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Semiparametric analysis for environmental
time series

Lin Tang and Qin Shao
∗

Time series that contain a trend, a seasonal compo-
nent and periodically correlated time series are commonly
encountered in environmental sciences. A semiparametric
three-step method is proposed to analyze such time series.
The seasonal component and trend are estimated by means
of B-splines, and the Yule-Walker estimates of the time se-
ries model coefficient are calculated via the residuals after
removing the estimated seasonality and trend. The oracle
efficiency of the proposed Yule-Walker type estimators is es-
tablished. Simulation studies suggest that the performance
of the estimators coincide with the theoretical results. The
proposed method is applied to the monthly global tempera-
ture data provided by the National Space Science and Tech-
nology Center.

Keywords and phrases: Periodic autoregressive time se-
ries, Partially linear models, Yule-Walker estimators, B-
splines, Oracle efficiency, Confidence band, Trend, Season-
ality.

1. INTRODUCTION

Time series of environmental sciences often contain trend,
seasonality, and periodically correlated random components
due to the seasonal and periodic nature of dynamical sys-
tems. To emphasize such a cycling pattern, the time index
t is often written as iT + ν, where i is an integer, T is the
period, and ν (1 ≤ ν ≤ T ) is called the season. Reference
[9] provided a comprehensive framework for modeling such
time series. In particular, the periodically correlated ran-
dom terms {xt}nt=1 are often well described by the following
periodic autoregressive model with order p (PAR(p))

(1) xiT+ν −
p∑

k=1

φk(ν)xiT+ν−k = σνεiT+ν ,

where {εiT+ν} is white noise with E(εiT+ν) = 0 and
Var(εiT+ν) = 1. A PAR(p) becomes an autoregressive time
series (AR(p)) when T = 1.

This paper is motivated by the analysis of the monthly
global temperature data from January 1979 to December
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2014 provided by the National Space Science and Technol-
ogy Center. It seems from the time series plot in Figure
4 that the data set contains a trend and possibly seasonal
means. A great deal of research has been done from the para-
metric approach when the trend g(·) follows a known ana-
lytic function with some unknown parameters and the error
sequence {xiT+ν} is time series, for example, [23, 4, 1, 12]. In
particular, [1] took the seasonal-varying constant trend into
account for periodic autoregressive error terms; [12] modeled
the trend using a trigonometric function. Although paramet-
ric trend estimation works well when the shape of a trend
can be approximated by a known analytical function, its ma-
jor drawback is that the assumed model is usually subjective
and is likely misspecified.

The temperature data in Figure 4, however, do not reveal
that the trend follows the shape of any well-known analytic
function. Moreover, given the seasonal nature of the observa-
tions, it is possible that the monthly means are not constant.
The semiparametric approach we propose in the paper aims
at a more flexible modeling alternative which does not re-
quire a trend function to have an explicit format, but only
a certain degree of smoothness. We generalize the partially
linear models proposed in [5] to the following periodically
correlated error terms:

(2) yiT+ν =

T−1∑
k=1

Ik (ν)βk + g(uiT+ν) + xiT+ν ,

where ut = t/n; g(·) represents the unknown smooth trend
function defined in the interval [0, 1]; Ik (ν) is the indica-
tor function for season ν with Ik (ν) = 1 if k = ν and

Ik (ν) = 0 otherwise; {βk}T−1
k=1 are the seasonal effects com-

pared with the reference level ν = T ; {xt}nt=1 is a PAR(p)
time series defined by (1). Define an n × (T − 1) ma-
trix D = (D0,D0, . . . ,D0)

′
, where a T × (T − 1) matrix

D0 = (I,0)
′
with I being the (T −1)× (T −1) identity ma-

trix and 0 the (T−1)-dimensional zero vector. The partially
linear model (2) can be rewritten in vector format as

y = Dβ + g + x,

where y = (y1, . . . , yn)
′, β = (β1, . . . , βT−1)

′, g =
(g(u1), g(u2), . . . , g(un))

′, and x = (x1, . . . , xn)
′. Through-

out the paper, we will use bold lower case letters for vectors
and bold upper case letters for matrices.
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Partially linear models have received considerable atten-
tion due to their flexibility and wide applications. For exam-
ple, see [8, 21, 7, 24]. In particular, [21] provided a detailed
discussion about inference for partially linear models with
independent and identically distributed error terms. Refer-
ence [17] took correlation in the error terms into consider-
ation and applied partially linear models to analyzing time
series using local linear smoothing for trends. Our proposed
semiparametric three-step approach not only can be used
to estimate all the components in model (2), but can be
applied to making inference about them as well. In particu-
lar, we provide a theoretical justification for residual based
Yule-Walker estimators for the time series model coefficients
φ by generalizing the results in [19] and [15] for the oracle
efficiency of Yule-Walker estimators for autoregressive coef-
ficients when time series observations contain a trend. It is
straightforward to construct a 95% confidence interval for
φ and β based on Theorems 2.1–2.2, and a 95% confidence
band for g(·) from the B-spline residuals using the method
in [18] for AR(p). We will illustrate how to apply the proce-
dure by analyzing the monthly global temperature data in
Section 4.

The essence of the proposed three-step method is to re-
place the unobservable time series {xt}nt=1 by the residuals
of the B-spline estimates in partially linear models: in the
first step, β are estimated based on B-splines; in the sec-
ond step, g (u) is estimated and the residuals are calculated

by subtracting the estimates ĝ (u) and β̂ from the obser-
vations {yt}nt=1; in the third step, φ is estimated from the
residuals in the second step. One of the advantages of the
procedure is that it is very easy to implement. Practitioners
can utilize any software package that has built-in functions
for AR and PAR. For example, the simulation studies and
data analysis of this paper are accomplished using “ar” for
autoregressive time series and “pear” ([13]) for periodic au-
toregressive time series. They are packages in R which is
an open access environment for statistical computing and
graphics developed by [16].

The paper is organized as follows. In Section 2, we will
consider how to estimate the trend function g (u) and sea-
sonal effects β by B-spline smoothing, and how to calcu-
late the Yule-Walker estimates for φ from the residuals. In
particular, we will provide the asymptotic properties of the
estimators for the constant B-spline. In Section 3, we will
illustrate implementation of the procedure and the perfor-
mance of the estimators by simulation studies. In Section 4,
we will apply the method to the monthly global temperature
data which is the motivation for this research. In Section 5,
we will summarize the paper and provide some concluding
remarks. The proofs of the theoretical results in Section 2
are given in the Appendix.

2. CONSTRUCTION OF ESTIMATORS

In this section, we will discuss the details of how to esti-
mate g (u) and β by B-spines, and how to calculate φ̂ from
residuals {x̂t}nt=1.

Consider a sequence of equally spaced points {(−m +
1)h, (−m + 2)h, . . . ,−h, 0, h, 2h, . . . , Nh, 1}, where m is a
positive integer. We will only provide the results for m = 1
for simplicity. The interval [0, 1] is divided into N + 1
subintervals of equal length h = (N + 1)−1 as Jj =
[jh, (j + 1)h), j = 0, 1, 2, . . . , N − 1 and JN = [Nh, 1]. Let

G
(m−2)
N = G

(m−2)
N [0, 1] denote the space of functions that are

polynomial functions of degree m − 1 on each Jj and have
continuous (m−2)-th derivatives. Then the B-spline basis of

G
(m−2)
N is {bj,m(u), j = −m+1, . . . , N}. We will discuss two

cases: G
(−1)
N is constant on each Jj , where m = 1; G

(0)
N is

linear on each Jj and continuous on [0, 1], where m = 2. For

case G
(−1)
N , the B-spline basis is {bj,1(u)}Nj=0, where bj,1(u)

is defined as follows:

bj,1(u) =

{
1, u ∈ Jj ,
0, otherwise.

For case G
(0)
N , the B-spline basis is {bj,2(u)}Nj=0, where

bj,2(u) is defined as follows:

bj,2(u) = K

(
u− (j + 1)h

h

)
,

where K(x) = (1 − |x|)+ with (x)+ = max(x, 0). Thus we
can write down bj,2(u) specifically as follows:

bj,2(u) =

⎧⎪⎨
⎪⎩

u
h − j, u ∈ Jj ,

j + 2− u
h , u ∈ Jj+1,

0, otherwise.

For observations {yt}nt=1, we define a vector bj =
(bj,m(u1), . . . , bj,m(un))

′ with ui = i/n and n × (N + m)
matrix

B = (b−m+1, . . . , bN ),

nj is the number of observations in Jj (j = 0, · · · , N), and

ji =
∑j−1

k=0 nk + i. Thus xji is the i-th observation in the

j-th interval. Therefore,
∑N

j=0 nj = n. The spline smoother
is

PB = B(B′B)−1B′.

Although we anticipate the estimation procedure and theo-
rems in this section to hold for m ≥ 2, we only provide here
the results for m = 1 for simplicity.

The seasonal effects β and the trend g(·) in the partially
linear model (2) are respectively estimated by

(3) β̂ = {D′(I − PB)D}−1D′(I − PB)y,

and

(4) ĝ = PB(y −Dβ̂).

The residual sequence x̂ = (x̂1, . . . , x̂n)
′ is calculated by

subtracting β̂ and ĝ from the observations {yt}nt=1:
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(5) x̂ = y − ĝ −Dβ̂.

We will replace {xt}nt=1 by {x̂t}nt=1 in the calculation of the

Yule-Walker estimate φ̂.
The autocovariance function of a PAR(p) time se-

ries {xt}∞t=−∞ with mean zero is defined by γν(k) =
E(xiT+νxiT+ν−k), which is determined by both the lag k
and the season ν. Without loss of generality, we only con-
sider the case where nT = n/T is an integer; that is, there
are nT cycles of observations. When {xt}nt=1 were observ-
able, the sample autocovariance at lag k would be computed
as follows:

γ̃ν(k) =
1

nT

nT−1∑
i=i0

xiT+νxiT+ν−k, k ≥ 0

where i0 is the smallest integer such that i0T + ν − k ≥ 1.
Let Γ̃ν be a p × p symmetric matrix, the (i, j)-th entry

of which is γ̃ν−i (j − i+ 1), 1 ≤ i ≤ j ≤ p, Γ̃ be a pT × pT

diagonal partitioned matrix with diag
(
Γ̃
)
= (Γ̃1, · · · , Γ̃T ),

and a pT dimensional vector γ̃ = (γ̃′
1, γ̃

′
2, . . . , γ̃

′
T )

′
with γ̃ν =

(γ̃ν(1), γ̃ν(2), · · · , γ̃ν(p))′. Then the Yule-Walker estimators
from {xt}nt=1 are defined by

(6) φ̃ = Γ̃−1γ̃ and σ̃2
ν = γ̃ν (0)−

p∑
k=1

φ̃k (ν) γ̃ν−k (−k) .

We use Γ̂ and γ̂ to denote Γ̃ and γ̃ when {xt}nt=1 is replaced
by the residuals {x̂t}nt=1 in (5). The proposed Yule-Walker
estimators are

(7) φ̂ = Γ̂−1γ̂ and σ̂2
ν = γ̂ν (0)−

p∑
k=1

φ̂k (ν) γ̂ν−k (−k) .

Formulas (6) and (7) are very similar except that the time
series {xt}nt=1 is replaced by the residuals {x̂t}nt=1. Hereafter,
we will use hat and tilde to represent the formulas based on
{x̂t} and {xt}, respectively, unless otherwise indicated.

These estimators are not only computationally simple,
but they have desirable asymptotic properties under very
general conditions. For example, Theorem 2.2 below indi-
cates that although these two estimators are different, φ̂ is
oracally or asymptotically equivalent to φ̃. We summarize
these conditions and results below.

1. The trend function g(·) ∈ C(m)[0, 1], m = 1; that is, the
trend function has m continuous derivatives. In addi-
tion, the first derivative of g(·) is finite on the interval
[0, 1]; that is, g′(u) < ∞ for every u ∈ [0, 1].

2. The subinterval length h ∼ n−1/(2m+1); that is, the
number of interior knots N ∼ n1/(2m+1).

3. The time series {xiT+ν , 1 ≤ ν ≤ T}nT−1
i=0 is causal; that

is, for each fixed ν (1 ≤ ν ≤ T ), there exists a sequence
of constants {ψj(ν)}∞j=0 such that

∑∞
j=0 |ψj(ν)| < ∞

and

xiT+ν =

∞∑
j=0

ψj(ν)εiT+ν−j .

4. E(ε4t ) < ∞.

These conditions are very typical either for periodically
stationary time series or for B-spline estimators. For ex-
ample, Assumption 3 ensures

∑∞
|k|=0 |γν(k)| < ∞ for each

season ν, which is necessary for the asymptotic normality of
the Yule-Walker estimator of φ from {xt}nt=1.

Theorem 2.1. Under Assumptions 1–4, as nT → ∞,

(8)
√
nT

(
β̂ − β

)
D
=⇒ N (0,V ) ,

where the (i, j)-th entry of the (T − 1) × (T − 1) matrix V
is

(V )i,j =

∞∑
k=−∞

{γi(kT + i− j)− γi(kT + T − j)

−γi(kT + i− T ) + γi(kT )}.

Theorem 2.2. Under Assumptions 1–4, the Yule-Walker
estimator φ̂ defined in (7) and φ̃ defined in (6) satisfy

φ̂− φ̃ = op(n
−1/2),

and

σ̂2
ν − σ̃2

ν = op(1).

Under Assumptions 3–4, [14] showed that
√
nT (φ̃ −

φ)
D
=⇒ N(0,Σ−1) and σ̃2

ν
P−→ σ2

ν as nT → ∞, where
Σ is the diagonal partitioned matrix with diag (Σ) =
(Σ1, . . . ,ΣT ) and the (i, j)-th entry of Σν is (Σν)i,j =

γν−i(i−j)/σ2
ν . Theorem 2.2 implies that φ̂ and φ̃ are equiv-

alent in terms of efficiency and both are
√
n-consistent esti-

mators, which is given in the corollary below:

Corollary 2.1. Under Assumptions 1–4,
√
nT (φ̂−φ)

D
=⇒

N(0,Σ−1) and σ̂2
ν

P−→ σ2
ν as nT → ∞.

We omit the proof of Corollary 2.1, as it is obvious ac-
cording to Slusky’s Theorem, while we postpone the detailed
proofs of Theorems 2.1–2.2 to the Appendix.

3. IMPLEMENTATION AND SIMULATION
STUDIES

In this section, we will illustrate the performance of the
proposed procedure for the linear B-spline m = 2 using
PAR(1) time series and the following trend function in [22]

(9) g(u) = sin(2πu), u ∈ [0, 1].

We report the results for three PAR(1) models we
adopt from [22] in Table 1. The sample sizes are n =
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Figure 1. Generated Time Series Observations.

200, 400, 800, 1600 or nT = 50, 100, 200, 400 with T = 4 so
that the performance of the proposed estimators are illus-
trated for relatively small and large sample sizes. We sim-
ulate 100 sample paths of the time series from model (2)
with

(10) β = (0.8, 1.5, 2.3)
′
,

and the variances of periodic white noise σ2 =
(σ2

1 , σ
2
2 , σ

2
3 , σ

2
4)

′ = (0.5, 0.7, 0.85, 1)′. We omit the sub-
scripts of φ, as there is only one coefficient for each season
of PAR(1). Figure 1 is one sample path of the time series
observations for Model 1 with φ = (0.3, 0.6, 0.4, 0.2)′ in Ta-
ble 1 simulated by the following process:

1. generate PAR(1) time series {xt}nt=1 based on the
model coefficients and variances of periodic white noise;

2. obtain the observations {yt}nt=1 based on model (2) with
the trend function and the seasonal effects β respec-
tively defined by (9) and (10);

3. estimate the seasonal effects β from (3) and the trend
g(·) from (4) using the simulated observations {yt}nt=1;

4. calculate the residual sequence x̂ from (5), and estimate
the PAR model coefficients φ from (7).

The number of knots is N = [n1/5] which is the same as
in [22]. The sample means and sample standard deviations

of φ̂ and β̂ are summarized in Table 1. It is worth pointing
out that when the absolute values of the true coefficients φ
are close to or larger than one (e.g. Model 2), φ̂ tends to
be smaller than the true value and unstable with relatively
large standard deviations, and the estimates of β perform
well for all of these models. Overall, the bias and variability
of both φ̂ and β̂ decrease when the sample size becomes
larger.

We also calculate φ̃ based on time series {xt}nt=1 with-

out trend and seasonality and ratios {φ̃(ν)/φ̂(ν)}4ν=1. We
include two of the boxplots of the ratios for illustration pur-
pose in Figures 2–3. According to the boxplots, we conclude
that these boxes become narrower and narrower and closer
and closer to 1, as the sample size increases from 200 to 1600
for each season, which is in accordance with Theorem 2.2.

Figure 2. Boxplot of {φ̃(ν)/φ̂(ν)}4ν=1 for Model 2.

4. APPLICATION

In this section, we will apply our proposed method to
the monthly global temperature data from January 1979 to
December 2014. There are a total of nT = 36 cycles for the
n = 432 monthly temperatures with the period T = 12. Fig-
ure 4 is the scatter plot of the observations. The nonstation-
arity of the data is shown by a nonconstant trend of which
the pattern is not clear in Figure 4 and a decreasing sam-
ple autocorrelation function in Figure 5. Thus the ARMA
model class which works for the stationary time series is not
appropriate for the data. Reference [3] recommended au-
toregressive integrated moving-average (ARIMA) models to
handle time series with such a slowly decreasing autocorre-
lation function if the research interest is solely on forecast-
ing. However, one of the interests here is whether there is a
significant nonconstant trend. Therefore, we do not pursue
analyzing the data by ARIMA.

We start with the full model (2), which includes a de-
terministic trend, seasonal components and a random error
term. The seasonal effects and trend are respectively esti-
mated by (3) and (4) with the linear B-spline (m = 2). The
number of knots is N = 4 which is obtained by N = [n1/5],
the same formula as in the simulation studies. We explore
several AR models with different orders using the residuals
{x̂t}432t=1, and an AR(2) model appears to be the most ap-
propriate one with the smallest Akaike information criterion
(AIC). The estimates with the standard errors for the full

model (2) are φ̂1 = 0.565±0.047, φ̂2 = 0.234±0.047 for the

AR(2) model coefficients, and β̂1 = −0.002 ± 0.124, β̂2 =
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Table 1. Estimate of Parameter ± Standard Deviation

Model 1: (φ1, φ2, φ3, φ4) = (0.3, 0.6, 0.4, 0.2)

Sample Size φ̂ β̂

200 (0.282± 0.086, 0.569± 0.163, 0.361± 0.166, 0.169± 0.162) (0.776± 0.148, 1.458± 0.175, 2.272± 0.181)
400 (0.285± 0.079, 0.584± 0.093, 0.379± 0.092, 0.180± 0.090) (0.790± 0.104, 1.475± 0.123, 2.283± 0.135)
800 (0.293± 0.045, 0.594± 0.082, 0.390± 0.078, 0.184± 0.075) (0.796± 0.073, 1.495± 0.087, 2.291± 0.088)
1600 (0.295± 0.035, 0.597± 0.056, 0.400± 0.052, 0.198± 0.047) (0.797± 0.051, 1.498± 0.064, 2.300± 0.058)

Model 2: (φ1, φ2, φ3, φ4) = (0.2,−2,−1.5, 0.9)

Sample Size φ̂ β̂

200 (0.121± 0.044, −1.360± 0.382, −1.110± 0.154, 0.878± 0.048) (0.826± 0.546, 1.554± 1.269, 2.276± 0.150)
400 (0.153± 0.027, −1.677± 0.221, −1.218± 0.127, 0.889± 0.033) (0.784± 0.390, 1.468± 0.934, 2.318± 0.093)
800 (0.176± 0.018, −1.818± 0.123, −1.331± 0.092, 0.897± 0.023) (0.790± 0.273, 1.482± 0.645, 2.305± 0.076)
1600 (0.186± 0.012, −1.900± 0.085, −1.389± 0.066, 0.899± 0.015) (0.793± 0.205, 1.489± 0.473, 2.298± 0.053)

Model 3: (φ1, φ2, φ3, φ4) = (−0.1,−0.2,−0.4,−0.6)

Sample Size φ̂ β̂

200 (−0.122± 0.101, −0.218± 0.181, −0.424± 0.157, −0.626± 0.133) (0.750± 0.188, 1.480± 0.173, 2.230± 0.253)
400 (−0.106± 0.056, −0.210± 0.115, −0.411± 0.110, −0.612± 0.100) (0.783± 0.138, 1.485± 0.116, 2.285± 0.185)
800 (−0.106± 0.039, −0.207± 0.079, −0.392± 0.068, −0.608± 0.073) (0.809± 0.100, 1.512± 0.100, 2.306± 0.126)
1600 (−0.102± 0.029, −0.198± 0.061, −0.400± 0.053, −0.596± 0.053) (0.801± 0.076, 1.503± 0.062, 2.293± 0.094)

Figure 3. Boxplot of {φ̃(ν)/φ̂(ν)}4ν=1 for Model 3.

−0.012± 0.139, β̂3 = −0.014± 0.156, β̂4 = −0.005± 0.165,
β̂5 = −0.001±0.170, β̂6 = 0.011±0.171, β̂7 = −0.007±0.169,
β̂8 = 0.0049±0.163, β̂9 = 0.019±0.154, β̂10 = 0.011±0.136,
β̂11 = 0.002± 0.120 for the seasonal components.

Since none of these seasonal effects are significantly dif-
ferent from zero according to Theorem 2.1, we reduce the
model to

Figure 4. Monthly Global Temperature Data, January
1979–December 2014.

(11) yiT+ν = g(uiT+ν) + xiT+ν .

The observations {yt}nt=1 contain a trend in the reduced
model. We use the two-step method proposed by [19] and
extended by [22] to analyze {yt}nt=1. In particular, we esti-
mate the trend of the reduced model from ĝ = PBy, and
then calculate the residuals from x̂ = y − ĝ. An AR(2) ap-
pears to be the best again for the residual sequence accord-
ing to AIC. Model adequacy checking is conducted for the
reduced model (11) with AR(2) residual autocorrelations.
The residual sample autocorrelation function at lags 0–20 in
Figure 6 shows no significant serial correlation. Therefore,
the reduced model (11) with AR(2) is the most appropriate
model for the monthly global temperature data. The Yule-
Walker estimates are φ̂1 = 0.565±0.047, φ̂2 = 0.233±0.047.
It is worth mentioning that the AR(2) model is not only ad-
equate for the data, but also parsimonious compared with
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Figure 5. Sample Autocorrelations for Monthly Global
Temperature Data.

a PAR, as even a PAR(1) model with T = 12 has 12 time
series model parameters.

Moreover, we obtain 90% and 95% confidence bands using
the method of [18] based on the reduced model (11). These
confidence bands which have at least those significance levels
are conservative. In Figure 4, the dashed curve is the linear
B-spline estimate of the trend, the dashed and dotted bands
respectively have the significance levels 90% and 95%, and
the dash-dot line is y = 0. It is interesting to note that
the upward trend statistically is not very significant in that
part of y = 0 is very close to the 95% confidence band or
overlapped with the 90% confidence band. However, since
there are nT = 36 cycles in the data set, further research is
needed when more observations are available.

5. CONCLUDING REMARKS

In this paper, we proposed a semiparametric three-step
method for analyzing periodic time series with trend and
seasonality. The proposed procedure is not only computa-
tionally accessible but theoretically well-justified for the con-
stant B-spline. We anticipate that it can be generalized to
higher order B-splines. We expect that the oracle efficiency
showed in this paper can be extended to partially linear
models of which trends are estimated by other nonpara-
metric methods, such as smoothing splines (e.g. [11, 25]),
under general conditions. Interested readers can refer to [6]
for a comprehensive review about nonparametric estimation
methods for time series. References [26, 27] compared how
faster B-splines is than kernel estimation for functions. The
simulation studies shows that our method works well for
the linear B-spline estimation. Replacing unobservable er-
ror terms by residuals has been widely applied in time se-
ries analysis, see for example [2, 20]. However, an interesting
and critical question is whether the estimators are oracally
efficient; in other words, whether the analysis from the resid-
uals {x̂t}nt=1 is asymptotically equivalent to the one based

Figure 6. AR(2) Residual Autocorrelations for Monthly Global
Temperature Data.

on {xt}nt=1. For the partially linear model (2), we estab-
lished the oracle efficiency of the model parameters, which
is a desirable property and ensures that replacement is ap-
propriate.
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APPENDIX

In this section, we will show Theorems 2.1–2.2 through
three lemmas. Hereafter, ‖ · ‖ refers to the Euclidean norm,
‖g− g̃‖∞ stands for the supremum norm, and U(·) and u(·)
denote the uniform boundedness of a matrix and a scalar,
respectively. Without loss of generality, we always assume
that the number of observations in one of N + 1 intervals
is an multiple of the period T and the order of PAR is less
than the period (i.e. p < T ). Although the assumption is
not necessarily true, it will greatly simplify the notation
without changing the asymptotic properties of a statistic
under consideration.

We decompose ĝ in (4) into three terms:

ĝ = g̃ + x̃+ PB

(
Dβ −Dβ̂

)
,

where g̃ = PBg and x̃ = PBx are the projections of g and
x, respectively. Furthermore, we decompose the residuals x̂
in (5) into three components as follows:

(A.1) x̂ = (g − g̃) + (x− x̃) + (I − PB)D
(
β − β̂

)
.

We will consider the asymptotics of the three terms in (A.1).
Under Assumptions 1–2, according to Theorem 5.1 of

[10],

(A.2) ‖g − g̃‖∞ = sup
u∈[0,1]

|g(u)− g̃(u)| = O(hm).
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According to [19],

1

n
(g − g̃)

′
(g − g̃) = O(n−2m/(2m+1)),(A.3)

1

n
(g − g̃)

′
x = Op(n

−(4m+1)/(4m+2)),(A.4)

1

n
(g − g̃)

′
x̃ = Op(n

−2m/(2m+1)).(A.5)

Lemma A.1. Under Assumptions 1–4, D′(I−PB)D/nT =
A0+o(1), where the (i, j)-th entry of (T−1)×(T−1) matrix
A0 is defined as 1− 1/T if i = j and −1/T otherwise.

Proof. In this case where m = 1, simple algebra yields

D′ (I − PB) = (A0, · · · ,A0) + u
{
(nh)

−1
}
,

and thus

D′(I − PB)D/nT = A0 + o(1).

The proof is complete.

Lemma A.2. Under Assumptions 1–4, ‖E(β̂) − β‖ =
O(n−1).

Proof. Notice that

(A.6) E(β̂)− β = {D′(I − PB)D}−1D′(I − PB)g.

According to Lemma A.1,

E(β̂)− β = {D′ (I − PB)D}−1
D′ (I − PB) g

=
1

nT
(A, · · · ,A)g + o(n−1

T ),

where the (T − 1)×T matrix A = (I,−1) with I being the
identity matrix and −1 = (−1,−1, · · · ,−1)′. According to
Assumption 1, we have

‖E(β̂)− β‖ = O(n−1).

The proof is complete.

Proof of Theorem 2.1. Let xi = (xiT+1, · · · , xiT+T )
′
.

Then {xi} is a multivariate stationary time series with
E(xi) = 0 and Cov(xi,xi−k) = Wk (k = 0,±1, · · · ), where
the T × T matrix Wk = (γi(kT + i − j))i,j=1,··· ,T . For
any T dimension vector a, define ui = a′xi. Then {ui}
is a stationary time series with E(ui) = 0 and γu (k) =
Cov(ui, ui−k) = a′Wka. Since {xiT+ν , 1 ≤ ν ≤ T}nT−1

i=0 is
causal, {ui} satisfies Theorem 7.1.2 of [2], which implies

√
nT

(
1

nT

nT−1∑
i=0

a′xi

)
D
=⇒ N (0,a′Wa) ,

where

W =

∞∑
k=−∞

Wk =

( ∞∑
k=−∞

γi(kT + i− j)

)
i,j=1,··· ,T

.

Since a is arbitrary, from the Cramér-Wold device,

√
nT

(
1

nT

nT−1∑
i=0

xi

)
D
=⇒ N(0,W ).

Define a (T − 1) × T matrix A1 = (A0,1/T ). Simple
algebra yields the (i, j)-th entry of A−1

0 is 2 if i = j and 1
otherwise, and A−1

0 A1 =A defined in Lemma A.2. Notice
that

√
nT

{
β̂ − E

(
β̂
)}

=
√
nT

{
1

nT
D′(I − PB)D

}−1
1

nT
D′(I − PB)x

=
1√
nT

A−1
0

nT−1∑
i=0

A1xi + op

(
n
−1/2
T

)

=
√
nT

(
1

nT
A

nT−1∑
i=0

xi

)
+ op

(
n
−1/2
T

)
.

Hence,

(A.7)
√
nT

{
β̂ − E

(
β̂
)}

D
=⇒ N (0,V ) ,

where the (T−1)×(T−1) matrix V = AWA′. In particular,
the (i, j)-th entry of V is

(V )i,j =

∞∑
k=−∞

{γi(kT + i− j)− γi(kT + T − j)

−γi(kT + i− T ) + γi(kT )}.

According to Lemma A.2, E(β̂) − β = op(n
−1/2). Slusky’s

Theorem together with (A.7) implies (8). The proof is com-
plete.

Notice that the difference of the Yule-Walker estimators
φ̂ and φ̃ is

φ̂− φ̃ = Γ̂−1(γ̂ − γ̃) + Γ̂−1(Γ̃− Γ̂)Γ̃−1γ̃.

The proof of Theorem 2.2 is complete if we can show that
φ̂− φ̃ = op(n

−1/2) or equivalently

(A.8) γ̂ν(k)− γ̃ν(k) = op(n
−1/2).

We will show (A.8) by Lemma A.3 below. Define the
following vectors

xν = (xν , xT+ν , . . . , x(nT−1)T+ν)
′,

gν = (g(uν), g(uT+ν), . . . , g(u(nT−1)T+ν))
′.

This notation sometimes is applied to x̂ν , x̃ν , g̃ν and so on.
Notice that the vector xν includes almost all but a finite
number of the observations, and the vectors xiT+ν and (xν ,
xT+ν , . . ., x(nT−1)T+ν)

′ are equivalent in the sense of asymp-
totics for any fixed i. We will show (A.8) by the following
lemma.
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Lemma A.3. Under Assumptions 1–4, for any fixed ν

γ̂ν(k)− γ̃ν(k) = Op(h
2) and γ̂ν(k)

P→ γν(k).

Proof. Without loss of generality, we assume that ν−k ≥ 0.
According to (A.1),

γ̂ν(k)− γ̃ν(k) =
1

nT
x̂′
νx̂ν−k −

1

nT
x′
νxν−k

=
1

nT
(gν − g̃ν)

′
xν−k −

1

nT
(gν − g̃ν)

′
x̃ν−k

+
1

nT
x̃′
νx̃ν−k −

1

nT
x′
ν−kx̃ν − 1

nT
x̃′
ν−kxν

+
1

nT
(gν − g̃ν)

′
(gν−k − g̃ν−k)

+
1

nT
(gν−k − g̃ν−k)

′
xν − 1

nT
(gν−k − g̃ν−k)

′
x̃ν

+
1

nT
(gν − g̃ν)

′
{
(I − PB)D

(
β − β̂

)}
ν−k

+
1

nT
(gν−k − g̃ν−k)

′
{
(I − PB)D

(
β − β̂

)}
ν

+
1

nT
(xν − x̃ν)

′
{
(I − PB)D

(
β − β̂

)}
ν−k

+
1

nT
(xν−k − x̃ν−k)

′
{
(I − PB)D

(
β − β̂

)}
ν

+
1

nT
S′
νSν−k,(A.9)

where Sν =
{
(I − PB)D

(
β − β̂

)}
ν
. We will consider the

orders of the terms above. First

1

nT
{(I − PB)D}′ (x− x̃)

=
1

nT
D′ (I − PB)

′
(I − PB)x

=
1

nT
D′ (I − PB)x =

1

nT

nT−1∑
i=0

A1xi + up(n
−1
T ).

Following a similar discussion to the derivation of (5), we

obtain
∑nT−1

i=0 A1xi/nT = Op(n
−1/2). Thus

(A.10)
1

nT

∥∥{(I − PB)D}′ (x− x̃)
∥∥ = Op(n

−1/2).

Next, we note D′ (I − PB) = u (1), and thus the (i, j)-th
entry of D′ (I − PB) (g − g̃) is O (nT ) ‖g− g̃‖∞. Therefore,

1

nT
‖D′ (I − PB) (gν − g̃ν)‖

≤ 1

nT
O (nT ) ‖g − g̃‖∞ = O(n−m/(2m+1)).(A.11)

According to Theorem 2.1,
∥∥∥β̂ − β

∥∥∥ = Op(n
−1/2), which,

together with (A.10) and (A.11), implies

1

nT
(gν − g̃ν)

′
{
(I − PB)D

(
β − β̂

)}
ν−k

=Op(n
−5/6),

1

nT
(xν − x̃ν)

′
{
(I − PB)D

(
β − β̂

)}
ν−k

= Op(n
−1).

Finally,

{
(I − PB)D

(
β − β̂

)}′ {
(I − PB)D

(
β − β̂

)}
=

(
β − β̂

)′
D′ (I − PB)D

(
β − β̂

)
= g′ (I − PB)D {D′ (I − PB)D}−1

D′ (I − PB) g

+x′ (I − PB)D {D′ (I − PB)D}−1
D′ (I − PB)x

=

∥∥∥∥∥
{

1

nT
D′ (I − PB)D

}−1 {
1

nT
D′ (I − PB) g

}∥∥∥∥∥
2

+

∥∥∥∥∥
{

1

nT
D′ (I − PB)D

}−1 {
1

nT
D′ (I − PB)x

}∥∥∥∥∥
2

= O (1) +Op

(
n−1
T

)
.

Thus

(A.12)
1

nT
S′
νSν−k = Op (1) .

According to (A.3), (A.4), (A.5), (A.10), (A.11), (A.12),
and Theorem 2.1, the order of the dominant terms in (A.9)
is Op(n

−2/3), which implies γ̂ν(k) − γ̃ν(k) = Op(h
2) =

Op(n
−2/3) and γ̂ν(k)

P→ γν(k) for any fixed 1 ≤ ν ≤ T .
The proof is complete.
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