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Modelling extreme flood heights in the lower
Limpopo River basin of Mozambique using a
time-heterogeneous generalised Pareto

distribution

DANIEL MAPOSA*, JAMES J. COCHRAN, AND ‘MASEKA LESAOANA

In this paper we fit a time-heterogeneous generalised
Pareto distribution (GPD) to the flood heights in the lower
Limpopo River basin of Mozambique (LLRB). The maxi-
mum likelihood method is used for parameter estimation of
the nonstationary GPD. We take an in-depth review of the
merits of peaks-over-threshold and block maxima. We also
show the relationship between generalised extreme value
(GEV) distribution and GPD in a mathematical proof and
discuss the link between the mathematical proof and the
findings. Nonstationary time-dependent GPD models with
a trend in the scale parameter are considered in this study.
The results show overwhelming evidence in support of the
existence of a linear trend in the scale parameter of the
GPD models at all the three sites in the LLRB. The time-
heterogeneous GPD models developed in this study were
found to be statistically worthwhile and provide an im-
provement in fit over the time-homogeneous GPD models
based on the goodness-of-fit tests. This study shows the im-
portance of extending the time-homogeneous GPD models
to incorporate climate change factors such as trend in the
LLRB. The models developed in this study are expected
to be more reliable than their stationary counterparts for
planning and decision making processes in Mozambique.
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1. INTRODUCTION

The presence of long-term trends in extreme events such
as annual river flow or precipitation data attributed to cli-
mate variability has become an active area of interest for
hydrologists and climatologists in the 215% century in or-
der to investigate climate change scenarios and improve re-
search on climate impact on weather extremes [19, 21, 22].
These trends result in nonstationary processes which have
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the characteristic to systematically change with time [4].
Extreme value theory is the branch of statistics used ex-
tensively to study very low or very high values in the tail of
some distribution. However, when the process is nonstation-
ary the usual extreme value limit models are not applicable.
The usual procedure when dealing with nonstationary pro-
cesses is to adopt a pragmatic approach of using the stan-
dard extreme value models as basic templates that can be
enhanced by statistical modelling [4].

It is argued that although the atmosphere-ocean general
circulation models (AOGCMs) from an Intergovernmental
Panel on Climate Change assessment report (IPCC AR4)
were projecting increases in intense precipitation and flood-
ing at a large spatial scale, the models are limited in terms
of their ability to quantify extreme events at regional and
at-site scales which are crucial for decision making [21]. The
use of statistical techniques in river flow or large scale pre-
cipitation extremes associated with climate change has been
limited [21, and references therein]. According to [22] some
researchers have established that global change related ex-
treme events are expected to be on the rise all over Eu-
rope although there is no general agreement in concluding
that the frequency and magnitude of floods have increased
due to climate related changes. The problem in lack of a
general agreement is attributed to shortage of instrumental
data records in many regions of the continent of Europe. In
our view these findings and problems encountered in Europe
should draw similarities with climate related extreme events
in Africa, particularly in Southern Africa where the study
area in this paper is situated although the climatic condi-
tions are very different. In general, several studies in Europe
project increases in floods in some regions, for example, in
Catalonia the northeast of Spain [22]. In a separate study
based on climate simulations, [19] argued that a warmer cli-
mate could increase the proportion of floods. It is generally
accepted that the expected climatic changes are associated
with a higher frequency of occurrence of extreme floods but
not associated with a higher intensity of extreme floods [19].

According to [22] with further reference to a review by
[10] “there are already a few studies regarding flood mag-
nitude and occurrence changes at river basin level”. How-
ever scientific literature on these climatic change related ex-
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tremes is mainly focused on the continent of Europe, the
UK and North America [22, and references therein].

Given that the climatic conditions in these areas (Eu-
rope, UK and North America) differ strongly from the cur-
rent climatic conditions in Southern Africa, and that fu-
ture projections may also be very different, this study aims
to assess and develop climate related models for the future
flood trends in the lower Limpopo River basin (LLRB) of
Mozambique, an area in Southern Africa that has not been
deeply studied. Recently [1] studied the impact of climate
change on streamflow in four large African river basins in-
cluding Limpopo River basin using a geo-scientific model
and found that the Limpopo River basin is highly affected
by climate variability. Our statistical approach will comple-
ment the work by [1] through developing statistical climate
change models which will help in decision making for the
basin.

According to [7] there are two fundamental approaches
widely used in statistics of extremes namely peaks-over-
threshold (POT) (or partial duration series) and block max-
ima (BM) (also called annual maximum series). The BM ap-
proach in extreme value theory (EVT) consists of dividing
the observation period into blocks (non-overlapping peri-
ods of equal size) and restricts attention to the maximum
observation in each block (naturally years in the case of
floods). The new observations (maxima series) follow ap-
proximately the generalised extreme value (GEV) distribu-
tion [7]. In the POT approach in EVT, one chooses a reason-
ably high threshold and selects those of the initial observa-
tions that exceed the predetermined threshold. The proba-
bility distribution of the new observations (exceedances) fol-
lows approximately a generalised Pareto distribution (GPD)
[6, 7]. The exact conditions under which the POT statisti-
cal method is justified are described by a second order term
[6: Section 2.3]. In the case of BM approach it is generally
accepted that the maxima follow very well an extreme value
distribution and [7] give more theoretical details on the ex-
act conditions of the BM statistical method.

It is argued [5, 7] that the POT method makes better
use of the available information since it retains all ‘rele-
vant’ high observations whereas the BM method on one
hand misses some of these high observations and, on the
other hand, might retain some lower observations (the latter
‘hand’ might also be the BM merit over POT as presented
by de Haan at the Extreme Value Analysis (EVA2013) con-
ference, 8-12 July 2013, Shanghai, China).

The relevant merits of BM and POT are discussed in
detail [7] with references to several papers based on simu-
lated data. Among the merits are that POT estimates are
better than BM estimates if the number of exceedances is
larger than 1.65 times the number of blocks for the Gumbel
family of distributions (£ = 0) when using maximum likeli-
hood (ML) parameter estimators. The POT is as efficient as
BM for high quantiles using probability weighted moment
(PWM) or L-moment parameter estimators. Provided the
number of exceedances is larger than the number of blocks,
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POT is more preferable for fat-tailed distributions (Fréchet
type), whereas BM is more efficient for short-tailed distribu-
tions (Weibull type). When using historical data, the gains
with the BM are in the range of the gains with the POT
method based on ML estimators [7, and references therein].
Based on simulation studies, the POT samples with an av-
erage of two or more observations above the threshold per
block have more accurate estimates than the corresponding
BM estimates and the accuracies become similar and rather
good with more than 200 years of historical data [7, and
references therein)].

All these studies on merits of POT, some with mixed
views, show in general that the POT is more efficient than
the BM in many ways provided that the number of ex-
ceedances is greater than the number of blocks. The two
methods have comparable performances when the sample
sizes are large. However, the theoretical comparison per-
formed [7] showed that BM is more efficient with lower
asymptotic variances of both extreme value index and quan-
tile estimators for BM as compared with POT. The mini-
mal mean square error is also lower for BM under normal
circumstances [7].

Our study uses the POT method in order to utilise the
richness of information from the big data records contained
at the three sites in the LLRB of Mozambique considered
in this study. The parameters of the GPD in this paper are
estimated by the ML method.

The outline of the rest of the paper is organised in the
following structure. Section 2 presents the research method-
ology, Section 3 presents the results and discussion of the
findings, and finally Section 4 gives the concluding remarks.

2. RESEARCH METHODOLOGY

This section presents the study sites and the data used in
the study, a brief probability framework of POT approach
including the extension of time-homogeneous GPD model to
linear trend models. We also prove the link between POT
and BM methods through a mathematical proof using the
results in literature [4].

2.1 Study sites and data

The data used in this study was obtained from the
Mozambique National Directorate of Water (DNA), the au-
thority responsible for water management in Mozambique
in the Ministry of Public Works and Housing. The data
are hydrometric daily flood heights (in metres) recorded at
Chokwe (1951-2010), Combomune (1966-2010) and Sica-
cate (1952-2010) hydrometric stations for the lower Limpo-
po River of Mozambique as presented in Figure 1 [14, 15].
The three sites are such that Combomune is located in the
upper part of the basin about 162 km from the border with
South Africa and Zimbabwe, Chokwe is located in the mid-
dle of the basin about 130 km downstream of Combomune
and Sicacate is further downstream of Chokwe in the lower
part of the basin on the way to the Indian Ocean. The daily
flood heights at each site were recorded three times a day,



i.e. morning, afternoon and evening periods. There was a
number of missing values in-between the years at each site
but this number was counterbalanced by the fact that the
data was recorded three times a day making the number of
missing values negligible. Further scrutiny on the data re-
veals that most of the missing values occurred in years of
severe droughts or during the winter season which is usually
characterised by very low rainfall. Since the interest of this
study is in higher values above a certain high threshold, it
would mean that these missing values were still likely go-
ing to be below the threshold and therefore irrelevant in the
study.

2.2 Peaks-over-threshold and generalised
Pareto distribution

The approach used in this study is POT. The POT
method considers only those of the initial observations that
exceed a pre-specified high threshold. In a more formal
approach, let X = Xj,..., X, be independent and identi-
cally distributed (iid) random variables representing flood
heights. If F' is a distribution function (possibly unknown)
of the flood heights X, then the conditional excess (X — u)
distribution function is:

(1) Fuly) =PX —u<ylX >u)
_ P(X—-u<yand X >u)
P (X > u)
_ F(y+u) — F(u)
1—F(u)

, 0<y<zp—u,

where u is the threshold, y = = — u are the excesses and
Zp < 0o is the right endpoint of F' [4, 13]. The threshold, w,
is selected using the mean residual life plots and threshold
choice plots [3, 4, 5]. Based on the [2] and [16] theorems, for
a large class of underlying distribution of flood heights F' the
conditional excess distribution function F,(y), for large wu,
is well approximated by a Generalised Pareto Distribution

(GPD):
(s

(2)
G(Uag;y):
1— exp (——) for £ =0,

where o and £ are, respectively, the shape and scale pa-
rameters. These parameters are estimated by the maximum
likelihood (ML) method in this study.

Some key points in extreme value theory are that if BM
series have a GEV distribution then POT series have an as-
sociated GPD. Additionally, the shape parameter £ in the
GPD exactly equals that of the corresponding GEV distri-
bution [4, 9, 13].

We show a mathematical connection between POT and
BM methods based on the theoretical results [4]. We start by
assuming that the POT model holds, such that values larger
than u occur according to a Poisson process with intensity
A (the expected number of events in any time interval of

, for ££0, 0 <y <zp—u,

length 1), where this process is independent of the sizes of
the exceedances and the sizes of the exceedances are iid and
follow a GPD, G(y) =1 — (1 + £4)1"/°. Then
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k=0
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observation period.

In the last expression we note that ((AT)¢ — 1)o/€ is a
constant and also the denominator in the last expression
o(AT)¢ is a constant. If we represent the two constants by
1o and g, respectively then Eqn. (3) simplifies to:

P(My < i+ y) = exp(—(1 + ¢4—F2) 71
0o
which is a GEV distribution.

Thus we have proved the mathematical relationship be-
tween GPD and GEV which implies the connection between
POT and BM. It will be interesting to see whether the prac-
tical results at the three sites in this study will also show
some connection.

2.3 Threshold selection

Two threshold selection techniques were used in this
study namely mean excess life plot and threshold choice
plot. The mean excess life plot is an exploratory technique
carried out prior to model selection while threshold choice
plot is based on an assessment of the stability of parame-
ter estimates through fitting of models (GPD in this study)
across a range of different thresholds [4].

The choice of a threshold is critical to any POT analysis.
It is based on a trade-off between bias and variance. Too
high a threshold would discard too much data and generate
a few exceedances leading to high variance of the estimate
of the parameters. On the other hand, too low a threshold
would necessitate using data that are no longer considered
as being in the tails of the distribution and this will violate
the asymptotic basis of the model, thereby leading to an in-
crease in bias [4, 13]. The standard practice is to choose as
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low a threshold as possible provided the limit model gives a
reasonable approximation. The bias-variance trade-off prin-
ciple is based on choosing a low enough threshold value to
have sufficient data to estimate the parameters ¢ and &, and
high enough threshold value for the asymptotic theorem to
be considered accurate [4].

Let (1) < x(2) < ... < 2(p,) be the exceedances (x; : z; >
u) that are obtained from our sample and define threshold
excesses by y; = x(j) —u, for j = 1, ..., n,, then the empirical
mean excess life plot is defined by the points:

(4)

where n,, is the number of observations that exceed u, x(,,)
is the largest value of X;, and e(,, ) = % >t (zy—u). The
mean residual life plot should be approximately linear above
a threshold ug at which the GPD provides a valid approxi-
mation to the excess distribution [4, 13]. The linearity of the
empirical mean excess life plot forms the basis of deciding
a threshold [13]. The interpretation of the mean residual
life plot in practical situations is not always an easy task
[4] and this complexity can be eased by complementing the
mean residual life plot with other plots such as the threshold
choice, L-moment and dispersion plots [13]. The L-moment
and dispersion plots will not be considered in this study.

The threshold choice plot is based on the result that if
X ~ GPD(ugp,00,&), then let u; be another threshold such
that uy > ug. Then X|X > wu; is also another GPD with
updated parameters o1 = o9 + &o(ur — up) and & = &o.
Threshold choice plots are given by the points defined by:
()

{(ul,a*) tup < x(nu)}

{(wen, (W) s u <z},

and  {(u1,&) 1 w1 < Z(n,)}

where o, = 01 — & uy. Thus estimates of o, and £ are con-
stant for all uq; > wug if ug is a suitable threshold for the
excesses to follow a GPD [13]. The estimates of o, and &
will not be exactly constant but approximately due to sam-
pling variability [4].

2.4 Declustering

One of the shortcomings of the POT method as compared
to block maxima is that it is prone to producing depen-
dent data particularly when dealing with time series data
[8, 20, 23]. Time series data are known to be strongly auto-
correlated hence a naive selection of exceedances above a
given threshold may lead to events that are dependent [8,
11, 17, 23]. In order to deal with this problem of cluster-
ing of neighbouring events a technique called declustering
is used to achieve independence [11, 17]. In [17] a function
called clust in R package is used to identify exceedances over
a fixed threshold while meeting the independence criteria
using two arguments: the threshold and a time condition
(tim.cond). In [17] clusters are identified using the following
procedure:

1. The first exceedance initiates the first cluster;
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2. The first observation below the threshold ends the clus-
ter unless tim.cond does not hold;

3. The next exceedance which holds ¢im.cond initiates a
new cluster;

4. The process is iterated as needed.

In all declustering procedures, the main purpose is to
identify cluster maxima. Variations usually appear in the
choice of the time condition. In [17] two flood events are
considered to be independent if they do not lie within a
window period of 8 days. In [12] and [23] two flood events
are considered to be independent if they are a day (24 hours)
apart, that is, the POT values a day prior to and after the
peak rainfall event are removed from the data set. For ex-
ample, if a peak rainfall value (or flood height) in a cluster
is selected for 5 December 2015 then rainfall values over
the threshold on 4 December 2015 and 6 December 2015
are not considered in the POT data set. In [8] the Ferro-
Segers declustering involves the estimation of the extremal
index, ~, and the method proposes an automatic selection
of the run-length auxiliary parameter, r, used to identify
independent clusters. In [8], the exceedance times consist of
two groups: one corresponding of inter-cluster times and the
other corresponding to intra-cluster times. Based on asymp-
totic theory [8] postulates that the 1 — « proportion of the
smallest interexceedance times belong to the intra-cluster
times, and the rest belong to the inter-cluster times. There-
fore, given m sorted interexceedance times, we can take the
(lmy] + 1) interexceedance time as the smallest interex-
ceedance time that separates the clusters. Declustering pro-
ceeds with 7 = |m~y| + 1. In this paper we use the declus-
tering approach based on [8] and programmed in R by [20].
The declustering results for the three sites are presented in
Figures 3, 7 and 11 for Chokwe, Combomune and Sicacate,
respectively.

2.5 GPD models

Consider the GPD model in Eqn. (2) for £ # 0, that is,
Gy)=1-01+ %y)jrl/g. Let this model be M.

In this present study we also propose one more model
M. The model M; has a linear trend in the scale parameter
such that log o(t) = op+ o1t and £(¢) = £, and hence model
M; and its log-likelihood are of the form G (o(¢),&;y,t) and
l(00,01,&; x,t), respectively. In its general form, the non-
stationary model, My, is given by Eqn. (6):

-1/¢
6) Glo(t),&y,8) =1— <1 N exp(o—i—ywnt)) ’
+

for € #0, 0 <y <zp—u,

2.6 Model choice

An important question to answer is whether the non-
stationary model is valid, i.e. is it worthwhile to have the
nonstationary model? This is equivalent to testing whether



the nonstationary model provides an improvement in fit over
the time-homogeneous (usually simpler) model My. The ML
estimation of nested models uses a simple procedure called
the deviance (D) statistic to compare one model against the
other [4]. In this study the time-homogeneous GPD model,
My, is a special case of the time-dependent model M;. In
general, consider My C My, then we define deviance statis-
tic, D, as in Eqn. (7):

(7)

where [; (M7) and lp (M) are the maximised negative log-
likelihood (NLLH) values for model M; and My, respec-
tively [4]. D has a Chi-square, X%)a, asymptotic distribution
with & degrees of freedom tested at a (=0.05 or 5%) level of
significance, where k is the difference in dimensionality (or
difference in number of parameters) of M; and Mj. Thus,
D is compared to critical values of x% , where D > x? |
suggests that model M; explains substéntially more of the
variability in the data than M.

D =2{ly (My) —lo (M)},

3. RESULTS AND DISCUSSION

This section presents the results of the study as well
as discussing the results. The results in this section were
obtained using R statistical programming package and R
Studio [18]. Results for the time-homogeneous GPD model
(Mp) and time-dependent GPD model (M;) are presented
in Tables 1, 2 and 3 for Chokwe, Combomune and Sicacate,
respectively. The ML method was used to estimate the pa-
rameters of all GPD models.

3.1 Chokwe models

The time series plot for Chokwe shows that, with the
exception of a very rare extreme 13 m flood height, the ma-
jority of flood heights at Chokwe are below 9 m (Figure 1a).
The mean residual plot and the threshold choice plots (Fig-
ure 2) were used to come up with a reasonably high thresh-
old of 4.8 m for Chokwe hydrometric station. The threshold
of 4.8 m was chosen in order to meet the requirements of
the bias-variance threshold trade-off balance such that it is
high enough for the asymptotic theorem to be considered
accurate and low enough to have sufficient data to estimate
the GPD parameters.

The shape parameter ¢ is significantly different from
zero (p-value < 0.0001) for both the time-homogeneous
and nonstationary GPD models (Table 1), suggesting that
the distribution of exceedances over the 4.8 m threshold
at Chokwe is short-tailed (negative Weibull) and does not
come from a Gumbel (exponential) distribution family. The
D statistic value for model pair (My, M;) in Table 1 is
2 (1803.637 — 1794.366) = 18.542 and the critical value for
the pair is x7 05 = 3.841. The likelihood ratio test from
the NLLH values in Table 1 for the test of o1 = 0 is highly
significant at 5% level of significance (t-ratio = 3.067, p-
value < 0.005). These results show that the nonstationary

Table 1. Parameter estimates and negative log likelihood
(NLLH) of the GPD models for Chokwe (1951-2010)

Model 0o 01 13 NLLH
Mo 1.4478677 0 -0.1628891 1803.637
M, 0.2528215 0.0000059 -0.1940787 1794.366

GPD model, M, is both significant and worthwhile over
the time-homogeneous GPD model, My, in fitting the daily
flood heights at Chokwe. These findings suggest that the
nonstationary GPD model with a linear trend in the scale
parameter provides an improvement in fit to the daily flood
heights at Chokwe over the time-homogeneous GPD model
since the D statistic value of 18.542 (>3.841) is significantly
large. The residual probability plot for the nonstationary
GPD model suggests a good fit to the data at Chokwe (Fig-
ure 5). On the contrary, however, the residual quantile plot
shows a poor fit towards high quantiles indicating that ex-
tremely high flood heights at Chokwe may not be adequately
modelled by the nonstationary model (Figure 5). The failure
of the nonstationary GPD to model extremely high quantiles
(flood heights) at Chokwe such as the 13 m flood height of
the year 2000 is also highlighted in the time-homogeneous
GPD model at the site (Figure 4). The return level plot
based on the time-homogeneous GPD model for Chokwe re-
veals that the 13 m flood height which occurred in the year
2000 has a return period, on average, in excess of 1000 years
(Figure 4) which appears to be a ridiculously high return
period. In general, the residual diagnostic plots (Figures 4
and 5) suggest that the GPD models, both stationary and
nonstationary, may not be quite suitable to model extreme
floods at Chokwe implying that an alternative distribution
may be necessary [14].

Despite the shortcomings in the GPD models for Chokwe
presented in this study, there is strong evidence that
the nonstationary GPD model outperforms the time-
homogeneous GPD model. Therefore, based on the results of
this study, the proposed model for Chokwe is the nonstation-
ary GPD model with a linear trend in the scale parameter.
The general nonstationary GPD model for Chokwe is given
in Eqn. (8):

(8)

G(a(t), &y,
1 <1 n —0.1940787y;
exp (0.2528215 + 0.0000059¢;)
for £ <0, 0<y; <xp —u,

)

) 1/0.1949787

where y = y; vi=1,2,... = ¥; —4.8 are the excesses over the 4.8
m threshold, x; is the daily flood height, and ¢; is time such
that ¢; = 1,2,...,56058, ... where 56058 is the time for the
last observed flood height value over the period 19 June 1951
to 31 August 2010. Note that the daily flood height data
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(a). Chokwe Ts-Plot

(b). Combomune Ts-Plot

(c). Sicacate Ts-Plot

o | o]
~— 9 . -
o | o ]
o -
0 - ©
B B B
S £ o £
= = | =
R=) E=y R=y
Q [} [9)
= < <
8 © kS g o
© o ©
[ [ [
<+ 4
<+ - <
o~ 4
[aVIE N
o - o o -
— 1 T T T T 1 T T T T T — T 1T T T 1
1950 1970 1990 2010 1970 1990 2010 1950 1970 1990 2010
Year Year Year

Figure 1. Time series (Ts) plots of the three sites: Panel (a). Chokwe (1951-2010), showing excesses over a 4.8 m threshold;
(b). Combomune (1966-2010), showing excesses over a 5.8 m threshold; (c). Sicacate (1952-2010), showing excesses over a
7.4 m threshold.

were recorded three times a day, i.e. morning, afternoon and
evening meaning that each day has 3 values of ¢; at Chokwe
hydrometric station.

3.2 Combomune models

The time series plot for Combomune shows that the ma-
jority of flood heights are below 10 metres except for a few
rare extreme flood heights of about 11 m (Figure 1b). The
mean residual plot and the threshold choice plots (Figure 6)
were used to come up with a reasonably high threshold of
5.8 m for Combomune hydrometric station which was cho-
sen in such a way that it is high enough for the asymptotic
theorem to be considered accurate and low enough to have
sufficient data to estimate the GPD parameters.

The shape parameter £ is significantly different from zero
(p-value < 0.0001) for both the time-homogeneous and non-
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Table 2. Parameter estimates and negative log likelihood
(NLLH) of the GPD models for Combomune (1966-2010)

Model 00 01 13 NLLH
Mo 1.3974615 0 -0.1785666 635.826
My 0.0482690 0.0000188 -0.2254202 619.070

stationary GPD models (Table 2), suggesting that the dis-
tribution of exceedances over the 5.8 m threshold at Combo-
mune is short-tailed (negative Weibull) and does not come
from a Gumbel (exponential) distribution family. The D
statistic value for the model pair (My, M;) in Table 2 is
33.512 which is too high compared to the critical value of
X%,o.os = 3.841. The likelihood ratio test from the NLLH
values in Table 2 for the test of o; = 0 is highly signifi-
cant at 5% level of significance (t-ratio = 9.481, p-value <
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Figure 2. From left to right: Panel (a). First two plots: Threshold choice plots or parameter stability plots, (b). Mean residual
life plot for the daily flood height data at Chokwe. Both panels for Chokwe show ML estimates and 95% confidence intervals
for transformed parameters in Generalised Pareto model.

0.0001). These results show that the nonstationary GPD
model, M7, is both highly significant and worthwhile over
the time-homogeneous GPD model, My, in fitting the daily
flood heights at Combomune. This suggests that the nonsta-
tionary GPD model with a linear trend in scale parameter
provides an improvement in fit to the daily flood heights at
Combomune over the time-homogeneous GPD model since
the D statistic value of 33.512 (>3.841) is significantly large.
The residual diagnostic plots for the nonstationary GPD
model suggest a good fit to the data (Figure 9). The resid-
ual diagnostics for the time-homogeneous model also suggest
a good fit to the data (Figure 8). However, results in this
study have revealed overwhelming evidence that the non-
stationary GPD model outperforms the time-homogeneous
GPD model and provides an improvement in fit over the
time-homogeneous GPD model.

The proposed model for Combomune based on the find-
ings of this study is the nonstationary GPD model with a
linear trend in the scale parameter. The nonstationary GPD
model for Combomune is given in Eqn. (9):

(9)

G(a(t),&y,t)
—0.2254202y;
=1—-(1+
exp (0.0482690 + 0.0000188t;)
for £ <0, 0<y; <zp—u,

Y

) 1/0.2254202

where y = y; vi=1,2,... = x; — 9.8 are the excesses over the 5.8
m threshold, x; is the daily flood height, and ¢; is time such
that t; = 1,2,...,37907, ... where 37907 is the time for the
last observed flood height value over the period 3 February
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Figure 3. Chokwe declustered flood heights showing cluster
maxima above a 4.8 m threshold.
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Figure 4. Time-homogeneous GPD diagnostic plots for
Chokwe.

1966 to 31 August 2010. Also note that the daily flood height
data were recorded three times a day, i.e. morning, afternoon
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Figure 5. Nonstationary GPD diagnostic plots for Chokwe.

and evening, meaning that each day has 3 values of ¢; at
Combomune hydrometric station.

3.3 Sicacate models

The time series plot for Sicacate shows that the flood
heights are generally high with quite a number of them
above 10 m (Figure 1c). The graph also shows one extremely
high flood height of about 13 m in magnitude. The mean
residual life plot and the threshold choice plots (Figure 10)
were used to come up with a reasonably high threshold of
7.4 m for Sicacate hydrometric station which was chosen
to meet the bias-variance threshold trade-off balance such
that it is high enough for the asymptotic theorem to be con-
sidered accurate and low enough to have sufficient data to
estimate the GPD parameters.

The shape parameter £ is significantly different from zero
(p-value < 0.0001) for both the time-homogeneous and non-
stationary GPD models (Table 3), suggesting that the dis-
tribution of exceedances over the 7.4 m threshold at Sicacate
is short-tailed (negative Weibull) and does not come from
a Gumbel (exponential) distribution family. The model pair
(My, M;) from Table 3 has a D statistic value of 360.042
and a critical value of x3 o5 = 3.841. The likelihood ra-
tio test from the NLLH values in Table 3 for the test of
o1 = 0 s highly significant at 5% level of significance (t-ratio
= 13.486, p-value < 0.0001). These results reveal that the
nonstationary GPD model, M, is both highly significant
and worthwhile over the time-homogeneous GPD model,
My, in fitting the daily flood heights at Sicacate. These
findings suggest that the nonstationary GPD model with
a linear trend in the scale parameter provides an improve-
ment in fit to the daily flood heights at Sicacate over the
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Table 3. Parameter estimates and negative log likelihood
(NLLH) of the GPD models for Sicacate (1952-2010)

Model 6o 01 13 NLLH
Mo 2.3711619 0 -0.4105294 2702.413
My 0.4627278 0.0000261 -0.6105592 2522.392

time-homogeneous GPD model since the D statistic value
of 360.042 (>3.841) is significantly large. The residual diag-
nostic plots for both the time-homogeneous and the nonsta-
tionary GPD models suggest a good fit to the data (Figures
12 and 13). It is clear that results of the diagnostic plots
from both Figures 12 and 13 suggest a very good fit of the
GPD to the data. This may imply that both models can
be recommended for modelling the daily flood heights at

Sicacate. Nevertheless, overwhelming evidence from the an-
alytical goodness of fit tests suggest that the nonstationary
GPD model is more appropriate at the site and is worth
proposing because it adds more information in fit over the
time-homogeneous model.

The proposed model for Sicacate based on the findings
is the nonstationary GPD model with a linear trend in the
scale parameter. The nonstationary GPD model for Sicacate
is given in Eqn. (10):

(10)
G(o(t),&y,t)
—0.6105592y;

=1-(1+
( exp (0.4627278 + 0.0000261¢;)
for £ <0, 0<y; <zp—u,

?

) 1/0.6105592
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Figure 7. Combomune declustered flood heights showing
cluster maxima above a 5.8 m threshold.
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Figure 8. Time-homogeneous GPD diagnostic plots for
Combomune.
where y = ¥; vi=1,2,... = x; — 7.4 are the excesses over the 7.4

m threshold, z; is the daily flood height, and ¢; is time such
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Figure 9. Nonstationary GPD diagnostic plots for
Combomune.

that t; = 1,2,...,40396, ... where 40396 is the time for the
last observed flood height value over the period 16 December
1952 to 31 October 2010. Note that the daily flood height
data were recorded three times a day, i.e. morning, afternoon
and evening, meaning that each day has 3 values of t; at
Sicacate hydrometric station.

3.4 Overall discussion

The data series at all the three sites considered in this
study had some missing values in-between the years during
the period considered for the study. However, there are two
main reasons to be content with the data used to develop
the models in this study: (1). In most years where there
are missing values they appeared during the winter period
when the flood heights are generally low and would have
likely missed out on the high threshold even if they were
recorded, (2). The fact that the data was recorded three
times a day means we have more data than we would have
expected if the data was recorded once a day, for instance,
the number of exceedances above high thresholds were 1 494,
550 and 1 860 for Chokwe, Combomune and Sicacate, re-
spectively. The percentages of the number of exceedances
over a prescribed threshold compared to the total number
of observations at each site were 2.7%, 1.5% and 4.6% for
Chokwe, Combomune and Sicacate, respectively. According
to [7], the POT method is more efficient if the number of ex-
ceedances is much larger than the number of blocks. In our
case there are 60, 45 and 59 blocks for Chokwe, Combomune
and Sicacate which means that the number of exceedances at
each site is 24.9, 12.2 and 31.5 times the number of blocks,
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respectively. Literature states that the estimation of high
quantiles becomes better when the number of exceedances
is 1.65 times the number of blocks, particularly when using
maximum likelihood estimators for zero shape (¢ = 0) pa-
rameters [5, 7]. Although this study has revealed that the
shape parameter is non-zero (£ # 0) at all the three sites,
the number of exceedances at all the sites is comparatively
higher than 1.65 times the number of blocks. All facts per-
taining to the data and the findings in this study suggest
that the models developed based on this data can be relied
upon.

The findings in this study can be useful to help the lower
Limpopo River basin community prepare and protect itself
from future disastrous extreme floods. The Limpopo River
basin is very important to the economy of Mozambique be-
cause it houses the largest irrigation scheme in the country,

Chokwe Irrigation Scheme. The basin also forms the back-
bone of the economy of the country in terms of agriculture
as most of the agricultural activities in the country such
as rice production are done in the basin mainly in Chokwe
district. This implies that a single disastrous extreme flood
such as the one that occurred in the basin in the year 2000
may bring the economy of the country to its knees. The ma-
jor highlights of this paper are in the application of statistics
of extremes methods to large volumes of existing data that
is untapped in the basin in order to complement the exist-
ing methods in the basin used to control and reduce flood
disasters.

In a separate study in the basin a GEV distribution es-
timated by the maximum likelihood method was fitted to
block maxima data for the same sites Chokwe, Combomune
and Sicacate, and it was found that the distribution of an-
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Figure 11. Sicacate declustered flood heights showing cluster
maxima above a 7.4 m threshold.
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Figure 12. Time-homogeneous GPD diagnostic plots for
Sicacate.

nual daily maximum flood heights at Combomune could be
modelled by a nonstationary GEV distribution with a linear
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Figure 13. Nonstationary GPD diagnostic plots for Sicacate.

trend in the scale parameter, while for Sicacate the proposed
GEV model had a linear trend in both location and scale pa-
rameters, whereas no evidence of a linear trend in the GEV
model was found at Chokwe (Maposa, Cochran & Lesaoana,
unpublished observations). The present study found similar
results for Combomune and Sicacate except for the addi-
tional presence of a linear trend in the location parameter
at Sicacate. The major differences were found at Chokwe
where the present study found a linear trend in the scale
parameter of the GPD model which is completely differ-
ent from the time-homogeneous GEV model recommended
based on block maxima data.

The findings in this study concur with the results of [1]
which found climate variability to have a very big impact on
the Limpopo River basin streamflow. This work advances
the work of [1] through incorporating the dominant impact
of climate variability in the basin into time-heterogeneous
GPD extreme value models.

4. CONCLUSION

Statistics of extremes in a changing climate is considered
for the lower Limpopo River basin of Mozambique at three
sites in an attempt to develop future flood trends for an
area that has not been deeply studied in Southern Africa.
This is the first time climate change extreme value statistics
models are applied to the data in the basin. It is hoped that
the findings in this study will contribute towards decision
making in the basin and help reduce the impact of floods
on humans and properties, as well as reduce the amount of
aid money required for disaster recovery and rehabilitation
assistance in the basin.



The findings in this study revealed a very strong im-
pact of climate change in the basin which can be modelled
by a nonstationary GPD model with a linear trend in the
scale parameter. The time-heterogeneous GPD models out-
performed the time-homogeneous GPD models at all the
three sites suggesting that the nonstationary GPD models
are worthwhile and provide an improvement in fit over the
time-homogeneous GPD models. This improvement in fit is
very important for the planning and policy-making of the
government of Mozambique and its partners in the lower
Limpopo River basin, where the largest irrigation scheme of
the country is situated. The developed time-dependent GPD
models would also likely produce more reliable estimates in
the frequency of floods since the new models in the basin
take into account of the trend in the scale parameter.

Future research will attempt to advance this study to
consider Bayesian inference and Markov chain Monte Carlo
methods in a changing climate for the lower Limpopo River
basin of Mozambique. Covariates in the form of cycles
and/or a physical variable such as a dummy variable in-
dicating the occurrence of cyclones in the region will also be
considered in future studies involving statistics of extremes
in a changing climate.
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