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Econometric and financial data often take the form of a
collection of curves observed consecutively over time. Ex-
amples include intraday price curves, term structure curves,
and intraday volatility curves. Such curves can be viewed
as functional time series. A fundamental issue that must be
addressed, before an attempt is made to statistically model
or predict such series, is whether they can be assumed to be
stationary with a possible deterministic trend. This paper
extends the KPSS test to the setting of functional time se-
ries. We propose two testing procedures: Monte Carlo and
asymptotic. The limit distributions of the test statistics are
specified, the procedures are algorithmically described and
illustrated by application to yield curves and daily price
curves.

Keywords and phrases: Functional data, Daily price

curves, Integrated time series, Random walk, Trend station-
arity.

1. INTRODUCTION

Many econometric and financial data sets take the form
of a time series of curves, or functions. The best known and
most extensively studied data of this form are yield curves.
Even though they are observed at discrete maturities, in fi-
nancial theory they are viewed as continuous functions, one
function per month or per day. The yield curves can thus
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be viewed as time series of curves, functional time series.
Other examples include intraday price, volatility or volume
curves. Intraday price curves are smooth, volatility and vol-
ume curves are noisy and must be smoothed before they can
be effectively treated as curves. As with scalar and vector
valued time series, it is important to describe the random
structure of a functional time series. A fundamental ques-
tion, which has received a great deal of attention in econo-
metric research, is whether the time series has a random
walk, or unit root, component. The present paper addresses
this issue in the context of functional time series by propos-
ing extensions of the KPSS test of [15] and applying them
to several data sets.

The work of [15] was motivated by the fact that unit root
tests developed by [5, 6], and [24] indicated that most ag-
gregate economic series had a unit root. In these tests, the
null hypothesis is that the series has a unit root. Since such
tests have low power in samples of sizes occurring in many
applications, [15] proposed that trend stationarity should be
considered as the null hypothesis, and the unit root should
be the alternative. Rejection of the null could then be viewed
as convincing evidence in favor of the unit root hypothesis.
It was soon realized that the KPSS test of [15] has a much
broader utility. For example, [16] and [8] used it to detect
long memory, with short memory as the null hypothesis; [4]
developed a robust version of the KPSS test. The work of
[17] is crucial because he observed that under temporal de-
pendence, to obtain parameter–free limit null distributions,
statistics similar to the KPSS statistic must be normalized
by the long run variance rather than by the sample variance.

In the functional setting, the null hypothesis of trend sta-
tionarity is stated as follows:

(1.1) H0 : Xn(t) = μ(t) + nξ(t) + ηn(t),
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where n is the serial number of the day in our applications,
and t refers to “time” for each function. For example, for
the intraday price curves, t is the time within a trading day,
measured in minutes or at an even finer resolution. For the
yield curves, t does not correspond to physical time but to
time until expiration, the maturity horizon of a bond. The
functions μ and ξ correspond, respectively, to the intercept
and slope. The errors ηn are also functions which model
random departures of the observed functions Xn from a de-
terministic model. Under the alternative, the model contains
a random walk component:

(1.2) HA : Xn(t) = μ(t) + nξ(t) +

n∑
i=1

ui(t) + ηn(t),

where u1, u2, . . . are mean zero identically distributed ran-
dom functions.

Our approach to testing exploits the ideas of functional
data analysis (FDA), mostly those related to functional
principal component expansions; several monographs, e.g.
[23] and [9], explain them in detail. Application of FDA
methodology in an econometric context is not new. Among
others, [13] studied prediction of yield curves, [19] consid-
ered functional modeling of volatility, [14] used a regression
type model to explain the shapes of price curves. A contri-
bution most closely related to the present work is that of
[11] who developed a test of level stationarity. Incorporat-
ing a possible trend leads to different limit distributions and
more complex numerical implementations.

The remainder of the paper is organized as follows. After
introducing the required concepts and notation in Section 2,
we present in Section 3 the large sample results needed to
construct the tests. The resulting testing procedures are de-
scribed in Section 4. Section 5 presents their applications to
data representing bond, equity, forex and commodity mar-
kets. In this last section, we also examine and discuss finite
sample properties of the tests.

2. PRELIMINARIES

To understand the construction of the tests in the setting
of functional time series, we must introduce some notation
and definitions. This is the objective of the present section.

All random functions and deterministic functional pa-
rameters μ and ξ are assumed to be elements of the Hilbert
space L2 = L2([0, 1]) with the inner product 〈f, g〉 =∫ 1

0
f(t)g(t)dt. This means that the domain of all functional

observations, e.g. of the daily price or yield curves, has been
normalized to be the unit interval. If the limits of integra-
tion are omitted, integration is over the interval [0, 1]. All
random functions are assumed to be square integrable, i.e.,
E ||ηn||2 < ∞, E ||un||2 < ∞, where the norm is generated

by the inner product, i.e. ||f ||2 =
∫
f2(t)dt.

[15] assumed that the errors ηn are iid, but subsequent
research extended their work to errors which form a station-
ary time series, see, e.g., [8] and the references therein. In

the case of scalar observations, temporal dependence can be
quantified in many ways, e.g., via structural, mixing or cu-
mulant conditions, and a large number of asymptotic results
established under such assumptions can be used. For func-
tional time series, the corresponding results are much fewer
and fall into two categories: 1) those derived assuming a lin-
ear, ARMA type, structure, see, e.g., [1]; 2) those assuming
a nonlinear moving average representation (Bernoulli shifts)
with the decay of dependence specified by a moment con-
dition. We have established the asymptotic validity of our
tests assuming very general conditions falling into the sec-
ond category. Detailed formulations of these conditions are
presented in [25]. In essence, the error functions ηn and ui

need not be iid, but merely must form stationary and weakly
dependent sequences.

Next we define the long–run covariance function of the er-
rors ηn and its estimator. The long–run covariance function
is defined as

c(t, s) = Eη0(t)η0(s)(2.1)

+

∞∑
i=1

(Eη0(t)ηi(s) + Eη0(s)ηi(t)) .

The series defining the function c(t, s) converges in
L2([0, 1] × [0, 1]), see [10]. The function c(t, s) is positive
definite. Therefore there exist eigenvalues λ1 ≥ λ2 ≥ ... ≥ 0,
and orthonormal eigenfunctions φi(t), 0 ≤ t ≤ 1, satisfying

(2.2) λiφi(t) =

∫
c(t, s)φi(s)ds, 0 ≤ i ≤ ∞.

The eigenvalues λi play a crucial role in our tests. They are
estimated by the sample, or empirical, eigenvalues defined
by

(2.3) λ̂iφ̂i(t) =

∫
ĉ(t, s)φ̂i(s)ds, 0 ≤ i ≤ N,

where ĉ(·, ·) is an estimator of (2.1), and N is the sample
size of the functional time series. We use a kernel estimator
similar to that introduced by [10], but with suitably defined
residuals in place of the centered observations Xn. To define
model residuals, consider the least squares estimators of the
functional parameters ξ(t) and μ(t) in model (1.1):

(2.4) ξ̂(t) =
1

sN

N∑
n=1

(
n− N + 1

2

)
Xn(t)

with

(2.5) sN =

N∑
n=1

(
n− N + 1

2

)2

and

(2.6) μ̂(t) = X̄(t)− ξ̂(t)
(N + 1

2

)
.
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The functional residuals are therefore

(2.7) en(t) = (Xn(t)− X̄(t))− ξ̂(t)
(
n− N + 1

2

)
,

where 1 ≤ n ≤ N . Defining their empirical autocovariances
by

(2.8) γ̂i(t, s) =
1

N

N∑
j=i+1

ej(t)ej−i(s), 0 ≤ i ≤ N − 1,

leads to the kernel estimator

(2.9) ĉ(t, s) = γ̂0(t, s) +

N−1∑
i=1

K

(
i

h

)
(γ̂i(t, s) + γ̂i(s, t)).

It can be shown that under the usual assumptions on the
kernel functionK and the bandwidth h (h → ∞, h/N → 0),

(2.10)

∫∫
[ĉ(t, s)− c(t, s)]2dtds

P→ 0, as N → ∞,

details are presented in [25].

We conclude this section by stating the definitions of
Gaussian stochastic processes which are needed to con-
struct the limit distributions of the test statistics. Recall
that if {W (x), 0 ≤ x ≤ 1} is a standard Brownian motion
(Wiener process), then the Brownian bridge is defined by
B(x) = W (x)−xW (x), 0 ≤ x ≤ 1. The second–level Brow-
nian bridge is defined by

V (x) = W (x) +
(
2x− 3x2

)
W (1)(2.11)

+
(
− 6x+ 6x2

)∫ 1

0

W (y)dy, 0 ≤ x ≤ 1.

Both the Brownian bridge and the second–level Brownian
bridge are special cases of the generalized Brownian bridge
introduced by [18] who studied the asymptotic behavior
of partial sums of polynomial regression residuals. Process
(2.11) appears as the null limit of the KPSS statistic of [15].
We will see in Section 3 that for functional data the limit
involves an infinite sequence of independent and identically
distributed second-level Brownian bridges V1(x), V2(x), . . ..

3. LARGE SAMPLE LIMITS

[11] developed tests of level–stationarity of a functional
time series, i.e., of the null hypothesis Xn(t) = μ(t) + ηn(t),
using the partial sum process

UN (x, t) =
1√
N

�Nx�∑
n=1

(
Xn(t)− X̄(t)

)

= SN (x, t)− 
Nx�
N

SN (1, t),

where SN (x, t) is the partial sum process of the curves
X1(t), X2(t), . . . , XN (t) is defined by

(3.1) SN (x, t) =
1√
N

�Nx�∑
n=1

Xn(t), 0 ≤ t, x ≤ 1.

The process UN (x, t) has the form of a functional Brownian
bridge. Their main statistic

TN =

∫∫
U2
N (x, t)dtdx

=

∫
‖UN (x, ·)‖2dx, 0 ≤ t, x ≤ 1,

is asymptotically distributed, under the null, as∑∞
i=1 λi

∫
B2

i (x)dx, where λ1, λ2, . . . are eigenvalues of
the long–run covariance function of the observations Xn,
and B1, B2, . . . are iid Brownian bridges. In the case of
trend stationarity, a different distribution arises; the Bi

must be replaced by second level Brownian bridges, and
the λi are defined differently. The remainder of this section
explains the details.

The test statistic for the trend-stationary case is based
on the partial sum process of residuals (2.7), i.e., on the
two–parameter process

(3.2) ZN (x, t) =
1√
N

�Nx�∑
n=1

en(t).

A suitable test statistic is given by

RN =

∫∫
Z2
N (x, t)dtdx(3.3)

=

∫
‖ZN (x, ·)‖2dx, 0 ≤ t, x ≤ 1.

It can be shown, [25], that under the null hypothesis,

(3.4) RN
D→

∞∑
i=1

λi

∫
V 2
i (x)dx,

where λ1, λ2, . . . are the eigenvalues of the long–run covari-
ance function (2.1), and V1, V2, . . . are iid second–level Brow-
nian bridges.

We now explain the issues arising in the functional case
by comparing our result to that obtained by [15]. If all curves
are constant functions (Xi(t) = Xi for t ∈ [0, 1]), the statis-
tic RN given by (3.3) is the numerator of the KPSS test
statistic of [15], which is given by

KPSSN =
1

N2σ̂2
N

N∑
n=1

S2
n =

RN

σ̂2
N

,

where σ̂2
N is a consistent estimator of the long-run vari-

ance σ2 of the residuals. In the scalar case, (3.4) reduces to

RN
D→ σ2

∫ 1

0
V 2(x)dx, where V (x) is a second–level Brown-

ian bridge. If σ̂2
N is a consistent estimator of σ2, the result
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of [15] is recovered, i.e. KPSSN
D→

∫ 1

0
V 2(x)dx. In the func-

tional case, the eigenvalues λi can be viewed as long–run
variances of the residual curves along the principal direc-
tions determined by the eigenfunctions of the kernel c(·, ·)
defined by (2.1). To obtain a test analogous to the scalar
KPSS test, with a parameter free limit null distribution,
we must construct a statistic which involves a division by
consistent estimators of the λi. We use only d largest eigen-
values in order not to increase the variability of the statistic
caused by division by small empirical eigenvalues. A suitable
statistic is

(3.5) R0
N =

d∑
i=1

1

λ̂i

∫ 1

0

〈ZN (x, ·), φ̂i〉2dx,

where the sample eigenvalues λ̂i and eigenfunctions φ̂i are
defined by (2.3). Statistic (3.5) extends the statistic KPSSN .
It can be shown that under suitable assumptions, [25],

(3.6) R0
N

D→
d∑

i=1

∫ 1

0

V 2
i (x)dx,

with the Vi, 1 ≤ i ≤ d, the same as in (3.4).
Section 4 describes how the tests based on relations (3.4)

and (3.6) are implemented.

4. ALGORITHMIC DESCRIPTION OF THE
TEST PROCEDURES

This section provides step–by–step descriptions of the
test procedures based on limit relations (3.4) and (3.6).

Algorithm 4.1 [Monte Carlo test based on relation (3.4)]

1. Estimate the null model (1.1) and compute the residu-
als defined in equation (2.7).

2. Select kernelK and a bandwidth h in (2.9) and compute

the eigenvalues λ̂i φ̂i, 1 ≤ i ≤ N , defined by (2.3).
3. Simulate a large number, say G = 10,000, of vectors

[V1, V2, . . . , VN ] consisting of independent second level
Brownian bridge processes Vi defined in (2.11). Find
the 95th percentile, Rcritical, of the G replications of

R�
N =

N∑
i=1

λ̂i

∫ 1

0

V 2
i (x)dx.

4. Compute the test statistic RN defined in (3.3). If RN ≥
Rcritical, reject H0 at the 5% significance level.

In most applications, the λ̂i decay very quickly to zero, so
if N is large, it can be replaced in Algorithm 4.1 by a smaller
number, e.g by d = 20, and the empirical distribution of the
R�

N can be replaced by that of the R�
d. In Algorithm 4.1 the

critical value must be obtained via Monte Carlo simulations
for each data set. In Algorithm 4.2, tabulated critical values

Table 1. Critical values of the distribution of the variable
R0(d) given by (4.1)

d 1 2 3 4 5

10% 0.1201 0.2111 0.2965 0.3789 0.4576
Size 5% 0.1494 0.2454 0.3401 0.4186 0.5068

1% 0.2138 0.3253 0.4257 0.5149 0.6131

d 6 7 8 9 10

10% 0.5347 0.6150 0.6892 0.7646 0.8416
Size 5% 0.5909 0.6687 0.7482 0.8252 0.9010

1% 0.6960 0.7799 0.8574 0.9487 1.0326

can be used. These depend on the number d of the func-
tional principal components used to construct statistic R0

N .
Typically d is a small, single digit, number. Table 1 lists
selected critical values. They have been obtained by simu-
lating G = 10,000 vectors [V1, V2, . . . , Vd] and finding the
percentiles of the G replications of

(4.1) R0(d) =

d∑
i=1

∫ 1

0

V 2
i (x)dx.

Algorithm 4.2 [Asymptotic test based on relation (3.6)]

1. Perform steps 1 and 2 of Algorithm 4.1.
2. Choose the smallest d such that

∑
i≤d λ̂i/

∑
i≤N λ̂i >

0.85.
3. Calculate the statistic R0

N given by (3.5) and reject H0

if R0
N > R0

critical, with the critical value given in Table 1.

The 85% rule in Step 2 is a rule of thumb; asking for 85%
of the variance to be explained is based on good empirical
results, leading to our choice above. In some applications,
Step 2 may be replaced by a selection of d based on a visual
fit of the truncated principal component expansion

X(d)
n (t) = μ̂(t) +

d∑
j=1

〈
Xn, φ̂j

〉
φ̂j(t)

to the observed curves Xn(t). In other applications, existing
theory or experience may support certain choices of d. This
is the case for the yield curves, which we use to illustrate
the application of our tests (mean level plus d = 2 prin-
cipal components). For financial data, d is generally small,
with d = 2, 3, 4 being the typical values. However, for other
types of data, e.g. for environmental data, d exceeding 10
may be needed. In such cases, caution is recommended in
the application of Algorithm 4.2 as the resulting test may
be numerically and statistically unstable due to the divi-
sion by small λ̂j which may exhibit large sampling variabil-
ity.

An important step is the choice of h needed to estimate
the long run covariance function. A great deal of research
in this direction has been done for scalar and vector time
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Figure 1. Left: five consecutive yield curves. Right: prices of the S&P 500 index over five consecutive days.

series. For functional time series, the method proposed by
[12] often gives good results. It uses the flat top kernel

(4.2) K(t) =

⎧⎪⎨
⎪⎩
1, 0 ≤ t < 0.1

1.1− |t|, 0.1 ≤ t < 1.1

0, |t| ≥ 1.1

advocated by Politis and Romano ([21], [22]) and [20], and a
data–driven selection of h. This method performs well if the
series length N is larger than several hundred, longer than
the series we consider. In the simulations reported in [25]
a deterministic bandwidth h = N2/5 (combined with the
flat top kernel) produced good size and power. The optimal
selection of h is not a focus of this paper, this complex issue
must be investigated in a separate work. As in the scalar
case, it is however unlikely that a selection procedure that
is uniformly optimal for all dependence structures can be
found. In testing problems, it is useful to use several values of
h and trust results which do not depend on h in a reasonable
range.

5. APPLICATION TO YIELD AND DAILY
PRICE CURVES

In this section, we apply the test procedures of Section 4
to several financial data sets which can be viewed as time
series of functions. The most extensively studied series of
this type is the series of yield curves. In the past, the se-
ries of monthly yield curves have been typically studied,
but in recent years high quality data at the daily frequency
have become available. On a given day, a yield curve shows
the yield (interest) earned on a fixed income instrument as
a function of maturity. In most economic studies, these are
yields on bills and bonds issued by central banks. The shape
and level of these curves reflect the expectations of investors
on the future direction of a specific economic area, see e.g.,

Chapter 10 of [2] or [7]. Figures 1 (left panel) and 2 show,
respectively, five consecutive yield curves and two sets of 250
yield curves. The question we want to answer is whether the
time series of yield curves can be treated as stationary time
series with trend, or if they contain a random walk com-
ponent. Visual examination and economic interpretation of
these data leads to the conclusion that a pure trend model
will not hold over very long periods of time which include
periods of growth and recession and changes in central bank
policies. Over shorter periods of time, the trend model may
however hold, and may be useful to investors in fixed income
securities.

The second type of functional time series we study are
daily price curves like those shown in the right panel of
Figure 1. As noted in the introduction, whether a time series
of closing prices on a specific asset contains a random walk
(is a unit root process) has been one of the most extensively
studied topics in finance. In contrast to these studies, we
consider the series of price curves. Out of a large number of
assets that are of interest, we selected the S&P 500 index,
the US dollar index and light crude oil futures. These assets
represent, respectively, the equity, currency and commodity
markets. As for the bond market, trend stationarity will not
hold over long periods of time, but our tests can identify
periods for which it does hold.

The main objective of the empirical analysis presented in
this section is to uncover commonalities and differences be-
tween the various classes of assets with respect to the trend
behavior of specific daily functions. The analysis will also
illustrate the statistical properties of the tests we propose.

5.1 Data description

As an example of the time series of yield curves we use the
daily United States Federal Reserve yield curves defined for
maturities of 1, 3, 6, 12, 24, 36, 60, 84, 120 and 360 months.
The available data covers all business days from January
2001 to December 2013.
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Figure 2. Consecutive yield curves over two time periods. Vertical lines show the location of sample sizes
N = 50, 100, 150, 200, 250.

Figure 3. S&P 500 index for two different time periods.

The second data set is the Standard & Poor’s 500 finan-
cial index (S&P 500) in one minute resolution. The index
is a weighted average of stock values of the largest 500 U.S.
companies. At each trading day, we consider a price curve.
The last value on day n−1 is not the same as the first value
on day n. An overnight jump of over half a percent is not
unusual. Figure 3 shows the S&P 500 index over two peri-
ods. The available data cover the period of 23 years from
January 1989 to December 2012.

The third data set is the U.S. dollar index. As a weighted
average of exchange rates against several major currencies,
it measures the value of the U.S. dollar relative to a col-
lection of other foreign currencies. A higher index indicates
that the U.S. dollar is stronger compared to foreign curren-
cies. The index is traded and used for the construction of

derivative instruments. Similar to the S&P 500 index, we
use values in one minute resolution and consider one day as
a single functional observation. However, instead of consid-
ering business days, we only exclude Saturdays for this data
set. Figure 4 shows the U.S. dollar index over two different
sampling periods. The available data cover the period of 23
years from January 1989 to December 2012.

The fourth data set consists of light crude oil futures.
Light sweet crude oil futures and options are one of the
worlds most highly traded energy products. Similar to
the S&P 500 and the U.S. dollar index, we use minute–
by–minute prices, and consider one day as a single func-
tional observation. We exclude only Saturdays for this
data set. Figure 5 shows the light crude oil futures over
two different sampling periods. The available data cover
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Figure 4. U.S. dollar index for two different time periods.

Figure 5. Light crude oil futures over two different time periods.

the period of 22 years from January 1989 to December
2011.

In Section 5.2, we show how the P–values broadly de-
pend on the length of the series, N , and on the time period.
We complement this analysis by focusing in Section 5.3 on
selected time periods, those shown in Figures 2, 3, 4 and
5. This additional, more detailed analysis allows us to gain
insights about the properties of the tests.

5.2 Long term trend characteristics of the
curves

In this section, we display the P–values of the Monte
Carlo test described in Algorithm 4.1 applied to the data
described in Section 5.1. We also computed the P–values

for the test based on Algorithm 4.2. While the P–values
for the two tests are different, their general patterns are
very similar, so to conserve space we focus on Algorithm 4.1
with the bandwith h = N2/5. We take a closer look at the
differences between the two algorithms and the effect of the
bandwidth in Section 5.3.

The main finding of our analysis is that for time periods of
length N = 100 days, what corresponds roughly to the num-
ber of business days in four months, it is not uncommon that
the null hypothesis of trend stationarity is not rejected. For
periods covering the whole year, the null hypothesis is gener-
ally rejected. However, the proportion and temporal pattern
of rejections are different for different assets. For example,
for the yield curves there is hardly any period when H0 can

Testing trend stationarity of functional time series 87



Figure 6. P–values of the test based on Algorithm 4.1 applied to the Treasury Yield Curves. The plot on the left shows
thirty 100 day periods and the plot on the right shows ten 300 day periods.

Figure 7. P–values of the test described in Algorithm 4.1 applied to the S&P 500 index. The plot on the left shows sixty
100 day periods and the plot on the right shows twenty 300 day periods.

be accepted. This implies that this functional time series is
not stationary even if a deterministic trend is allowed. This
finding has implications for the prediction of yield curves;
many methods assume a stationary model, some form of
autoregression for factor coefficients. However, [3] obtained
better prediction by assuming that the yield curves form
only a locally stationary functional time series, i.e. station-
ary only on short subintervals. Our inferential procedures
confirm the validity of such an approach. In the remainder
of this section, we systematically present and discuss the re-
sults for all four data sets. For each asset, we consider all
available consecutive, nonoverlapping periods of N = 100
and N = 300 days.

Figure 6 exhibits the pattern of P–values for the Daily
United States Federal Reserve yield curves. Focusing first
on periods of length N = 100, we see that 23 out of the 30
periods show P–values below the significance level of 0.05.
As the sample size increases to N = 300, we see that 9 out of
the 10 longer periods have P–values below the significance
level of 0.05. As noted above, an overriding conclusion is
that the yield curves do not follow a stationary model even
with a trend, and a presence of a random walk component
or some other changes in the the stochastic structure must
be taken into account.

Figure 7 shows the P–values for the S&P 500 curves. For
N = 100, 32 out of the 60 periods have P–values smaller
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Figure 8. P–values of the test described Algorithm 4.1 applied to the U.S. dollar index. The plot on the left shows sixty
100 day periods and the plot on the right shows twenty 300 day periods.

Figure 9. P–values of the test described Algorithm 4.1 applied to the Oil Futures. The plot on the left shows sixty 100 day
periods and the plot on the right shows twenty 300 day periods.

than 0.05. In contrast to the yield curves, this shows that
a stationary model with a trend can be suitable for many
periods extending over several months; in most cases this
corresponds to a persistent bull market, cf. Figure 3. How-
ever, as the sample size increases to N = 300, we see that
16 out of the 20 longer periods have P–values below 0.05; a
bull market cannot last forever.

Figure 8 shows the P–values for the U.S. dollar index.
For N = 100, 44 out of the 60 periods have P–values below
0.05. As the sample size increases to N = 300, we see that
17 out of the 20 longer periods have P–values smaller than
0.05. In terms of the trend behavior, the currency index is

somewhere between the yield curves and the equity index.
There are periods of trend stationarity but they are less
frequent than for equities.

Finally, we turn to the light crude oil futures. Figure 9
shows the P–values. For N = 100, 42 out of the 60 periods
have P–values smaller than 0.05. In this case, an interest-
ing temporal pattern of these P–values can be seen. Start-
ing from 1997, there are periods with increasing P–values,
indicting that a trend model might often be suitable. This
agrees with a persistent, almost linear, decline in prices from
December 1996 to December 1998 followed by a long rise
from January 1999 up to the summer of 2008, just before
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Table 2. P–values of the tests of Section 4 applied to
Treasury Yield Curves. The data are shown in Figure 2

Time period Sample size Bandwidth RN R0
N

N1/3 0.0200 0.0206

01/03/2006 – 03/15/2006 N = 50 N2/5 0.0432 0.0561

N1/2 0.0878 0.1361

N1/3 0.0022 0.0024

01/03/2006 – 05/25/2006 N = 100 N2/5 0.0108 0.0116

N1/2 0.0410 0.0661

N1/3 0.0003 0.0005

01/03/2006 – 08/07/2006 N = 150 N2/5 0.0013 0.0007

N1/2 0.0117 0.0086

N1/3 0.0000 0.0000

01/03/2006 – 10/18/2006 N = 200 N2/5 0.0005 0.0001

N1/2 0.0015 0.0050

N1/3 0.0000 0.0000

01/03/2006 – 12/29/2006 N = 250 N2/5 0.0000 0.0001

N1/2 0.0011 0.0051

Time period Sample size Bandwidth RN R0
N

N1/3 0.0065 0.0109

07/25/2006 – 10/03/2006 N = 50 N2/5 0.0164 0.0290

N1/2 0.0404 0.0704

N1/3 0.0075 0.0169

07/25/2006 – 12/14/2006 N = 100 N2/5 0.0272 0.0590

N1/2 0.0967 0.1885

N1/3 0.0002 0.0005

07/25/2006 – 02/28/2007 N = 150 N2/5 0.0027 0.0044

N1/2 0.0230 0.0447

N1/3 0.0030 0.0081

07/25/2006 – 05/09/2007 N = 200 N2/5 0.0166 0.0451

N1/2 0.1035 0.1965

N1/3 0.0000 0.0000

07/25/2006 – 07/20/2007 N = 250 N2/5 0.0002 0.0010

N1/2 0.0090 0.0240

the financial crisis. These long periods were punctuated by
short periods of reversals, so only in 3 out of 20 longer pe-
riods a trend model is accepted.

5.3 Properties of the tests

In this section, we elaborate on the findings of Section 5.2
in two ways: 1) we zoom in on specific time periods, those
displayed in Figures 2, 3, 4 and 5, to establish a more direct
connection between the data and the P–values, 2) we apply
to these fewer periods both algorithms of Section 4 and use a
selection of bandwiths h. The results are shown in Tables 2,
3, 4 and 5.

We begin by analyzing Table 2 which pertains to the yield
curves shown in Figure 2. As for most other periods, the null
hypothesis is rejected, except for a few cases corresponding
to the bandwidth h = N1/2. Simulations reported in [25]
show that for artificial data which resemble the yield curves,
this bandwidth is too large. It makes the statistic too small

Table 3. P–values of the tests of Section 4 applied to S&P
500 index. The data are shown in Figure 3

Time period Sample size Bandwidth RN R0
N

N1/3 0.1364 0.2407

07/14/2006 – 09/22/2006 N = 50 N2/5 0.1580 0.2584

N1/2 0.1443 0.1960

N1/3 0.2242 0.2620

07/14/2006 – 12/04/2006 N = 100 N2/5 0.2669 0.2320

N1/2 0.2915 0.1707

N1/3 0.0001 0.0003

07/14/2006 – 02/16/2007 N = 150 N2/5 0.0001 0.0013

N1/2 0.0057 0.0076

N1/3 0.0001 0.0001

07/14/2006 – 05/01/2007 N = 200 N2/5 0.0001 0.0011

N1/2 0.0075 0.0120

N1/3 0.0013 0.0063

07/14/2006 – 07/12/2007 N = 250 N2/5 0.0090 0.0254

N1/2 0.0519 0.1240

Time period Sample size Bandwidth RN R0
N

N1/3 0.0186 0.0457

08/27/2010 – 11/05/2010 N = 50 N2/5 0.0324 0.0682

N1/2 0.0607 0.0967

N1/3 0.0329 0.0465

08/27/2010 – 01/19/2011 N = 100 N2/5 0.0671 0.0916

N1/2 0.1365 0.1207

N1/3 0.0032 0.0088

08/27/2010 – 03/31/2011 N = 150 N2/5 0.0112 0.0266

N1/2 0.0439 0.0762

N1/3 0.0000 0.0001

08/27/2010 – 06/13/2011 N = 200 N2/5 0.0001 0.0009

N1/2 0.0026 0.0086

N1/3 0.0000 0.0000

08/27/2010 – 08/23/2011 N = 250 N2/5 0.0001 0.0004

N1/2 0.0012 0.0055

and so the tests are too conservative. We also see that while
the test based on the Monte Carlo distribution, statistic RN ,
and the pivotal test based on R0

N generally give different P–
values, the differences are small, and generally do not affect
significance statements. Turning to the S&P 500 index, for
the two periods shown in Figure 3, Table 3 shows rejections,
except for the first 100 days in the left panel of Figure 3.
In some cases these rejections are weak if h = N1/2; both
tests again give the same conclusions in almost all cases.
The conclusions for the U.S. Dollar index and Oil Futures
are qualitatively the same as for the S&P 500 data.

The conclusion is that bandwidths h = N1/3 or h =
N2/5 can be used for sample sizes in the range from 50
to 300. Both algorithms presented in Section 4 give prac-
tically the same results. We note that for the data we
studied d was small, typically 2 or 3. If d is large, Algo-
rithm 4.2 must be used with caution, as explained in Sec-
tion 4.
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Table 4. P–values of the tests of Section 4 applied to U.S.
dollar index. The data are shown in Figure 4

Time period Sample size Bandwidth RN R0
N

N1/3 0.0538 0.0350

08/27/2010 – 10/24/2010 N = 50 N2/5 0.0980 0.0410

N1/2 0.1742 0.0562

N1/3 0.0001 0.0003

08/27/2010 – 12/21/2010 N = 100 N2/5 0.0006 0.0014

N1/2 0.0079 0.0165

N1/3 0.0016 0.0012

08/27/2010 – 02/18/2011 N = 150 N2/5 0.0093 0.0059

N1/2 0.0533 0.0243

N1/3 0.0022 0.0018

08/27/2010 – 04/18/2011 N = 200 N2/5 0.0126 0.0087

N1/2 0.0711 0.0371

N1/3 0.0045 0.0089

08/27/2010 – 06/16/2011 N = 250 N2/5 0.0219 0.0347

N1/2 0.1041 0.1146

Time period Sample size Bandwidth RN R0
N

N1/3 0.0039 0.0199

01/03/2011 – 03/01/2011 N = 50 N2/5 0.0129 0.0455

N1/2 0.0350 0.1033

N1/3 0.0001 0.0006

01/03/2011 – 04/30/2011 N = 100 N2/5 0.0003 0.0031

N1/2 0.0033 0.0178

N1/3 0.0001 0.0003

01/03/2011 – 06/27/2011 N = 150 N2/5 0.0003 0.0021

N1/2 0.0029 0.0158

N1/3 0.0000 0.0001

01/03/2011 – 08/24/2011 N = 200 N2/5 0.0001 0.0012

N1/2 0.0019 0.0107

N1/3 0.0038 0.0184

01/03/2011 – 10/22/2011 N = 250 N2/5 0.0179 0.0609

N1/2 0.0691 0.1746
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