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Detecting hidden periodicities for models with
cyclical errors
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In this paper, the estimation of parameters in the har-
monic regression with cyclically dependent errors is ad-
dressed. Asymptotic properties of the least-squares esti-
mates are analyzed by simulation experiments. By numer-
ical simulation, we prove that consistency and asymptotic
normality of the least-squares parameter estimator studied
holds under different scenarios, where theoretical results do
not exist, and have yet to be proven. In particular, these
two asymptotic properties are shown by simulations for the
least-squares parameter estimator in the non-linear regres-
sion model analyzed, when its error term is defined as a
non-linear transformation of a Gaussian random process dis-
playing long-range dependence.
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1. INTRODUCTION

Classical models of “hidden periodicities” have been
widely studied and applied in natural sciences such as
oceanography, astronomy, seismology and medicine. Early
work on the estimation of the parameters in the harmonic
regression can be found in [30] which first introduced an
estimation “search” technique based on the periodogram.
The first studies of the problem in a more formal treat-
ment can be seen in [1, 24, 6]. Least-squares estimate (LSE)
of the parameters in the trigonometric regression and their
asymptotic covariance matrix is studied in [36]. This prob-
lem can be formulated in the following way. Consider regres-
sion model

(1) x(t) = g(t, θ) + ε(t),
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where

(2) g(t, θ) =

N∑
k=1

(Ak cosϕkt+Bk sinϕkt) ,

with θ = (θ1, θ2, θ3, . . . , θ3N−2, θ3N−1, θ3N ) = (A1, B1,
ϕ1, . . . , AN , BN , ϕN ) ∈ R

3N , C2
k = A2

k + B2
k > 0, k =

1, . . . , N, 0 ≤ ϕ < ϕ1 < · · · < ϕN < ϕ < ∞, and
{ε(t), t ∈ S}, S = R or Z, is the random noise process
defining the error term through time. Process ε is assumed
to be a zero-mean stationary process.

The LSE, θ̂T , of an unknown parameter θ ∈ Θ, ob-
tained from the observations {x(t), t ∈ [0, T ]}, or {x(t), t =
1, . . . , T}, is any random variable θ̂T ∈ Θc, having the prop-
erty

QT (θ̂T ) = inf
τ∈Θc

QT (τ),

QT (τ) =
1

T

∫ T

0

[x(t)− g(t, τ)]2ν(dt),
(3)

where Θc is the closure of Θ and ν(dt) represents a count-
ing measure in the case of discrete time (i.e., ν(t) = 1, t ∈
Z+ = N), and Lebesgue measure dt in continuous time (i.e.,
ν(dt) = dt, t ∈ R+).

Nonlinear regression models with independent or weakly
dependent errors have been extensively studied (see, for
example, [11, 9, 31, 27], and the references therein). The
first results on nonlinear regression with errors having
a slowly decreasing correlation function, i.e., with Long-
Range Dependence (LRD) in discrete time were obtained
by [29, 19, 18]. The volume [3] presents a review of the most
relevant applications of processes with LRD. The asymp-
totic theory of LSE in nonlinear regression with LRD has
been considered in [26, 12, 13]. In papers [14, 15] asymp-
totic distributions of a class of M-estimates and Lp-estimates
(1 < p < 2) in nonlinear regression model with LRD form
were presented. The problem of the estimation of the un-
known parameters of the trigonometric regression with cycli-
cal dependent stationary noise is studied in [17]. The au-
thors derived LSE consistency and asymptotic normality of
the regression function (2) parameters, and error term ε be-
ing a zero-mean stationary process, generated by nonlinear
transformation of a stationary Gaussian process ξ displaying
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cyclical dependence. Specifically, for a stationary process ξ
defined on a complete probability space (Ω,F, P ):

ξ(t) = ξ(ω, t) : Ω× S −→ R.

Such a process is assumed to satisfy the following assump-
tion.

A1. Random function ξ is a real-valued and measurable
stationary mean-square continuous Gaussian process with
Eξ(t) = 0, and Eξ2(t) = 1. Its covariance function (c.f.) is
of the form:

(4) B (t) = E [ξ(0)ξ(t)] =
κ∑

j=0

DjBαj ,κj (t) ,

t ∈ R, κ ≥ 0,
∑κ

j=0 Dj = 1, Dj ≥ 0, j = 0, . . . , κ, where

Bαj ,κj (t) =
cos (κjt)

(1 + t2)
αj/2

,

0 ≤ κ0 < κ1 < ... < κκ, αj > 0, t ∈ R, j = 0, . . . , κ.
Although [17] deals with the nonlinear regression model

(1) with regression function (2), and cyclical dependent sta-
tionary noise with covariance function (4), the results given
in [17] on linearization, and asymptotic uniqueness, as well
as on asymptotic normality hold for a more general class of
regression functions. The general class of non-linear regres-
sion functions that could be considered includes the family
of functions g such that, the family of matrix-valued mea-
sures, defined by

μT (dλ) = (μjl
T (dλ, θ))

q
j,l=1,

μjl
T (dλ, θ) =

gjT (λ, θ)g
l
T (λ, θ))dλ(∫

R

∣∣∣gjT (λ, θ)∣∣∣2 dλ ∫
R

∣∣glT (λ, θ)∣∣2 dλ
) 1

2

,

T > 0,

gjT (λ, θ) =

T∫
0

eitλ
∂

∂θj
g(t, θ)dt,

j = 1, . . . , q, λ ∈ R, θ ∈ Θ, weakly converges, as T → ∞,
to an atomic spectral measure of regression function μ with
atoms Ξregr = {δ1, . . . , δn}.

Limit theorems for non-linear transformations of Gaus-
sian stationary processes were considered. In the derivation
of these limit results, the above mentioned weak-convergence
to the spectral measure of regression function and the dia-
gram formulae were applied. In the discrete case this phe-
nomenon was discussed in [37, 38] for some other regression
scheme.

Although the model definition included possible LRD in
the error term, this property has not been considered to
show the asymptotic properties of the LSE. That is, for
αm > 1, α = minj=0,...,κ αj , m is Hermite rank of G (see be-
low), the consistency and limiting Gaussian distribution of

the LSE for general regression functions are proven in [17].
Using limit theorems of [16] it can be seen that these results
hold for α > 1/2 andm = 1. In this article, the statements of
the papers [16, 17] for the trigonometric regression function
(2) for α > 1/2 are confirmed by simulation. In addition,
for α < 1/2 these results are unknown, but in this paper we
show that they are correct also by simulation, at least for
non overlapping spectra as is explained in Section 2.

The outline of the paper is the following: a review of
principal results concerning the asymptotic normality and
consistency of LSE in regression model (1) is done in Sec-
tion 2. A simulation study to prove the previous results is
illustrated in Section 3. Also, some remarks on the asymp-
totic properties of the LSE considering a broader range of
values of model parameters that define the noise process are
set out in this section. Section 4 provides the final comments
and conclusions.

2. CONSISTENCY AND ASYMPTOTIC
NORMALITY OF THE LSE OF THE

PARAMETERS OF TRIGONOMETRIC
REGRESSION

In this section a review of the published work regard-
ing consistency and asymptotic normality of the LSE of the
parameters of trigonometric regression with cyclically de-
pendent errors is carried out. The assumptions made on the
Gaussian process ξ generating the random noise ε, represent-
ing the time-dependent error term in the regression model
(1) are summarized below.

Random process ξ is assumed to satisfy condition A1.
Therefore, the covariance function (4) admits the following
spectral representation:

B(t) =

∫
R

eiλtf(λ)dλ, t ∈ R,

where the spectral density (s.d.) is of the form:

f (λ) =
κ∑

j=0

Djfαj ,κj (λ) , λ ∈ R,

with, fαj ,κj (λ) being defined by

fαj ,κj (λ) =
c1 (αj)

2

[
Kαj−1

2

(|λ+ κj |) |λ+ κj |
αj−1

2

+Kαj−1

2

(|λ− κj |) |λ− κj |
αj−1

2

]
,

λ ∈ R, and

c1 (αj) =
2(1−αj)/2

√
π Γ
(αj

2

) .
Here,
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Kν (z) =
1

2

∫ ∞

0

sν−1 exp

{
−1

2

(
s+

1

s

)
z

}
ds,

z ≥ 0, ν ∈ R, is the modified Bessel function of the third
kind and order ν or McDonald’s function.

The following asymptotic expansions are known (see, i.e.,
[4], formulae 8.485, 8.445 and 8.446): if ν /∈ Z,

K−ν (z) = Kν (z)

=
π

2 sin(πν)

⎧⎨
⎩

∞∑
j=0

(z/2)2j−ν

j!Γ(j + 1− ν)

−
∞∑
j=0

(z/2)2j+ν

j!Γ(j + 1 + ν)

⎫⎬
⎭ ,

while if ν = ±m, where m is a nonnegative integer,

Kν (z) =
1

2

m−1∑
j=0

(−1)j(m− j − 1)!

j!

(z
2

)2j−m

+(−1)m+1
∞∑
j=0

(z/2)m+2j

j!(m+ j)!

{
ln

z

2

−1

2
Ψ(j + 1)− 1

2
Ψ(j +m+ 1)

}
,

where Ψ(z) = ( d
dzΓ(z))/Γ(z) is the logarithm derivative of

the Gamma function.
We have: for αj > 1

lim
λ→0

fαj ,0 (λ) =
Γ
(

αj−1
2

)
[
2
√
πΓ(

αj

2 )
] ,

for αj = 1, and λ → 0

fαj ,0 (λ) ∼
1

π
{ln |λ|+ ln 2 + Ψ(1)} ,

where Ψ(1) = −γ, γ is the Euler constant.
For 0 < αj < 1, and λ → 0

fαj ,0 (λ) = c2 (αj)
1

|λ|1−αj
(1− hj(|λ|)),

where c2(αj) = [2Γ(αj) cos
αjπ
2 ]−1, and

hj (|λ|) =
Γ
(

αj+1
2

)
Γ
(

3−αj

2

) ∣∣∣∣λ2
∣∣∣∣
1−αj

+
Γ
(

αj+1
2

)
4Γ
(

3+αj

2

) ∣∣∣∣λ2
∣∣∣∣
2

+o
(
|λ|2
)
.

Thus, for j = 0, . . . , κ, 0 < αj < 1

fαj ,κj (λ) =
c2 (αj)

2

[
|λ+ κj |αj−1

(1− hj (|λ+ κj |))

+ |λ− κj |αj−1
(1− hj (|λ− κj |))

]
.

Therefore, the s.d. f has 2κ + 2 different singular points
{−κκ,−κκ−1, ..,−κ1,−κ0,κ0,κ1, ...,κκ} under condition
A1, when κ0 	= 0, and 0 < αj < 1, j = 0, . . . , κ. If κ0 = 0,
the s.d. f has 2κ+ 1 different singular points.

For αj = 1 and λ → ±κj :

f1,κj (λ) ∼
c1 (αj)

2
K0 (|2κj |)

+
1

2π
{ln |λ∓ κj |+ ln 2 + Ψ(1)} ,

while for αj > 1 and λ → ±κj :

fαj ,κj (λ) →
c1 (αj)

2
Kαj−1

2

(|2κj |) +
1

2

Γ(
αj−1

2 )[
2
√
πΓ(

αj

2 )
] .

A2. The stochastic process ε is given by ε(t) = G(ξ(t)),
t ∈ R, with ξ(t) satisfying condition A1, and G : R −→
R being a non-random measurable function such that
EG(ξ(0)) = 0, and EG2(ξ(0)) < ∞.

Under condition A2, function G ∈ L2(R, ϕ(x)dx), with

ϕ(x) = 1√
2π

e−
x2

2 , x ∈ R, being the standard Gaussian den-

sity, and

(5) G(x) =

∞∑
k=1

Ck

k!
Hk(x),

∞∑
k=1

C2
k

k!
= E [G2(ξ(0))] < ∞,

where

Ck =

∫
R

G(x)Hk(x)ϕ(x)dx.

Here, the Hermite polynomials

(6) Hk(x) = (−1)ke
x2

2
dk

dxk
e−

x2

2 , k = 0, 1, 2, . . . ,

constitute a complete orthogonal system in the Hilbert space
L2(R, ϕ(x)dx).

A3. We assume that the function G has Hermite rank
Hrank(G) = m, that is, either C1 	= 0 and m = 1, or, for
some m ≥ 2, C1 = · · · = Cm−1 = 0, Cm 	= 0.

Under conditions A1–A3, the process {ε(t) =
G(ξ(t)), t ∈ R}, admits a Hermite series expansion in the
Hilbert space L2(Ω,F, P ):

ε(t) = G(ξ(t)) =

∞∑
k=m

Ck

k!
Hk(ξ(t)).

In the following modification of the LSE proposed in
[35] is used (see, also [8, 10]). Consider a monotone non-
decreasing system of open sets ST ⊂ S(ϕ,ϕ), T > T0 > 0,
given by the condition that the true value of unknown pa-
rameter ϕ belongs to ST , and

lim
T→∞

inf
1≤j<k≤N, ϕ∈ST

T (ϕk − ϕj) = +∞,
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lim
T→∞

inf
ϕ∈ST

Tϕ1 = +∞,(7)

where

S(ϕ,ϕ) =
{
0 ≤ ϕ < ϕ1 < · · · < ϕN < ϕ < ∞

}
.

The LSE θ̂T in the Walker sense of unknown parameter
θ = (A1, B1, ϕ1, . . . , AN , BN , ϕN ) in the model (1) with
nonlinear regression function (2) is said to be any random

vector θ̂T ∈ ΘT having the property:

QT (θ̂T ) = inf
τ∈ΘT

QT (τ),

where QT (τ) is defined in (3), and ΘT ⊂ R
3N is such that

Ak ∈ R, Bk ∈ R, k = 1, . . . , N , and ϕ ∈ Sc
T , the closure in

RN of the set ST .

Remark 2.1. The 2nd condition (7) is satisfied if ϕ > 0. If
ST ⊂ S(ϕ,ϕ), the relations given in (7) are, for example,
satisfied for a parametric set ST , such that

inf
1≤j<k≤N, ϕ∈ST

(ϕk − ϕj) = T−1/2, inf
ϕ∈ST

ϕ1 = T−1/2.

Theorem 2.1. [17] Under conditions A1 and A2, the LSE
in the Walker sense

θ̂T = (Â1T , B̂1T , ϕ̂1T , . . . , ÂNT , B̂NT , ϕ̂NT )

of the unknown parameter

θ = (A1, B1, ϕ1, . . . , AN , BN , ϕN )

of the regression function (2) is weakly consistent as T → ∞,
that is,

ÂkT

P−→ Ak, B̂kT

P−→ Bk, T (ϕ̂kT
− ϕk)

P−→ 0,

k = 1, . . . , N , where
P−→ stands for the convergence in prob-

ability.

The following condition is needed to prove the limiting
normal distribution of the LSE of the parameters in the
trigonometric regression with cyclically dependent errors.
This constraint on α is opposed to the presence of LRD in
noise process.

A4. Either 1) Hrank(G) = 1, α > 1; or 2) Hrank(G) =
m ≥ 2, αm > 1; where α = minj=0,1,...,κ αj .

The asymptotic convergence to the Gaussian distribution
of the LSE in the Walker sense of the function (2) is obtained
in Theorem 2.2 for certain ranges of the parameters defining
the spectral singularities of ξ. Specifically, assumption A4
defines parameter range α = minj=0,...,κ αj > 1/m. Here
this condition is rewritten to include some differences and
extension due to the consideration of a more general class
of models. Simulations in Section 3 show that the Gaussian
limit results hold for αj > 0, j = 0, . . . , κ. A new condi-
tion is formulated, A5, where the limit regression spectral
measure and the spectrum of the Gaussian random process
generating the error term may not be overlapped.

A4’. Hrank(G) = 1, 0 < α < 1
2 ; where α =

minj=0,1,...,κ αj .

A5. The singular points in the spectrum of noise, denoted
as Ξnoise = {±κ0, . . . ,±κκ}, 0 ≤ κ0 < κ1 < . . . < κκ and
spectral measure atoms Ξregr = {δ1, . . . , δn} may not be
overlapped. That is, Ξnoise ∩ Ξregr = ∅.

The asymptotic Gaussian distribution of the LSE in the
Walker sense of the regression function (2) is established in
the following result.

Theorem 2.2. [17] Under conditions A1–A4, the LSE in
the Walker sense of the function (2) of unknown parameter
is asymptotically normal, that is, the vector(

T 1/2(ÂkT −A), T 1/2(B̂kT −B), T 3/2(ϕ̂kT − ϕ)
)
,

k = 1, . . . , N converges weakly to the multidimensional nor-
mal vector N3N (0,Γ), where the matrix Γ > 0 is of the form

Γ = diag (Γk)
N
k=1, with

Γk =
4π

A2
k +B2

k

∞∑
j=m

C2
j

j!
f (∗j)(ϕk)

⎛
⎝ A2

k +B2
k −3AkBk −6Bk

−3AkBk A2
k +B2

k 6Ak

−6Bk 6Ak 12

⎞
⎠ .

Here, f (∗j)(λ), λ ∈ R, is the j-th convolution of the s.d.
given under assumption A1.

Theorem 2.2 follows Theorem 5 in [17] by direct compu-
tations. In this theorem the limiting distribution of the LSE
estimators is obtained for a more general class of g functions.

Remark 2.2. Note that, in the case of overlapping spec-
tra, a non-Gaussian limiting distribution of the estimator
is expected in the spirit of non-central limit theorems. For
example, for Hermite rank equal to one, when overlapping
happens at one point, we can obtain limiting Gaussian dis-
tributions, but with a normalizing parameter depending on
the order α of the singularity. While for Hermite rank equal
to two, in the case of overlapping, we can expect Rosenblatt-
type limiting distributions, again with normalizing depend-
ing on α, for discrete time and κ0 = 0 (pure LRD). These
results can be found in [37] and [18]. Both referred cases are
open mathematical problems, but some related results could
be found in [20] and [21].

Remark 2.3. The class of examples in which the asymptotic
spectral measure can be explicitly computed is limited, but
it includes the cases when the weights are standard trigono-
metric functions or a mixture of them with polynomials,
see, for example, the classical paper [5]. An example of limit
spectral measure, for non-overlapping spectra, can be found
in the case of the regression function (2), where the limit

spectral measure is given by μ(dλ, θ) = diag
(
Γ̃k

)N
k=1

, with
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Γ̃k =

⎛
⎝ δk iρk β̄k

iρk δk γ̄k
βk γk δk

⎞
⎠ ,

βk =

√
3(Bkδk + iAkρk)

2
√
A2

k +B2
k

, γk =

√
3(−Akδk − iBkρk)

2
√

A2
k +B2

k

,

and the measure δk = δk(dλ). Here, the signed measure
ρk = ρk(dλ) is located at the points ±ϕk, k = 1, . . . , N .

Remark 2.4. At the moment examples when the limiting
spectral measure of regression is not atomic are unknown
for the authors of this paper.

3. NUMERICAL RESULTS

Let us consider the following model:

(8) x(t) = g(t, θ) +G(ξ(t)), t ∈ S+, S+ = R+ or N,

with nonlinear regression function,

(9) g(t, θ) = A cos(ϕt) +B sin(ϕt),

where θ = (A,B, ϕ), C = A2 + B2 > 0, ϕ < ∞. Consider
gi(t, θ) = (∂/∂θi)g(t, θ), i = 1, 2, 3, such that,

d2iT =

∫ T

0

[gi(t, θ)]
2
ν(dt) < ∞, T > 0, i = 1, 2, 3.

Let ∇g(t, θ) = (g1(t, θ), g2(t, θ), g3(t, θ))
′
be the column vec-

tor gradient of the function g(t, θ). We use the notation
d2T (θ) = diag(d2iT )

3
i=1. In the theory of statistical estimation

of unknown parameter θ ∈ Θ ⊂ R
3 for (8), the asymptotic

behavior, as T → ∞, of the functional

(10) ζT = d−1
T (θ)

∫ T

0

∇g(t, θ)G(ξ(t))ν(dt),

plays a crucial role, since, under certain conditions, the
asymptotic distribution of the normalized LSE dT (θ)(θ̂T −
θ), and properly normalized functional (10) coincide, as
T → ∞; see [11, 12].

For model (8) we have,

g1(t, θ) =
∂

∂A
g(t, θ) = cos(ϕt),

g2(t, θ) =
∂

∂B
g(t, θ) = sin(ϕt),

g3(t, θ) =
∂

∂ϕ
g(t, θ) = −At sin(ϕt) +Bt cos(ϕt).

The following cases are considered in the definition of
function G, corresponding to the first Hermite polynomials
(see equation (6)):

Case H1: G(u) = u,
Case H2: G(u) = u2 − 1,

Case H3: G(u) = u3 − 3u,
Case H4: G(u) = u4 − 6u2 + 3.

These four cases are under conditions A2–A3. Random
function ξ is a real-valued and measurable stationary mean-
square continuous Gaussian process with Eξ(t) = 0, and
Eξ2(t) = 1, and covariance function:

(11) B(t) =
cos(κt)

(1 + t2)α/2
, t ∈ S+, S+ = R+ or N.

In this section, numerical results show the consistency
for particular cases under conditions A1, A2, A4’ and A5.
Specifically, the LSE in the Walker sense

θ̂T = (ÂT , B̂T , ϕ̂T )

of the unknown parameter θ = (A,B, ϕ) of the regression
function (9) seems to be weakly consistent as T → ∞, under
the assumption of LRD in process ξ. Moreover, the limiting
distribution of the LSE in the Walker sense of the function
(9) parameters for special cases under conditions A1, A2,
A3, A4’ and A5 seems to be normally distributed.

The paper [17] provides an analysis of the most rele-
vant results concerning asymptotic normality of the LSE of
trigonometric regression parameters. Here, we address the
numerical problem of the estimation of the unknown pa-
rameter from the observation of random process {x(t), t =
1, . . . , T ]} defined in (1), when T → ∞, and under the hy-
pothesis of Theorems 2.1 and 2.2. The asymptotic normality
of the LSE of parameters of model (1) is studied using simu-
lated data. The numerical experiments have been conducted
for different assumptions on noise distributions and values
of the covariance function (4).

We simulate the process (8) with different T values,
A = 1, B = 1, ϕ = 0.6. The set ST in equation (7) is
chosen as ST = (1/

√
T , 1). The generation of the random

vectors {ξ(t), t = 0, . . . , T} has been done from a multi-
variate normal distribution with zero mean vector, and co-
variance matrix (11). The values of the parameters used to
simulate the error term are κ = 0.5, α = 0.85, 1.50, 2.50
for simulation experiment 1 and α = 0.25, 0.45 for simula-
tion experiment 2. For each combination of κ, α and G, we
generate 1,000 different data sets from (8) using different
sequences of ξ(t).

To illustrate the simulation method, we can write the
random vector V = (ξ(1), . . . , ξ(T ))

′
, as

(12) V = Lη,

where η is an independent standard normal vector of dimen-
sion T and L is a lower triangular Cholesky factor of Σ, so
Σ = LL′, with

Σ =

⎛
⎜⎜⎜⎝

B(0) B(1) · · · B(T − 1)
B(1) B(0) · · · B(T − 2)
...

...
. . .

...
B(T − 1) B(T − 2) · · · B(0)

⎞
⎟⎟⎟⎠ .
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Figure 1. Simulated ε process for cases (a), (b), (c), and (d),
α = 0.85 (blue), α = 1.50 (green), α = 2.50 (red), and for
cases (e), (f), (g), and (h), α = 0.10 (blue), α = 0.25 (red),

α = 0.45 (green).

Firstly, vector η is generated as an independent zero-mean
Gaussian random vector. Secondly, we apply equation (12).
In Figure 1, realizations of random vector V are shown for
different values of α. Moreover, realizations of the error term
ε generated by nonlinear transformation of stationary Gaus-
sian process ξ can be seen in Figure 1 for above mentioned
functions G.

3.1 Simulation experiment 1

Here, the results of the papers [16, 17] concerning the
asymptotic normality and consistency of LSE in regression
model (1) for the trigonometric regression function are con-
firmed by simulation. The values of the parameters used to
simulate the error term are κ = 0.5, α = 0.85, 1.50, 2.50,
(see, Figure 1).

The convergence to the Gaussian distribution of the LSE
of θ in model (8) is checked by simulations studying the
behavior under the following scenario

ζ̂AT =
1

WA(T )

T∑
t=1

WA(t)G(ξ(t)),

W 2
A(T ) =

T∑
t=1

(cosϕt)2, WA(t) = cos(ϕt),

ζ̂BT =
1

WB(T )

T∑
t=1

WB(t)G(ξ(t)),

W 2
B(T ) =

T∑
t=1

(sinϕt)2, WB(t) = sin(ϕt),

and

ζ̂ϕT =
1

Wϕ(T )

T∑
t=1

Wϕ(t)G(ξ(t)),

W 2(T ) =

T∑
t=1

t2[−A sinϕt+B cosϕt]2,

Wϕ(t) = t[−A sinϕt+B cosϕt].

for increasing values of T.

Three statistical tests, Henze-Zirkler’s [7, 32], Doornik-
Hansen Omnibus [2, 33] and the Chi-square plot [22, 34],

are applied to the simulated random vectors (ζ̂AT , ζ̂BT , ζ̂ϕT ) to
evaluate whether the data belongs to a multivariate normal
distribution (MVN) or not. Although we can find many tests
for MVN in the literature, the uniformly most powerful test
does not exist and it is recommended to perform several
tests to evaluate the belonging to MVN. These three tests
are known to have good overall power against alternatives
to normality (see, for example, [23]).

Figure 2 shows the Chi-square quantile-quantile (Q-Q)
plot. The graphs display the squared Mahalanobis distances
of (ζ̂AT , ζ̂BT , ζ̂ϕT ), T = 30,000, versus quantiles of the Chi-
square distribution with d degrees of freedom (d = 3, num-
ber of variables). The squared Mahalanobis distance fol-
lows approximately a Chi-squared distribution when the
data are MVN. The interpretation is similar to the nor-
mal Q-Q plot, that is, if the graph is not linear, it can
not ensure the multivariate normal distribution. The lin-
ear plot of data for the cases displayed in Figure 2, sug-
gests that the asymptotic multivariate normality can be
proved. In Table 1, rejection rates of Henze-Zirkler’s and
Doornik-Hansen MVN tests applied to the simulated ran-
dom vectors (ζ̂AT , ζ̂BT ζ̂ϕT ) for different T values are shown.
These rates are calculated for significance level % 1, us-
ing 50 sets of simulated random vectors (ζ̂AT , ζ̂BT , ζ̂ϕT ), with
T = 1,000; 5,000; 10,000; 15,000; 20,000; 30,000. Each set is
composed of 1,000 replications of (ζ̂AT , ζ̂BT , ζ̂ϕT ). It is noted
that the rate of rejection decreases as T increases. For cases
where the rate of rejection is higher, the value of T needs to
be increased to ensure the MVN in the random vector (ζ̂AT ,

ζ̂BT , ζ̂ϕT ).
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Figure 2. Chi-square Q-Q plot of the squared Mahalanobis
distances of the simulated random vector (ζ̂AT , ζ̂BT , ζ̂ϕT ),

T = 30,000.

Table 1. Rejection rates of Henze-Zirkler’s (T1) and
Doornik-Hansen (T2) MVN tests applied to the simulated

random vectors (ζ̂AT , ζ̂BT ζ̂ϕT ) for different T values

T
α Case Test 1000 5000 10000 15000 20000 30000

0.85 H1 T1 0.00 0.04 0.00 0.00 0.00 0.00
T2 0.02 0.00 0.00 0.00 0.00 0.00

H2 T1 0.02 0.06 0.00 0.00 0.00 0.00
T2 0.06 0.02 0.00 0.00 0.00 0.03

H3 T1 0.06 0.00 0.00 0.00 0.00 0.00
T2 0.44 0.04 0.00 0.00 0.00 0.00

H4 T1 1.00 0.34 0.10 0.07 0.05 0.03
T2 1.00 0.82 0.40 0.27 0.15 0.03

1.50 H1 T1 0.00 0.02 0.00 0.00 0.00 0.00
T2 0.00 0.00 0.00 0.00 0.00 0.00

H2 T1 0.02 0.00 0.00 0.00 0.00 0.00
T2 0.14 0.02 0.00 0.00 0.00 0.00

H3 T1 0.08 0.04 0.00 0.00 0.05 0.00
T2 0.30 0.00 0.00 0.00 0.00 0.03

H4 T1 1.00 0.22 0.00 0.07 0.00 0.00
T2 1.00 0.82 0.40 0.13 0.05 0.00

2.50 H1 T1 0.00 0.00 0.00 0.00 0.00 0.03
T2 0.02 0.02 0.00 0.07 0.00 0.07

H2 T1 0.02 0.02 0.00 0.00 0.00 0.00
T2 0.02 0.02 0.00 0.00 0.00 0.00

H3 T1 0.02 0.02 0.00 0.00 0.00 0.00
T2 0.18 0.00 0.00 0.07 0.05 0.03

H4 T1 0.96 0.18 0.00 0.00 0.00 0.00
T2 1.00 0.68 0.10 0.07 0.00 0.03

Table 2. Rejection rates of Henze-Zirkler’s (T1) and
Doornik-Hansen (T2) MVN tests applied to the simulated

random vectors (ζ̂AT , ζ̂BT ζ̂ϕT ) for different T values

T
α Case Test 1000 5000 10000 15000 20000 30000

0.25 H1 T1 0.02 0.04 0.00 0.00 0.00 0.00
T2 0.00 0.02 0.00 0.00 0.00 0.03

H2 T1 0.24 0.06 0.00 0.00 0.05 0.07
T2 0.70 0.24 0.30 0.13 0.05 0.13

H3 T1 1.00 0.36 0.00 0.13 0.00 0.07
T2 1.00 0.92 0.60 0.53 0.50 0.37

H4 T1 1.00 1.00 1.00 1.00 0.85 0.70
T2 1.00 1.00 1.00 1.00 1.00 1.00

0.45 H1 T1 0.02 0.02 0.00 0.00 0.00 0.00
T2 0.00 0.02 0.00 0.13 0.00 0.00

H2 T1 0.06 0.04 0.00 0.00 0.00 0.00
T2 0.06 0.04 0.00 0.00 0.00 0.00

H3 T1 0.36 0.02 0.00 0.00 0.00 0.03
T2 0.78 0.12 0.00 0.00 0.10 0.03

H4 T1 1.00 0.82 0.20 0.27 0.10 0.03
T2 1.00 1.00 0.80 0.60 0.30 0.17
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Figure 3. 97% Probability Contours of MVN and scatter plot
for (ζ̂AT , ζ̂BT , ζ̂ϕT ) values, T = 30,000. (Color figure online)

Also, consistency of the LSEs can be verified with the re-

sults in figures 5–6. Specifically, the small variance obtained

suggests this property of the estimators under the hypoth-

esis A1–A3. The LSEs (ÂT , B̂T , ϕ̂T ), T = [1,000, 5,000],

with discretization step size 250, of the parameters (A,B, ϕ)

Figure 4. Variance of ÂT , T ∈ [1,000, 5,000], with
discretization step size 250, for cases: (a) α = 0.85,

(b) α = 1.50, (c) α = 2.50, case H1 (top-left), case H2
(top-right), case H3 (bottom-left) and case H4

(bottom-right).

Figure 5. Variance of B̂T , T ∈ [1,000, 5,000], with
discretization step size 250, for cases: (a) α = 0.85,

(b) α = 1.50, (c) α = 2.50, case H1 (top-left), case H2
(top-right), case H3 (bottom-left) and case H4

(bottom-right).

of the regression function (9), are computed numerically
with Matlab function lsqnonlin based on the Levenberg-
Marquardt algorithm (see, [25]).

Another significant graph for random vectors with MVN,
Nd(μ, C̃), is the constant Probability Contours. This graph
is represented as an ellipsoid formed for all x satisfying equa-
tion (x− μ)′C̃−1(x− μ) = c2, with a constant c. The axes
of the ellipsoid are μ ± c

√
λiei, where ei and λi are the

ith eigenvectors and eigenvalues of C̃, [28]. In Figure 3, the
constant Probability Contours are calculated for each one
of the cases studied, where C̃ is estimated from the sim-
ulated sample of (ζ̂AT , ζ̂BT , ζ̂ϕT ) values and c = 3, that is,
if data are multivariate normally distributed, then 97% of
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Figure 6. Variance of ϕ̂T , T ∈ [1,000, 5,000], with
discretization step size 250, for cases: (a) α = 0.85,

(b) α = 1.50, (c) α = 2.50, case H1 (top-left), case H2
(top-right), case H3 (bottom-left) and case H4

(bottom-right).

the data should be inside the ellipsoid. In the same graph
the scatter plot of the (ζ̂AT , ζ̂BT , ζ̂ϕT ) values is represented.
In most cases, the simulated values (shown as red dots) are
within the ellipsoid of the theoretical distribution (shown in
blue).

3.2 Simulation experiment 2

This subsection is aimed to proving asymptotic norma-
lity of the estimator of θ in model (8) under assumptions
A1, A2, A3, A4’ and A5 by using simulation. We have
considered model (8) with A = 1, B = 1 and ϕ = 0.6. The
generation of the random vectors {ξ(t), t = 0, . . . , T}, is per-
formed from a MVN with zero mean vector, and covariance
matrix (11) with the values of κ = 0.5, α = 0.25, 0.45. As
in the previous section, we have tested MVN with differ-
ent tools, Figure 7 shows Chi-square Q-Q plot of (ζ̂AT , ζ̂BT ,

ζ̂ϕT ), T = 30,000, for different combinations of the selected
parameter values. The 97% probability contours of a MVN
and the scatter plot of (ζ̂AT , ζ̂BT , ζ̂ϕT ), T = 30000, values are
represented in Figure 8. Finally, rejection rates of Henze-
Zirkler’s and Doornik-Hansen MVN tests are calculated for
50 samples of size 1,000 of the simulated random vectors
(ζ̂AT , ζ̂BT ζ̂ϕT ) for different T values. The results are similar to
the ones in the previous subsection. Under conditions A1,
A2, A3, A4’ and A5, normality and consistency (Figures
9–11) of the sample estimator can be affirmed in most of
the cases considered. For cases H3 and H4 and low val-
ues of α, T must be increased to obtain a lower rejection
ratio.

4. FINAL COMMENTS

This paper studies the estimation of hidden periodicities
in a nonlinear regression model with stationary noise dis-
playing cyclical dependence. The problems of consistency,

Figure 7. Chi-square Q-Q plot of the squared Mahalanobis
distances of the simulated random vector (ζ̂AT , ζ̂BT , ζ̂ϕT ),

T = 30,000.

and Gaussian limit distribution of the LSE, in the Walker
sense, for the harmonic regression model are addressed.
This kind of regression constitutes an active research area,
due to the existence of several open problems and applica-
tions. In previous work, such as in [17], the parameter range
αm > 1, α = minj=0,...,κ αj , with m being Hermite rank of
G (see, (5)), was considered. Here we have checked, by sim-
ulation experiments, that the Gaussian limit results hold for
0 < α < 1/2, m = 1.

Specifically, the results proven in [16, 17] for the trigono-
metric regression function (2) for α > 1/2 have been con-
firmed by simulation. Some experiments have been done
to determine the validity of these results for α < 1/2,
under the assumption of non overlapping spectra. Consis-
tency and asymptotic MVN of the LSE in the trigono-
metric regression have been verified. However, the conver-
gence rate to the MVN differs for each case included in the
study.
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Figure 8. 97% Probability Contours of MVN and scatter plot
for (ζ̂AT , ζ̂BT , ζ̂ϕT ) values, T = 30,000.

Figure 9. Variance of ÂT , T ∈ [1,000, 5,000], with
discretization step size 250, for cases: (a) α = 0.25,

(b) α = 0.45,case H1 (top-left), case H2 (top-right), case H3
(bottom-left) and case H4 (bottom-right).

Figure 10. Variance of B̂T , T ∈ [1,000, 5,000], with
discretization step size 250, for cases: (a) α = 0.25,

(b) α = 0.45, case H1 (top-left), case H2 (top-right), case H3
(bottom-left) and case H4 (bottom-right).

Figure 11. Variance of ϕ̂T , T ∈ [1,000, 5,000], with
discretization step size 250, for cases: (a) α = 0.25,

(b) α = 0.45, case H1 (top-left), case H2 (top-right), case H3
(bottom-left) and case H4 (bottom-right).
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116 M. P. Fŕıas et al.

http://www.ams.org/mathscinet-getitem?mr=0067453


[3] Doukhan, P., Oppenheim, G. and Taqqu, M. S. (2003). Theory
and Applications of Long-range Dependence. Birkhäuser, Boston.
MR1956041

[4] Gradshteyn, I. S. and Ryzhik, I. M. (2000). Tables of Inte-
grals, Series and Products, sixth ed. Academic Press, San Diego.
MR1773820

[5] Grenander, U. (1954). On the estimation of regression coeffi-
cients in the case of an autocorrelated disturbance. Ann. Math.
Statist. 25 252–272. MR0062402

[6] Grenander, U. and Rosenblatt, M. (1957). Statistical Analysis
of Stationary Time Series, Wiley, New York. MR0084975

[7] Henze, N. and Zirkler, B. (1990). A class of invariant consistent
tests for multivariate normality. Commun. Stat.-Theory Methods
19 3595–3618. MR1089501

[8] Ivanov, A. V. (1980). A solution of the problem of detecting
hidden periodicities. Theory Probab. Math. Stat. 20 51–68.

[9] Ivanov, A. V. (1997). Asymptotic Theory of Nonlin-
ear Regression. Kluwer Academic Publishers, Dordrecht.
MR1472234

[10] Ivanov, A. V. (2010). Consistency of the least squares estimator
of the amplitudes and angular frequencies of the sum of harmonic
oscillations in models with strong dependence. Theory Probab.
Math. Stat. 80 61–69. MR2541952

[11] Ivanov, A. V. and Leonenko, N. N. (1989). Statistical Analy-
sis of Random Fields. Kluwer Academic Publishers, Dordrecht.
MR1009786

[12] Ivanov, A. V. and Leonenko, N. N. (2004). Asymptotic the-
ory for nonlinear regression with long-range dependence. Math.
Methods Statist. 13 153–178. MR2090470

[13] Ivanov, A. V. and Leonenko, N. N. (2008). Semiparametric
analysis of long-range dependence in nonlinear regression. J. Stat.
Plan. Infer. 138 1733–1753. MR2400476

[14] Ivanov, A. V. and Leonenko, N. N. (2009). Robust estimators
in nonlinear regression models with long-range dependence. In:
Optimal Design and Related Areas in Optimization and Statistics.
Springer, New York. MR2513352

[15] Ivanov, A. V. and Orlovskii I. V. (2008) Asymptotic normal-
ity of M-estimates in the classical nonlinear regression model.
Ukrainian Math. J. 60 1716–1739. MR2523067

[16] Ivanov, A. V., Leonenko, N. N., Ruiz-Medina, M. D., and
Savich, I. N. (2013). Limit theorems for weighted nonlinear trans-
formations of Gaussian stationary processes with singular spectra.
Ann. Probab. 41 1088–1114. MR3077537

[17] Ivanov, A. V., Leonenko, N. N., Ruiz-Medina, M. D. and Zhu-

rakovsky, B. M. (2015). Estimation of harmonic component in
regression with cyclically dependent errors. Statistics 49 156–186.
MR3304373

[18] Koul, H. (1996). Asymptotics of M-estimations in nonlinear re-
gression with long-range dependence errors. In: Proc. Athens
Conf. Appl. Probab. and Time Ser. Analysis (P. M. Robinson and
M. Rosenblatt, Eds.), Springer, Verlag, Lecture Notes in Statis-
tics, II, 272–291. MR1466752

[19] Koul, H. and Baillie, R. T. (2003). Asymptotics of M-estimators
in nonlinear regression models with long-memory designs. Stat.
Probab. Lett. 61 237–252. MR1959131

[20] Leonenko, N. N. and Taufer, E. (2006). Weak conver-
gence of functionals of stationary long memory processes to
Rosenblatt-type distributions. J. Stat. Plan. Infer. 136 1220–
1236. MR2253760

[21] Leonenko, N. N., Ruiz-Medina, M. D. and Taqqu, M. S.

Rosenblatt distribution subordinated to gaussian random
fields with long-range dependence. http://arxiv.org/pdf/
1501.02247.pdf.

[22] Mardia, K. V.,Kent J. T., and Bibby J. M. (1979).Multivariate
Analysis. Academic Press, London. MR0560319

[23] Mecklin, C. J. and Mundfrom, D. J. (2005). A Monte Carlo
comparison of the Type I and Type II error rates of tests
of multivariate normality. J. Stat. Comput. Simul. 75 93–107.
MR2134615

[24] Moran, P. A. P. (1953). The statistical analysis of the Cana-
dian Lynx Cycle I and II, Aust. J. Zool. 1 163–173 and 291–
298.
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