,n+q—1} correspond-
ing the most recently observed time series segment z.; with
s=n+p—L+landt=n+qg—1.

In [5] the SSA-dissimilarity measure is defined by the
statistic

n+qg—1
> XTX - XTuuTx;)

i=n+p

1
Diipg = 77—
Ert = g~ p)
which can be viewed as a distance between the recent vectors
Xntps -y Xntq—1 and the subspace L(Uy,Us,...,U,) for
the past time series segment, where r is the dimension of the
signal subspace. The statistic D,, 1, , means the presence
of a change-point in a time series if D,, goes above some
threshold. Note that the typical choice of parameters is p =
L, g = L+ 1 that leads to the statistic
1
(1) D, = E[ngn - XIuutX,).

For convenience of practical application, the SSA algo-
rithm of change-point detection can be written in the form
resembling the popular CUSUM procedure of detection of
jumps in the mean. First, we compute the normalized statis-
tic

dn = Dn,1p,q/Dn,L,L.-N0

and then we define the process Wy, Wy, Wi,...
culated sequentially by

which is cal-

W, = max {Wn,1 +dp —dn1 —1/(3LQ), 0}7

n = 2,3,..., and starting with W; = 0, where Q@ = ¢q —
p. If the SSA detection statistic W,, becomes larger than
a threshold, then this indicates the presence of a change
in the structure of time series. Under the assumption of
normality, the value of the threshold was found in [5] to be
approximately equal to

- 2 LSVABLe =@+ 13

where ¢, is the (1 — a)-quantile of the standard normal dis-
tribution.

To demonstrate the performance of the SSA algorithm of
change-point detection, we consider an artificial time series

148 V. Kornikov

Y U M NN | O SO ]
2_ .............................................................................................
ol e

50 100 150 200 250 300 350 400 450
1 T T T T T T T T

50 100 150 200 250 300 350 400 450
Figure 9. The SSA detection statistic W, (top) for the
simulated time series (bottom).

T1,...,T450 defined by

S 0351n2”k—|—015m10+016k k=1,...,250
"7 0.2sin 2 4 0.2sin T 0.1, k= 251,...,450

where €, are i.i.d. random variables with normal distribu-
tion N(0,1). In Figure 9 (bottom) we show the simulated
time series. We run the SSA algorithm of change-point de-
tection with parameters L = 50, r = 5, @ = 1 splitting
the time series z1,..., 2z, into 2 pieces: the past time se-
ries segment x1., and the most recently observed time series
segment T, 41.n,+1. Note that the corresponding threshold is
h = 0.73 for selected values of parameters. We depict the
SSA detection statistic in Figure 9 (top) and we can see that
the statistic W,, goes well above the threshold announcing
the presence of the structural break in the time series.

SSA change-point detection for temperature
records

In this section, we apply the SSA-based algorithm of
change-point detection with the following parameters. We
take the window length L = 50, the number of the lead-
ing eigenvectors r = 5, = 1 and divide the time series
Z1,%a,...,xs for each ¢ into 2 parts: (i) the past time series
segment 1., and (ii) the most recently observed time se-
ries segment x,,41.,47 with n + L = t. We also performed
the SSA change-point detection with r = 7 for temperature
records and obtained results which are similar to the case
r = 5 and not given here for sake of brevity. Under the as-
sumption of normality, the threshold is given by h = 0.73.
Since the assumption of normality is moderately violated,
we should consider a larger value for the threshold, see [5].

In Figures 10-17 we depict the change-point detection
statistic Wy, which is the CUSUM modification of the
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Figure 10. The SSA detection statistic W, 1, for global
Earth temperatures.
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Figure 11. The SSA detection statistic Wy, for North Pole
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Figure 12. The SSA detection statistic W, for South Pole
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Figure 13. The SSA detection statistic W, for Northern
hemisphere temperatures.

SSA-dissimilarity measure between the segment z1,...,x,
and the segment 11, ..., T4+ for n =150, ...,436, where
436 is the length of original time series.

In all these figures we can see that the statistic W,, does
not go much above the threshold which indicates that the
structural change, which happened around 1998, is not very
significant. We should however note that in Figure 15 the

15 ! ! ! ! !

05k g ................ .................. ..............

1%90

Figure 14. The SSA detection statistic W, for Southern
hemisphere temperatures.
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Figure 15. The SSA detection statistic W, .1, for Tropics

temperatures.
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Figure 16. The SSA detection statistic W,y for Earth land
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temperatures.
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Figure 17. The SSA detection statistic W, 1, for Earth ocean
temperatures.

large values of W,, occur for Tropics temperatures for the
period 1997-2000. Indeed, as shown in Figure 6, Tropics
temperatures for this period have rather unusual behavior.

Also, in Figure 12 the large values of W,, occur for South
Pole temperatures for the period 2013—2014. As shown in
Figure 3, South Pole temperatures for this period have os-
cillation with nontypical frequency.
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Overall, we can conclude that the temperature records
do not have significant and statistically justifiable structural
breaks except perhaps the change, which happened around
1998.

5. CONCLUSION

In this paper, we have compared the forecasts of Earth
temperature records made by A. Pepelyshev and A. Zhigl-
javsky in 2009 and published in [2] with the data actu-
ally observed during 2010-2014. We have demonstrated that
the forecasts made by A. Pepelyshev and A. Zhigljavsky
were quite accurate and have captured the main patterns of
the temperature series very well. We have also shown that
mostly the temperatures have neither increased or decreased
but continued to be quite volatile. Also the SSA algorithm
of change-point detection does not announce the presence
of essential structural breaks in temperature records. Ex-
cept perhaps a small change happened around 1998.
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