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A hybrid transfer learning model for crude oil

price forecasting

JIN X1A0, Y1 HU, Y1 X1A0*, LIXIANG XU, AND SHOUYANG WANG

Most of the existing models for oil price forecasting only
use the data in the forecasted time series. This study pro-
poses a hybrid transfer learning model (HTLM) for crude
oil price forecasting. We first selectively transfer some re-
lated time series in the source domain to assist in modeling
the target time series by using a transfer learning technique,
and then construct the forecasting model using the analog
complexing (AC) method. Further, we introduce a genetic
algorithm to find the optimal match between two impor-
tant parameters in HTLM. Finally, we use two main crude
oil price time series—the West Texas Intermediate (WTTI)
and the Brent crude oil spot prices—for empirical analy-
sis. Our results show the effectiveness and superiority of the
proposed model compared with existing models.

KEYWORDS AND PHRASES: Hybrid transfer learning model,
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1. INTRODUCTION

Oil is the most widely used energy source in the world,
accounting for 36.4% of primary energy consumption [1] and
94.5% of global energy used for transportation [2]. Similar
to most commodities, oil price is basically determined by its
supply and demand [3, 4], and also strongly influenced by
many irregular events such as weather, stock levels, GDP
growth, political aspects, and even people’s psychological
expectations. These factors lead to strong fluctuations in
the oil market. What’s more, the sharp movements of oil
price may disturb aggregate economic activity, which brings
dramatic uncertainty for the global economy. In particular,
since January 2004, global oil price has been rising rapidly.
It is said that a 10% increase in oil price is equivalent to
0.6-2.5% GDP growth decrease for the US [5, 6]. Therefore,
oil price forecasting has become an important research area
in the last decades.

Currently, there are abundant studies on the analysis and
forecasting of crude oil price. The approaches can be classi-
fied into two categories: 1) econometric forecasting models,
such as autoregressive integrated moving average (ARIMA),
autoregressive conditional heteroscedasticity (ARCH), and
vector autoregression (VAR) models, which assume that the
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time series is just a random sequence with linear correla-
tion [7, 8, 9, 10, 11]; and 2) non-linear dynamics forecast-
ing models. In general, the econometric forecasting models
can provide near-accurate prediction results if the oil price
series is linear or near linear. However, the influencing fac-
tors of crude oil price are very complicated. Moreover, it
has been demonstrated that oil price fluctuations appear
highly non-linearly dependent and even chaotic [12, 13].
Therefore, the performance may be extremely poor only by
using these econometric models [14]. In recent years, non-
linear dynamics forecasting models have been introduced to
forecast crude oil price, including artificial neural network
(ANN), support vector regression (SVR), and belief network
(BN) [15, 16, 17, 18, 19, 20, 21]. However, these non-linear
models also have disadvantages, e.g., ANN is easy to sink
into local minima and suffers from over-fitting, while other
models, such as SVR, are sensitive to parameter selection
[19].

The limitations of the econometric and non-linear dynam-
ics models motivate the demand to look for a new method for
crude oil price forecasting. In fact, as early as 1994, Peters
[22] pointed out that most financial time series were long-
memory processes, and the future developments of the series
depended on not some parts, but all of the history data. In
this case, prediction approaches based on historical pattern
matching should be chosen, which can overcome the disad-
vantages of short-memory process forecasting methods. In
addition, the Fractal Market Hypothesis offers sturdy sup-
port for the feasibility of historical pattern matching. Both
Peters [22] and Wen et al. [23] presented that the financial
markets appeared to have a fractal structure. Peters [22]
further found that the markets did not change completely
at random; on the contrary, there were some non-periodical
cycles difficult to be captured by neural networks and tra-
ditional econometric forecasting methods. He claimed that
financial markets were predictable and long-memory based
methods were necessary to obtain accurate forecasting re-
sults. Further, Farmer and Sidorowich [24] found that for
the chaotic time series, the local approximation method,
which divides the time series into several smaller segments
first and then analyzes them respectively, is superior to the
global approximation method. Recently, Alvarez-Ramirez et
al. [25, 26], Robinson and Yajima [27], and Bernabe et al.
[28] have researched oil price and the characteristics of oil
market, and presented that the time series of oil price is
a non-linear long-memory process. However, Fan et al. [29]
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have applied the pattern-matching technique to crude oil
price forecasting and proposed a new approach: generalized
pattern matching based on genetic algorithm (GPMGA).

The above-mentioned studies have made important con-
tributions to crude oil price forecasting based on the pattern-
matching method. However, after careful analysis, it can be
found that all of them only use the forecasted time series,
i.e., target domain data. In fact, there are plenty of data
available outside the target domain and are often obtained
from other time series, i.e., source domains. For example,
if we want to forecast the West Texas Intermediate (WTT)
crude oil spot price, which is called target domain, then the
Brent crude oil spot price series may be utilized as a part of
the source domain, because they are very similar in trend.
Therefore, making full use of the data in the related time
series from source domains is expected to improve the fore-
casting accuracy of the WTI crude oil spot price. In this
regard, the transfer learning technique [30] developed from
machine learning technologies seems ideal. The underlying
objective is to utilize the knowledge acquired from the re-
lated tasks to assist individuals in learning the target task
for superior performance. In the last decades, transfer learn-
ing has received increasing attention, and has largely been
applied to many areas successfully [30], such as text mining
and image recognition, but scarcely in the field of economic
time series forecasting.

This study introduces the transfer learning technique
to crude oil price forecasting, combines it with a pattern-
matching forecasting method called analog complexing (AC)
and a genetic algorithm, and constructs a hybrid trans-
fer learning model (HTLM). The empirical analysis results
show that the forecasting performance of HTLM is superior
to that of some existing models.

The structure of this study is organized as follows. Section
2 describes the formulation process of the proposed HTLM
model in detail. Utilizing two main crude oil price series—
the West Texas Intermediate (WTI) and the Brent crude
oil spot prices—Section 3 demonstrates the effectiveness of
the proposed methodology, and reports the corresponding
results. Finally, Section 4 concludes the study.

2. METHODOLOGY FORMULATION

This section presents the overall process of formulating
the HTLM methodology. First, the analog complexing tech-
nique and transfer learning method are briefly reviewed.
Second, the HTLM methodology is proposed. Finally, the
overall steps of the methodology are summarized.

2.1 The analog complexing method

The analog complexing (AC) method was developed by
Lorenz and first applied to meteorological forecasting [31].
Further, Lemke and Mueller [32] enhanced the AC algorithm
by using an inductive self-organizing approach and an ad-
vanced selection procedure to make it applicable to evolu-
tionary processes as well. AC can be considered as a sequen-
tial pattern recognition method for predicting, clustering,
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and classifying complex systems. This method is based on
the assumption that typical situations of a time process will
repeat in some forms, that is, each actual period of develop-
ment state of a given multi-dimensional time process may
have one or more analogous periods in history. In this way,
the forecast of the present state can be obtained by trans-
forming and combining the development states of analogous
periods in history.

In general, the AC model follows a four-step procedure
[33]: 1) generation of candidate patterns; 2) transformation
of analogues; 3) selection of the most similar patterns; and
4) combination forecasting. These processes are discussed in
detail.

2.1.1 Generation of candidate patterns

Given an m-dimensional real value series with N obser-
vations x; = {1,214y oy Tt )}, t = 1,2,..., N, a pattern
is defined as a table Py (i) with k rows (observations) be-
ginning from the i-th line (period), where k is the pattern
length (: =1,2,.... N — k+1):

1)
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In general, the last pattern, P = P, (N —k+1), just before
the forecast origin is selected as the reference pattern. Next,
all the remaining candidate patterns Py (i)(i = 1,2,..., N—k)
are compared with the reference pattern to find one or more
similar patterns with the reference pattern and accordingly
forecast the behavior of the system.

Example: For a three-dimensional series with five obser-

1 2 3
5 5 6
vations | 7 9 9 [, suppose the pattern length k = 3,
10 11 13
15 16 16
1 2 3
then there are two candidate patterns: Ps(1) =[5 5 6],
79 9
5 5 6
P3s2) =7 9 9], and one reference pattern PF =
10 11 13
7 9 9
10 11 13
15 16 16

2.1.2 Transformation of analogues

For a reference pattern with a length of k£ observations,
there may be one or more similar patterns in history. How-
ever, because the system is dynamic, patterns with similar
shapes may have different means and standard deviations.
Thus, to compute the similarity between patterns, we must



look for a transformation from candidate patterns to the
reference pattern to describe these differences. It is advis-
able to define the transformed pattern T'[Py(7)] as a linear
function of the pattern Py(7):

(2)
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where ;vZﬁH_j = af)l + ailml’iﬂ-,i = 1,2,...,. N — k;j =
0,1,...k — 1;1 = 1,2,...,m. Considering the data z;,(I =
1,2,....m;z = N—k+1,N—k+2,...,N) in reference pattern
PP as the datum value (i.e., the dependent variable value),
and those in the transformed candidate pattern TPy ()] as
the independent variable value, the unknown weights aél
and a; for T[Pg(i)] can be estimated by the least squares
(LS) method. The parameter af; can be interpreted as the
difference of state between the reference pattern and the
candidate pattern, and the parameters a}; are considered
as some uncertainties. It is worth noting that the pattern
length k& > 3, because if k = 2, the transformed candidate
patterns will be the same as the reference pattern.

Taking the candidate pattern Ps(1) in Subsection 2.1.1
as an example, obviously the dimension m = 3. We need
to estimate the weights a, and ai, (I = 1, 2, 3) in each
dimension. In the first dimension, the column vectors in

7 1
PT and P5(1) are |10 | and |5 |. Thus we can obtain
15 7
ag; = 5.25 and ai; = 1.25 by the LS method. Further the
6.5
transformed value of the first column in P3(1) is | 11.5
14
1
(=5.25+1.25% 5 | ). Similarly, the weights in the second
7

and third dimensions can be computed as follows: aj, =

6.60, aiy = 1.01, a}3 = 5.67, ai; = 1.17. Finally, the trans-

6.5 862 9.18
formed pattern T[P5(1)] = | 11.5 11.65 12.69
14 1569 16.2

2.1.3 Selection of the most similar patterns

To measure the similarity between the candidate pattern
Py, (7) transformed in the subsection above and the reference
pattern P, we need to compute the distance between the
two patterns. In the AC method, the distance between the
i-th (i = 1,2,..., N — k) candidate pattern and reference
pattern is defined as:

m
> (@rivj — Ten-ktie)?
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Then, the pattern similarity between the i-th candidate pat-
tern and the reference pattern is defined as:

(4)

S; = —.
K3 dl

Obviously, the larger the distance value, the smaller the pat-

tern similarity.

2.1.4 Combination forecasting

Let us assume that F' most similar candidate patterns
are selected. Then the continuation of each selected pat-
tern is transformed to the reference pattern for forecasting.
Suppose the candidate pattern P3(1) in the above exam-
ple is selected and the forecast interval length is 1. Then,
the continuation of P3(1) is (10 11 13). According to
the estimated weights in Subsection 2.1.2, the three dimen-
sions of the continuation of P3(1) are transformed as fol-
lows: 5.25 + 10 x 1.25 = 17.75, 6.60 + 11 « 1.01 = 17.71,
and 5.67 + 13 1.17 = 20.88. Finally, (17.75 17.71 20.88)
are just regarded as the one-step forecasting results of the
selected pattern P3(1). Let Ri, Ra,.., Rp be the forecast-
ing results of F' patterns, and the combination forecasting
results are obtained by the following formula:

F
R* =) w;R;,
i=1

where w;(i = 1,2, ..., F') are the weights. In this study, the
weights are computed according to pattern similarity.

In the past decades, the AC model has been successfully
applied to many areas, including stock price prediction [33]
and marketing data analysis [34]. In this study, we apply it
to crude oil price forecasting.

(5)

2.2 The transfer learning technique

The concept of transfer learning originates from Psychol-
ogy [30]. It means the ability of individuals to utilize their
experience and knowledge learned in the related areas in
learning a new task. People can learn new knowledge di-
rectly and can also utilize the old knowledge to assist in
learning new knowledge. Since its emergence, machine learn-
ing has always attempted to simulate the learning of people.
Learning new knowledge directly is the traditional machine
learning paradigm that we are familiar with. Such methods
often suppose that each learning task is independent of the
other, so the past learning experience and knowledge will be
discarded in learning a new task. Since the 1990s, transfer
learning has gained increasing attention worldwide. The un-
derlying objective of transfer learning is to utilize the data or
information of the related source tasks to assist in modeling
the target task [30, 35] (see Figure 1).

2.3 The HTLM model

For crude oil price time series forecasting, most of the
existing models, such as ARIMA, ANN, and GPMGA, only
utilize the data information of the forecasted time series,
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Figure 1. A comparative analysis of traditional machine learning and transfer learning.

i.e., target domain data to model. This may ignore a po-
tentially rich source of information contained in the related
time series. Therefore, in this study, the time series data in
the related source domain are selectively transferred to the
target domain for assisting the target time series modeling
and forecasting using the transfer learning technology.

The HTLM model proposed in this study contains two
phases: 1) Selection of the related time series in the source
domain. Usually, there are numerous source domain time se-
ries that may be related to the target domain time series and
these data often include much noise. The forecasting perfor-
mance may be damaged if the data are transferred improp-
erly, that is, negative transfer. Thus, how to transfer the
most useful data is very important. 2) Genetic algorithm-
based parameter optimization. There are two important pa-
rameters when applying analog complexing (AC) to a model:
pattern length £ and the number of the most similar pat-
terns F'. The conventional AC model usually requires fix-
ing the pattern length at a certain level first, generating
the reference pattern and candidate patterns, selecting F'
most similar candidate patterns with the reference pattern
to combine, and obtaining the combination forecasting re-
sult; subsequently, it changes the value of the pattern length
repeatedly. Thus, each pattern length value corresponds to a
combination forecasting result, and finally the optimal fore-
casting result is selected from all combination forecasting
results. However, in the conventional AC model, it is diffi-
cult to find the optimal match between the pattern length
k and the number of the most similar candidate patterns F'.
To overcome the deficiency of the conventional AC model,
this study introduces genetic algorithm to optimize the pa-
rameters in the HTLM model.

2.3.1 Selection of the related time series in the source do-
main

For any economic time series, we can always find many re-
lated time series from the source domain. To describe the rel-
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evance between these time series and the target time series,
we calculate their Pearson correlation coefficient (PCC).

However, because the number of data points in different
time series is often different, the PCC cannot be calculated
directly. Therefore, in this study, assuming that the target
time series and source time series have the same frequency
(e.g., all time series data are either daily or monthly), we
segment the time series using the following method. If the
time series data are daily, we segment each time series into
a series of sub-time series with a length of 255 (excluding
the Saturdays and Sundays of one year, 360 x 5/7 ~ 255)
starting from the latest time point, and discard the sub-
time series of the last part which has less than 255 data
points directly. If the time series data are monthly, each
original series is divided into a series of sub-series with the
length of 12 (i.e., the number of months in one year), and
the sub-time series of the last part which has less than 12
data points is discarded.

Suppose that Y is the target time series of a forecasting
issue, there are g related time series S;(i = 1,2, ...,¢) in the
source domain, the target time series Y is divided into u
sub-time series: y1,ya, ..., Yu, and the source domain time
series S; is divided into v sub-time series: s1, 2, ..., S, Then
the PCC between the sub-time series y;(j = 1,2, ...,u) and
sp(k=1,2,...,v) is calculated as follows:

_ D1 Wit — i) (Ske — Sk)
VWit = 702V (s — 51)%

where n denotes the number of data points in each sub-time
series (n = 255 or 12), ; and 5 are the mean values of
sub-time series y; and sy, respectively. Further, the aver-
age similarity between the target time series Y and source
domain time series S;(i = 1,2, ..., g) is defined as follows:

ZL 22:1 T4,k

u*xv

6) 7k

r =

(7)



It is easy to observe that 7 € [—1, 1], and the closer to 1
the value of 7, the stronger the positive correlation between
the two time series. In this study, the development trend of
the source domain time series, which has stronger positive
relevance with the target domain time series, is closer to that
of the target domain time series, and thus, it is more helpful
to forecast the target domain time series. Therefore, in the
HTLM model, we can select some source domain time series
that have the largest average similarity with the target time
series into the target domain and assist in modeling.

2.3.2 Genetic algorithm-based parameter optimization

The fundamental principle of genetic algorithm (GA)
was first introduced by Holland [36]. GA manipulates con-
cepts derived from biology and is philosophically based on
Darwin’s theory of survival of the fittest [37]. It encodes
a possible solution to a specific issue on simple chromo-
some string-like data structures, applies specified operators
to these structures so as to preserve important information,
and produces a new population with the purpose of gen-
erating strings that map to high function values. The key
feature of GA is the manipulation of a population whose
individuals are characterized by possessing a chromosome.
The latter can be coded as a string of characters which are
called bits. Each string represents a feasible solution to the
optimization issue. The most important advantage of GA
is their ability to use accumulated information about the
initially unknown search space in order to bias subsequent
searches into useful subspaces [38].

In short, GA is characterized by bit-string representations
of potential solutions for a given issue, and these bit-string
representations alter and improve these coded solutions by
using GA operations. The main operations of GA-selection,
crossover, and mutation of genetic information—affect the
binary string characteristic in natural evolution. Each gen-
eration of GA consists of a new population produced from
the previous generation. The binary representation and the
main operations of GA in this study can be summarized as
follows.

Variable encoding. Before a genetic algorithm can be
put to work on any issue, a method is needed to encode
potential solutions to that issue in a form that a computer
can process. One common approach is to encode solutions as
binary strings: sequences of 1 and 0, where the digit at each
position represents the value of some aspect of the solution.
In the HTLM model, there are two important parameters:
pattern length £ and the number of most similar patterns
F'. These parameters are used to combine and obtain the
final forecasting results. In this study, we let 1 < F < 8
(when F' = 1, this implies the selection of the most familiar
candidate pattern to forecast), and 3 < k < 13. Therefore,
we let the length of each potential solution (each particle)
be 14 binary series, where the front 3 bits denote the value
of F' and the latter 11 bits denote if the candidate patterns
are considered when k = 3,4, ..., 13 in turn (Figure 2).

101011 0O0O0O0O0OT1O0TO0°1

AN y
h'd

Number of

selected most
similar patterns

Pattern

length

Figure 2. The encoding of a potential solution.

The value of F = (1 %22+ 1%2% + 1 = 6, and the
candidate patterns with the lengths of 4, 5, 10, and 13 will
be considered simultaneously.

Selection operator. Selection operator biases the
search process in favor of the more fitting members based
on their fitness value. The fitness of the i-th member in the
population can participate in this operation on the basis
of probabilities. This probability of the i-th member in the
population is calculated as below:

fi

=1 fe!

where ¢ is the population size, f;(i = 1,2,...,q) is the fitness
of the i-th member. In the selection operation, the members
of the population with better fitness can participate several
times, while those with worse fitness may be deleted, which
leads to an increase in average fitness.

Crossover operator. The crossover operator allows for
an exchange of design characteristics among the mating
members. The operation is executed by selecting two mating
parents, randomly choosing two sites on each of the chromo-
somal strings and swapping strings between the sites among
the pair. An illustration of the crossover operation is as fol-
lows:

Parent 1=10101101101011

Parent 2=10010100100101

Child1=10110100100101

Child2=10001101101011

The crossover operation is applied with a probability of
B which takes the probabilistic values from 0.2 to 0.8 [39].

Mutation operator. Mutation is another essential op-
erator in the GA process and it acts on each chromosome
after the crossover operator in the following way. A random
number is produced for each bite of a chromosome. If this
number is smaller than v, mutation will occur in that bite;
otherwise, it will not happen. If mutation is not applied,
after the crossover, the offspring will enter the new genera-
tion. According to the research, v produces most favorable
outcomes while varying between 1% and 5%. The mutation
operation prevents losing unexpected valuable genetic in-
formation in the population during selection and crossover
operations. This operator acts at a random place of a chro-
mosome with a low probability of v [40].

The fitness function. In the HTLM model, for each
chromosome, we can determine the values of F' and k ac-
cording to its structure, e.g., in the chromosome shown in

(8) @
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Figure 2, F = 6,k = 4, 5, 10, and 13. Then, the reference
pattern and all candidate patterns with the length of 4, 5,
10, and 13 are generated, and the average similarity be-
tween the reference pattern and each candidate pattern is
calculated according to Eq. (7). Next, it selects F' (=6) can-
didate patterns with the highest similarity, and combines
their forecasting results to obtain the final forecasting re-
sults of the chromosome. To evaluate the forecasting results
of each chromosome, we define the following fitness function:

A
: 1 R
(9) MinA = 3 Z(pt — )2,
t=1

where p; and p; are the observed values and predicted values,
and A is the number of observations in the test set. As the
function is minimization, individuals with less amount of
fitness are chosen for each generation.

Let 51,59, ...,55 be g source domain time series, Y the
target domain time series, T}q;, the training set for mod-
eling in target domain, T, the test set used to verify the
performance of each chromosome in target domain (Y =
Train UTest), 0 the generation number of genetic algorithm,
1 the population size, # the probability of crossover, and ~
be the probability of mutation. Figure 3 shows the modeling
process of the HTLM model.

3. EMPIRICAL ANALYSIS
3.1 Research data

There are numerous crude oil price series. The West Texas
Intermediate (WTT) crude oil spot price and Brent crude oil
spot price are two of the most famous benchmark prices,
and are widely used as the basis of many crude oil price
formulae. Therefore, in this study, we select the two oil
price series as the experimental samples. The two crude
oil price data used in this study are monthly data, and
are downloaded from the energy information administration
(EIA) website of the Department of Energy (DOE) of USA
(http://www.eia.doe.gov/).

For the WTT crude oil spot price, we take the monthly
data from January 1986 to December 2014, and there are 348
observations. For convenience of modeling, the data from
January 1986 to December 2010 are used for the training
set (300 observations), and the remainder are used as the
test set (48 observations) for evaluating its prediction per-
formance. For the Brent crude oil spot price, the sampling
data are from January 1988 to December 2014, which in-
cludes 324 observations. Similarly, we take the data from
January 1988 to December 2010 as the training set (276 ob-
servations), and the data from January 2011 to December
2014 as the test set (48 observations).

Further, we regard four oil price time series as the source
time series, including the New York Harbor conventional
gasoline regular spot price FOB (NYCGRS), U.S. Gulf
Coast conventional gasoline regular spot price FOB (GC-

124 J. Xiao et al.

Source domain i i Targetdomain
time series $; — S i i initial raining set T4,
N i— v
Compite the similarity Transfer some source series |

between the target series i FHit g
: with high milarity to T,
and each source series 1 gstsimilanty 16 T

\ 4

| Code and randomly generate |
the initial population of GA

| Generation i =0 |

v
| Initialize the population |

L

Population individual
J=l
|

s 4
Compute the values of F and
k 1n the j-th individual

Generate all candidate pattems
with length kin Ty

Calculate the similarity and
select F most similar
candidate pattems

Combine the continuations of
the selected pattems to obtain
the combination forecasting in

v
Calculate the fimess value
of the forecasting

i=i+l -
—IMutau onld—k

Find the chromosome with
the highest fitness value

v

Get the out-of-sample
continuations of the most
similar patterns

Generate the combination
out-of-sample forecasting

Figure 3. Block diagram of the HTLM model.

CGRS), New York Harbor No. 2 heating oil spot price FOB
(NY-2-HOS), and U.S. Gulf Coast kerosene-type jet fuel
spot price FOB (GCKJFS). The first three series are from
January 1987 to December 2010, and the last one is from
January 1991 to December 2010. It is worth noting that
the Brent crude oil spot price is also regarded as the source
time series when forecasting the WTT crude oil spot price,
and vice versa.

3.2 Experimental setting and evaluation
criteria

In this study, we compare the HTLM model with the tra-
ditional AC, ARIMA, GPMGA, and Elman network models.



Table 1. The average similarity between the target and source time series

WTI Brent NYCGRS
WTI - -0.0547 0.0822
Brent -0.0547 - 0.0839

GCCGRS NY-2-HOS GCKJFS
0.0662 0.0310 0.0642
0.0641 0.0402 0.0738

The ARIMA model is implemented via the Eviews software
package, and the other models are implemented in the plat-
form Matlab 7.0.

In the ARIMA model, the future value of a series is as-
sumed to be a linear function of several past observations
and random errors [41]. Suppose that z; is the observation
of a time series, and its mean is p. A mixed autoregressive
moving average (ARMA) model is expressed as:

(10) ¢(B)z; = 0(B)as,

where Z; = z; — i, a; and B are the random error of the time
series at time t and the backward shift operator, respectively.
#(B)=1->"  ¢;B*and §(B) =1—>"%_, 0;B7 are poly-
nomials of degree p and ¢ respectively, ¢; (72 =1,2,...,p) and
0;(j = 1,2,...,q) are model parameters, and p and ¢ are
integers and often referred as the lag orders of the model.
Further, the random errors a; are assumed to be indepen-
dently and identically distributed with a mean of zero and
a constant variance of 2. If the d-th difference of {z;} is an
ARMA process of order p and g, then z; is called an ARIMA
(p — d — q) process.

The architecture of Elman neural network (ENN) intro-
duced by Elman [42] is very similar to the standard feed-
forward architecture with layers of input units, hidden units,
and output units. However, it is augmented at the input
layer by additional units, called context units. The number
of context units is equal to that of hidden units. The aug-
mented input units, including both the input units and the
context units, activate the hidden units. The input value of
a context unit at time step ¢ + 1 is exactly the same as the
output value of the hidden unit at time step ¢. Thus, the cur-
rent context units, which transfer the previous state of the
hidden units to the input layer, are recognized as a one-step
time delay [43]. In this study, a three-layer ENN (I — H —O)
is selected, where I, H, and O denote the number of input
neurons, hidden nodes, and output neurons, respectively.

The GPMGA model [29] is developed on the basis of pat-
tern modeling and recognition system (PMRS). In tradi-
tional PMRS, the reference pattern and the past candidate
pattern are matched without any transformation. However,
the complexity of oil price movements often makes this kind
of direct matching inaccurate. Thus, GPMGA takes the dif-
ferences between the reference pattern and candidate pat-
tern in addition to their similarities into consideration, and
the candidate pattern is scaled both in the z- and y-axes
directions to match the reference pattern indirectly. Finally,
the parameters are optimized by genetic algorithm.

As for ARIMA (p — d — ¢q) and ENN (I — H — O), the
parameters can be determined by trial-and-error. For WTI

crude oil spot price series, we find that ARIMA (2-1-1) and
ENN (10-12-1) can achieve the best performance, while for
Brent crude oil spot price series, ARIMA (2-1-1) and ENN
(12-15-1) are selected.

For the GPMGA model, the parameter setting is the
same as in [29, 44]. Specifically, the lower and upper bounds
of the pattern transform factors («, ) are set as a = 0.5,
a =2, 8=05 =2 and pattern length 2 < k < 25.
Finally, we find that when the pattern length k = 14 for
WTT data and k& = 12 for Brent data, the GPMGA model
can achieve the best forecasting performance through com-
parison.

In AC and HTLM models, the pattern length k& and the
number of the most similar patterns F' are two important
parameters. As for the AC model, we let &k = 12 and F' =
2 for WTI crude oil time series, and k¥ = 11 and F = 6
for Brent crude oil time series, after repeated experiments.
While for the HTLM model, we first compute the average
similarity between the target time series and the source time
series (see Table 1). The bold face in this table denotes the
two maximum values of each row. We transfer two source
time series with the highest average similarity to the target
domain. According to Table 1, we transfer the NYCGRS and
GCCGRS series to assist in modeling for the WTTI crude oil
spot price, and NYCGRS and GCKJFS for the Brent crude
oil spot price. Further, the parameters k and F' of the HTLM
model are optimized by genetic algorithm with the following
user-specified parameters: 6 = 50, n = 100, 5 = 0.9, and
~v = 0.05. Finally, it is found that the optimal values of k
are 3, 8, and 11, and the optimal value of F' is 3 for WTI
data. Meanwhile, the optimal values of k are 3 and 6, and
the optimal value of F' is 5 for Brent data.

In order to evaluate the forecasting performance, it is nec-
essary to introduce some evaluation criteria. In this study,
three commonly used evaluation criteria, root mean square
error (RMSE), mean absolute percentage error (M APE),
and direction statistics (Dgtqt) [19, 44], are introduced.

Given A pairs of the observed values p; and predicted val-
ues pg, the RMSE, which describes the estimates’ deviation
from the real values, is calculated as:

(12)
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Figure 4. Forecasting results of the five models for WTI crude oil spot price series on the test set.

The smaller the values of RMSE and M APE, the smaller
the error between the actual values and the forecasting val-
ues and the better the performance of the model.

However, RM SE and M APE cannot provide direct sug-
gestions to decision makers. Many decision makers, such as
investors, are more interested in the direction of the change.
Therefore, we introduced directional change statistics Dgq-
Typically, the Dyt can be defined as:

-
1
Dstat = - E Tty
T
t=1

where m = 1, if (py — pi—1)(pt — pt—1) > 0, and m = 0
otherwise. The larger the value of Dy, the smaller the
difference between the actual directional change of crude oil
price time series and the forecasted directional change, and
the better the performance of the model.

(13)

3.3 Experimental results

The forecasting results of the five models in the test set
of WTT crude oil spot price series are shown in Figure 4.
As demonstrated, the forecasting results of two traditional
models, ARIMA and ENN;, are largely different from the ac-
tual values. Especially, the forecasting results of the ARIMA
model approximately follow a straight line, which cannot
forecast the fluctuations in the WTI crude oil spot price
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series. Thus, their performances are the poorest. The fore-
casting results of the AC model are distinctly superior to
those of ARIMA and ENN models. Its forecasting values on
the wave crest and trough distributions are closer to the ac-
tual values, although there is still some difference. Whereas,
the forecasting results of the GPMGA model are similar to
those of the AC model. Finally, the forecasting results of the
HTLM model proposed in this study are very close to the
actual values in the whole test set. In particular, its fore-
casting results on wave crest and trough distributions are
also better than those of the other four models. Therefore,
the forecasting performance of the HTLM model is the best
among the five models.

Further, Table 2 shows the comparison of the fore-
casting performance of the five models in the test set
of WTI crude oil spot price series. With regard to the
RMSE and MAPE evaluation criteria, the smaller their
values, the better the performance of the model. There-
fore, we rank the five models in ascending order. While
for the Dstat criterion, the larger their values, the bet-
ter the performance of the model. Therefore, we rank the
five models in descending order. Focusing on the RMSE
and MAPE indicators, the two evaluation criteria which
measure the goodness-of-fit of the forecasting result, the
HTLM model exhibits the best performance, followed by
GPMGA, AC, ARIMA, and ENN. Further, as for the mea-



Table 2. Forecasting performance comparison of the five models for the WTI crude oil spot price

Methods RMSFE Rank MAPFE Rank Dgtat Rank
HTLM 2.6682 1 0.0238 1 0.8125 1
AC 7.1248 3 0.0611 3 0.5625 3
ARIMA 11.7099 4 0.0970 4 0.5000 4
ENN 13.1316 5 0.1177 5 0.4375 5
GPMGA 6.8955 2 0.0594 2 0.5833 2
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Figure 5. Forecasting results of the five models for the Brent crude oil spot price series on the test set.

surement Dstat, which describes the forecasting ability of
directional change and is more important for business prac-
titioners, we find that the HTLM model outperforms the
others.

Figure 5 displays the forecasting results of the five mod-
els in the test set of Brent crude oil spot price series. As
shown in the figure, the forecasting results of the ENN model
sharply fluctuate around the actual values in the whole test
set, and those of the ARIMA model are too smooth to ex-
hibit the violent fluctuation of the actual Brent crude oil
spot price series. The forecasting results of the AC and GP-
MGA models are closer to the actual values than those of
the ARIMA and ENN models. Last, but not the least, the
forecasting results of the HTLM model are still superior,
and they are closest to the actual values of the Brent crude
oil spot price series.

In addition, the forecasting performance comparison of
the five models in the test set of Brent crude oil spot price

series is shown in Table 3. We observe that the RMSE and
MAPE criteria values of the HTLM model are the smallest
and its Dstat criterion value is the largest, which demon-
strates that the whole forecasting performance of the HTLM
model is the best. The performance of the two traditional
models, ARIMA and ENN, is still the poorest. They are
ranked fifth and fourth respectively according to three eval-
uation criteria. It is worth noting that the AC model outper-
forms the GPMGA model according to RMSE and MAPE
criteria, while the GPMGA model performs better than the
AC model as to Dstat, which demonstrates that the low
RMSE and MAPE criteria values do not necessarily imply
that there is a high hit rate in forecasting the crude oil price
movement direction.

3.4 Further discussion

According to the experiments presented in this study, we
can conclude the following.
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Table 3. Forecasting performance comparison of the five models for the Brent crude oil spot price

Methods RMSE Rank MAPE Rank Dstar Rank
HTLM 2.5914 1 0.0203 1 0.7292 1
AC 6.7708 2 0.0528 2 0.5833 3
ARIMA 13.6319 5 0.0988 5 0.5000 5
ENN 11.5926 4 0.0860 4 0.5208 4
GPMGA 6.9416 3 0.0532 3 0.6458 2

(1) The forecasting performance of HTLM, GPMGA, and
AC models is better than that of the linear forecasting model
ARIMA and non-linear forecasting model ENN. Compared
with the actual crude oil spot price series, the forecasting
results of the ARIMA model are too smooth. Thus, it can-
not forecast the wave crest and trough distributions of crude
oil spot price time series accurately. However, the forecast-
ing results of HTLM, GPMGA, and AC models are closer
to the actual values. The HTLM, GPMGA, and AC models
all belong to pattern matching methods. The experimental
results in this study also demonstrate that the forecasting
performance of pattern matching methods is better than lin-
ear and non-linear models for non-linear long memory pro-
cesses such as crude oil price time series, which is basically
consistent with the conclusion of Peters [22].

(2) The forecasting performance of the HTLM model pro-
posed in this study is superior to that of the AC model ac-
cording to three evaluation criteria when forecasting WTT
and Brent crude oil spot price series. This may be caused
by two reasons: 1) The HTLM model introduces the transfer
learning technique. It can transfer part of source domain se-
ries most related to target time series to the target domain,
enrich the data for pattern matching, and make it be pos-
sible to search for more similar candidate patterns with the
reference pattern to improve the forecasting performance. 2)
Genetic algorithm is adopted to optimize the parameters of
the HTLM model, which can overcome the disadvantages of
the AC model (i.e., hard to find the optimal match among
the parameters) to some extent.

(3) The HTLM model outperforms the GPMGA model.
Both GPMGA and HTLM models belong to pattern-
matching methods; however, their principles are largely dif-
ferent. First, as for the pattern transformation mechanism,
in the GPMGA model, the candidate pattern is scaled both
in the x- and y-axes directions to match the reference pat-
tern; while in the HTLM model, each candidate pattern is
translated to the same position with the reference pattern
through a linear transformation (the transformation coeffi-
cients are obtained through the LS method), and then the
similarity between the candidate pattern and the reference
pattern is calculated. Second, the GPMGA model only se-
lects the candidate pattern that is most similar to the ref-
erence pattern to forecast. In reality, the forecasting results
obtained from selecting the most similar single pattern may
be poorer than those obtained from combining some most
similar patterns, that is to say, forecasting ensemble. While,
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the HTLM model just overcomes this deficiency of the GP-
MGA model, and it selects the most one or more similar
candidate patterns for forecasting adaptively.

4. CONCLUSION

This study combines the transfer learning technique with
a pattern-matching forecasting method called analog com-
plexing (AC) and a genetic algorithm, and constructs a
hybrid transfer learning-based analog complexing model
(HTLM) for crude oil price forecasting. The empirical anal-
ysis results for the West Texas Intermediate (WTI) and the
Brent crude oil spot prices show that the proposed HTLM
model outperforms the other four models in terms of differ-
ent criteria. In all testing cases, the RMSE and M APE are
the lowest and the Dy is the highest, indicating that the
HTLM forecasting model can be used as a very promising
methodology for world crude oil price prediction.
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