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Semi-nonparametric singular spectrum analysis

with projection

NINA GOLYANDINA®T AND ALEX SHLEMOV'

Singular spectrum analysis (SSA) is a technique of time
series analysis. The Basic SSA method is nonparametric and
constructs an adaptive decomposition based on the singular
value decomposition (SVD). We propose a modification of
Basic SSA which we call SSA with projection. This version
of SSA is able to take into consideration a structure given in
advance. SSA with projection includes preliminary projec-
tion of rows and columns of the series’ trajectory matrix to
given subspaces. One application of SSA with projection is
the extraction of polynomial trends. It is demonstrated that
SSA with projection can extract polynomial trends much
better than Basic SSA, especially in the case of linear trends.
Numerical examples, including comparison with the least-
squares polynomial regression, are presented.

AMS 2000 SUBJECT CLASSIFICATIONS: Primary 62G05,
94A12; secondary 60G35, 37M10.
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Time series, Time series decomposition, Separability, Re-
gression.

1. INTRODUCTION

Singular spectrum analysis (SSA) is able to solve a wide
range of problems in the time series analysis, from the series
decomposition on interpretable series components to fore-
casting, missing data imputation, parameter estimation and
many others, see, e.g., [5, 9, 11, 23] and references within.
The key feature of SSA is that the basic method is model-
free, does not need a priori information and therefore con-
structs an adaptive decomposition of a time series into a
sum of e.g. a non-parametric trend, periodic components
and noise (see [6, 24, 2, 19, 21, 3, 17] among others in appli-
cation of SSA to the problem of trend extraction). This can
be considered as a major advantage of the SSA-family meth-
ods relative to parametric methods of time series analysis.
However, sometimes a priori information about the consid-
ered time series is available. For example, the trend can be
expected to be linear or polynomial.

The Basic SSA method [9, Chapter 1] consists of tra-
jectory matrix construction from the original time series,
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its decomposition into a sum of rank-one matrices by SVD,
their grouping and then each group’s transformation back
to time series for obtaining a decomposition of the origi-
nal time series into a sum of identifiable components. The
grouping of the SVD components can be considered as a
projection of the trajectory matrix columns on a subspace,
which is adaptively constructed on the base of certain dis-
tinguished features of the SVD decomposition. SSA with
projection starts with projections of the trajectory matrix
columns and rows on subspaces chosen in advance and fol-
lows with a decomposition of the residual, in the same way
as in Basic SSA. It appears that SSA with centering [9,
Section 1.7.1] is a particular case of SSA with projection,
where projections are performed on the subspaces spanning
the vectors with elements equal to 1. It is shown in [9] that
SSA with single and double centering serves for extracting
constant or linear trends with better accuracy.

Projections involved into SSA with projection generalize
the centering procedure. A natural application of SSA with
projection, which is the main subject of this paper, serves
for extraction of polynomial trends; however, the suggested
method can be applied for a wider range of problems, e.g.,
for the use of information about a supporting series.

Let us explain the motivation for the suggested approach,
which can be considered as a semi-nonparametric variation
of SSA, in more detail.

In SSA, the separability theory is responsible for a proper
decomposition and component extraction. The separability
of a series component means that the method is able to ex-
tract this time series component from the observed series,
which is a sum of many components. Basic SSA is able to
approximately separate a trend (e.g., a linear trend) from
oscillations. However, there is no series, which can be ex-
actly separated from a linear trend. As a consequence, the
separation accuracy is not high. It is shown in [9, Sections
1.7.1 and 6.3.2] that SSA with double centering weakens
the separability conditions and therefore improves the ac-
curacy in the situation of approximate separability. Thus,
it is expected that, within the SSA-family methods, SSA
with projection can improve separability for components of
a specific structure, which is in accordance with the projec-
tion subspaces.

Let us compare the least squares approach to the esti-
mation of regression parameters and SSA with double cen-
tering. The linear regression method minimizes the predic-
tion error using the least-squares method, while SSA tries
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to reconstruct values of the series components using their
orthogonality. For example, for a series with common term
Tp =ty + Sp, where t,, = an+ b and s, = Asin(2rwn + ¢),
the least-squares approach generally cannot estimate the lin-
ear trend t,, without error, while in the conditions of sepa-
rability SSA with double centering is able to find the exact
linear trend. This advantage of SSA is more visible for short
time series; for long time series, linear regression and SSA
yield close estimates of the linear trend. Note that for the
case of approximate separability the linear-trend estimate
found by SSA with double centering will be only close to a
straight line, while the linear regression always provides a
linear function as a trend estimation.

The analogous relation between the parametric regression
and SSA with projection is expected for the general case
of polynomial trends. In particular, we can suppose that
for time series with seasonality the ‘SSA with projection’
method will be able to extract linear and polynomial trends
more accurately than the parametric regression approach.

It is important that the use of projection on a fixed basis
does not contradict the non-parametric nature of SSA. If the
basis for projection is chosen incorrectly, the trend estimate
by SSA with projection will not have a considerable bias,
since it can be accomplished by components of the adaptive
part of the whole decomposition. This is not the case for the
parametric approach.

The structure of the paper is as follows. We start with
a brief description of the Basic SSA algorithm and stan-
dard separability notion (Section 2). Section 3 is devoted
to the generalization of centering used in SSA and contains
the underlying theory, including the proof of the algorithm
and the separability conditions. Section 4 demonstrates the
examples of the algorithm application for trend extraction.
The real-life examples are studied in Sections 4.1 and 4.2 to
show the relation between Basic SSA, SSA with projection
and the linear regression (least-squares) approach. Numer-
ical comparison is performed in Section 4.3. The paper is
summarized and conclusions are drawn in Section 5.

Finally, let us briefly comment the title of this paper.
Approaches, which deal with a combination of paramet-
ric and nonparametric models, are sometimes called semi-
parametric if the parametric part of the model is of interest
and semi-nonparametric if both parts are important (see
the references [4] and [13] as examples of such approaches
to statistical econometric problems). SSA with projection is
exactly the latter.

2. BACKGROUND
2.1 Algorithm of Basic SSA

Consider a real-valued time series X = Xy =

(x1,...,zn) of length N. Let L (1 < L < N) be some
integer called window length and K = N — L + 1.
For convenience, denote My, i the space of matrices of

size L x K and MS:HI)( the space of Hankel matrices of size
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L x K. Consider the lagged vectors X; = (x4, ..., i1p_1)T,
i = 1,...,K, and the trajectory matriz X = [X; : ... :
Xk] € M(LH% of the series Xy .

Define the one-to-one embedding operator T : RV —
M(LHI)( as T(Xy) = X. Also introduce the projector J# (in
Frobenius norm) of My, x to M(LHI)( Projection is performed
by replacing the entries on antidiagonals i + j = const to
their averages along the antidiagonals.

The Basic SSA algorithm consists of two stages and four
steps.

2.1.1 Decomposition stage

1st step: Embedding. Let L be chosen. At this step
the L-trajectory matrix is composed: X = T(Xp).

2nd step: Singular Value Decomposition (SVD).
The SVD of the trajectory matrix is constructed:

d
(1) X =) VAUV =Xi+... + Xy,
=1

where )\; are the eigenvalues of XXT, \/); are called singular
values of X, U; and V; are left and right singular vectors of
X, A\ > ... > Mg >0, d=rank(X).

The triple (v/;, U;, Vi) is called ith eigentriple (abbrevi-
ated as ET).

2.1.2 Reconstruction stage

3rd step: Eigentriple grouping. The grouping proce-

dure partitions the set of indices {1,...,d} into m disjoint
subsets I, ..., Ip,.
Define X; = .., X;. The expansion (1) leads to the

decomposition

(2) X=X,+...+X;,,.

m

Ifm=dand I; = {j}, j =1,...,d, then the correspond-
ing grouping is called elementary.
4th step: Diagonal averaging. Obtain the series by
diagonal averaging of the matrix components of (2): Xg\];) =
‘J’_l%XIk.
2.1.3 The resultant decomposition and projections
Thus, the algorithm results in the constructed decompo-
sition of the observed time series
m ~
Xy = > X
k=1

3)

A typical example of (3) is the decomposition into a sum
of a trend, oscillations and noise.

Remark 1. Columns of a grouped matriz X; are the or-
thogonal projections of columns of the trajectory matriz X
to span(U;, @ € I) with respect to the Fuclidean norm.
Rows of X are the orthogonal projections of rows of X to
span(V;, i € I).



2.2 Separability by Basic SSA

For understanding how SSA works, the notion of sepa-
rability is very important. Separability of two time series
Xg\}) and Xg\%) signifies the possibility of extracting Xﬁ\lf) and
Xg\?) from the observed sum Xy = Xg\}) + Xg\?). This means
that there exists a grouping at Grouping step such that
XP =x® k=1,2

Definition 1. The column and row spaces of the trajectory
matrix of a series are called column and row spaces of the
series respectively.

Properties of the SVD give rise to the following definition
of separability.

Definition 2. The Basic SSA (weak) separability is defined
as the orthogonality of the column and row spaces of the
series Xg\l,) and Xf]).

In the case of approximate (asymptotic) Basic SSA sep-
arability, where Xs\]fc) ~ Xg{f), we obtain the condition of
approximate (asymptotic) orthogonality.

For sufficiently long time series, Basic SSA can approxi-
mately separate, for example, a signal and noise, sine waves
with different frequencies, a trend and a seasonality [9, 11].

The separability introduced through orthogonality of the
column and row spaces of separated series is called weak sep-
arability; it means that at the SVD step there exists such
an SVD that allows the proper grouping. Strong separabil-
ity means that each SVD decomposition allows the proper
grouping. Several nonparametric modifications of SSA for
improvement of the weak and strong separability are con-
sidered in [10]. In this paper we will improve the separability
by a semi-nonparametric variation of Basic SSA.

2.3 Series of finite rank and series governed
by linear recurrence relations

Let us describe the class of series of finite rank, which
is natural for SSA. Following [9, Chapter 5], we define the
L-rank of a series Xy as the rank of its L-trajectory matrix.
Rank-deficiency of trajectory matrices of exactly separated
series arises from the condition of orthogonality of their col-
umn and row spaces. Therefore, series with rank-deficient
trajectory matrices are of special interest. A time series is
called time series of finite rank r if its L-trajectory matrix
has rank r for any K > L > r.

Under some unrestrictive conditions [9, Section 5.2], se-
ries Sy of finite rank r is governed by a linear recurrence
relation (LRR) of order r, that is,

4) sitr= Zaksiﬂ,,k, 1<i<N-r a. #0.
k=1

The LRR (4) is called minimal and r is called the dimen-
sion of the series. Note that there can be many LRRs gov-
erning the time series; however, the minimal LRR is unique.

Let us describe how we can restore the form of the time
series by means of the minimal LRR.

Definition 3. The polynomial P, (1) = pu" — >, _, agu"*
is called a characteristic polynomial of the LRR (4).
Let an infinite time series Soo = (S1,...,8n,...) satisfy

the LRR (4) for ¢ > 1, that is, without an upper limit.
Consider the characteristic polynomial of the LRR (4) and
denote its different (complex) roots by p1,...,u,, where
p < r. All these roots are non-zero, since a, # 0. Let the
multiplicity of the root u,, be k,,, where 1 < m < p and
ki+...+kp, =7r. We will call u; characteristic roots of the
series governed by an LRR.

It is well-known that the time series So = (s1, . . -
satisfies the LRR (4) for all 4 > 0 if and only if

s Smye-)

P k7n_1
(5) sn=_ | D emn’ | i
=0

m=1

where the coefficients c,,; are determined by the first 7 series
terms [9, Section 5.2]. For real-valued time series, (5) implies
that the class of time series governed by LRRs consists of
sums of products of polynomials, exponentials and sinusoids.

Rank of the series is determined by the number of non-
zero terms and degrees of polynomials in (5). For example,
an exponentially-modulated sinusoid s, = Ae®™ sin(2rwn +
¢) is constructed from two conjugate complex roots py 2 =
eOER2TY — ped27W if jts frequency w belongs to (0,0.5).
Therefore, the rank of this exponentially-modulated sinu-
soid is equal to 2. The rank of an exponential is equal to 1,
the rank of a linear function corresponding to the root 1 of
multiplicity 2 equals 2, and so on. The paper [22] contains
conditions of separability expressed in terms of characteris-
tic roots.

Also, the representation (5) helps to easily construct
bases of column spaces of complex time series governed by
LRRs: the basis is constructed from the linearly indepen-
dent vectors (13‘”717172%3”"”7[/3'“#)1", j=0,....kn— 1
For linear series, the basis consists of (1,1,...,1)" and
(1,2,...,L)T.

2.4 SSA with centering

There are modifications of SSA called SSA with centering
[9, Sections 1.7 and 6.3]. They serve for better separation of
constant (SSA with single centering) and linear (SSA with
double centering) trends. Initially, SSA with single centering
was created by analogy with Principal Component Analysis,
where the columns of a data matrix (which can be inter-
preted as the rows of the trajectory matrix of a series) are
centered before the application of the SVD. Let us describe
the approach with centering.

Let us consider a time series X of length N, a window
length L, K = N — L 4 1, the trajectory matrix X of the
series X.
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A general form of the considered modification of Decom-
position stage can be expressed as

(center)

1. Calculation of a special matrix C = C(X) based
on a priori information.
2. Computation of X* = X — Cl(center)

3. Construction of the SVD: X* = "% /AU (V).
Thus, we have the decomposition X = C(center)
d*
> VAR V)T
i=1

Denote Ey = (1,...,1)T € RM the vector of units. Cen-
tering is considered in the following forms:

e Single row centering when Cﬁf,ﬁvnte” (X) =
(XEk/K)E}L corresponds to averaging by rows,
that is, each element of a row of Cﬁéﬁv‘““r) consists of
the average of the corresponding row of the trajectory
matrix.

e Single column centering when ngmer) X) =
EL(ETX/L) corresponds to averaging by columns.

e Double (center) Cl(rg(‘gltcr) n

centering when Gy .\ =
Cgfﬁntcr) (X— ng(évnmr) (X)) corresponds to averaging by

both rows and columns.

Note that the centering can be considered as a projection
of rows and/or columns of X on span(Ek) or span(Ey,) re-
spectively, since Ex E}- and EL E} are exactly the matrices
of the projection operators. Therefore, centering in SSA can
be considered as a preliminary projection of the trajectory
matrix on a given subspace; the residual matrix X* is sub-
sequently expanded by SVD or any other decomposition.

3. SSA WITH PROJECTION

Let us generalize the approach described in Section 2.4
involving projections to arbitrary spaces.

Notation. Let II.; : REY = Leo and Mow : RE = Liow
be orthogonal projectors, where L. € R is called the col-
umn projection space and L, € RX is called the row pro-
jection space. For any Y € My, 4, denote II.1(Y) the matrix
consisting of the columns, which result from projections of
the columns of Y, while for any Y € M, x denote II,ow (Y)
the matrix consisting of the rows, which result from projec-
tions of the rows of Y.

Denote a basis of the column projection space (P;,i =
1,...,p) and a basis of the row projection space (Q;,i =
1,...,9), P=[P:...: P, Q=1[Q1:...:Qg]. With-
out loss of generality we assume that {P;,i =1,...,p} and
{Qi,i = 1,...,q} are orthonormal bases of L, and Low
(otherwise, we can perform ortho-normalization).

In SSA with projection, the scheme of SSA with center-
ing, which is described in Section 2.4, is extended to arbi-
trary projections, that is, C = Il (X) for column projec-
tion, C = Tl,ow(X) for row projection and C = Hpen(X)
for double projection, where
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(6) Hboth(X) = Hrow (X) + HCOI(X - Hrow (X))

= Hcol(X) + Iow (X - Hcol(X))
= Hrow(X) + Hrow(X) - (HCOI °© Hrow) <X)

If either the column or row basis is absent (that is, the cor-
responding projection should not be performed), then we
formally set the corresponding projector to be the zero op-
erator implying C = IT,e, (X) for any mode.

Decomposition into elementary matrices. A general
form of the decomposition provided by SSA with projection
is

"
(7) X=C+) VAUV,
i=1

where C = Ton (X) and 2%, \/AXFUF (V)T is the SVD of
X — C. Let us demonstrate that the matrix C can be pre-
sented as a sum of elementary matrices of rank 1. Then (7)
will be similar to the result of decomposition (1) performed
by Basic SSA and therefore the reconstruction stage will be
also similar to that of Basic SSA.

Note that .o (Y) = PPTY = 3P  P(Y'P,)" and
ow(Y) = YQQT = Y7 (YQ;)Q] are decompositions
into sums of elementary rank-one matrices. Therefore, C =
IThotn (X) also can be expanded to a sum of elementary ma-
trices, since Il,otn can be expressed as a sequential applica-
tion of the projection operators Il,o, and Il., see (6). For
double projection, this expansion depends on the order of
projections; for definiteness, we will apply the row projector
first.

Thus, the matrix C can be considered as a sum of p + ¢
elementary matrices of the forms ch)Pi@;r, i=1,...,p,
and O'Er)ﬁinT, i = 1,...,q (some of them can be zero),
where the triples (ch),}%,@i) and (UET),]SZ-,QZ-) have the
same meaning as eigentriples. Therefore, the decomposition
(7) can be transformed to a decomposition into a sum of d*+
p + q elementary rank-one matrices, which are orthogonal
with respect to the Frobenius norm || - ||, by construction.
As a consequence, contribution of the projection term C
into the decomposition is given by ||C||?/||X||?;

The following lemma describes properties of the decom-
position (7).

Lemma 1. The decomposition (7) satisfies the following
properties:

1. d* <rankX;

2. d* > rankX — (p + q); the equality holds if P;, i =
1,...,p, belong to the column span of X and Q;, i =
1,...,q, belong to the row span of X.

Proof. Due to the definition of orthogonal projection, X* =
X - C= (I, - PPT)X(Ix — QQT), where I; denotes the
M x M identity matrix. Therefore, d* < rank X. On the



other hand, rank X does not exceed the number of elemen-
tary matrices d* 4+ p + ¢; the equality is attained if the rows
and columns of the projected matrices belong to the row
and column spaces of X respectively. O

3.1 Algorithm

Let us summarize the steps of SSA with projection in
the form of algorithms, splitting the whole algorithm into
decomposition and reconstruction.

ALGORITHM 3.1. SSA with projection: decomposition

Input: The time series X of length N, the window length
L, an orthonormal basis of the column projection space

(P;,i = 1,...,p) and an orthonormal basis of the row
projection space (Q;,% =1,...,q). Either p or ¢ can be
zZero.

Output: Decomposition of the trajectory matrix on elemen-
tary matrices X = X1 + ...+ X4, where X; = aiUiViT
are either zero or rank-one matrices.

1: Construct the trajectory matrix X = Tgga (X).

2: Subtract the row projection: X’ = X — C,,,,, where
q ~
Crow = Hrow(X) = Z Uz(T)RQ;I‘v
i=1

Ugr) = |XQ||, B = XQi/ay) if O'gr) > 0; otherwise, P;
is the zero vector.
3: Subtract the column projection: X* = X’ — C,,|, where

P
Ceol = Hcol(X/) = ZUZ(C)PiQiTa
=1

agc) = |XTR|, Q; = X’TPZ-/UZ(C) if o' > 0; otherwise,

Q; is the zero vector.

4: Construct an SVD of the matrix X*: X* = Zg;l X7,
where X7 = /AfUF (V)T

5: As a result, X = Zle X;, where d = p+q+d*, X, =
JY)JBZ-Q;F fori =1,...,q, Xipq = Uic)Pi@lT for 1 =
L...,p, and Xijppig = A/ ANUF(V)Y fori=1,...,d*".

To complete the algorithm of SSA with projection, let us
describe the algorithm of Reconstruction stage.

ALGORITHM 3.2. SSA with projection: reconstruction

Input: Decomposition X = X; 4+ ... + Xy and grouping
{1,...,d} = [_|T:1 I;, which does not split the first p+¢
projection components, where ¢ and p are the numbers
of row and column projection components.

Output: Decomposition of time series on identifiable com-
ponents X =X; + ...+ X,,,.

1: Construct the grouped matrix decomposition X = Xz, +
R X[m, where X; = Ziel X;.

2: Compute X = Xy + ...+ X,,,, where X; = T-17(X,).

The only essential difference with the reconstruction by
Basic SSA is that the set of the matrices X;,i=1,...,p+
q, which is produced by projections, should be included in
the same group. Then the resultant series decomposition
does not depend on the selected bases {P;,i =1,...,p} and

{Qi,i=1,...,q}.

Remark 2. Algorithms 3.1 and 3.2 can be applied to multi-
dimensional objects X without changes. The only difference
is in the definition of operators T and ; see [12, 20] for
description of multidimensional and shaped SSA extensions.

3.2 Appropriate class of time series

For SSA with projection, the natural question is what
series are preserved with projection; that is, for what kinds
of series with a trajectory matrix X we have II.o(X) = X
for column projection, Il (X) = X for row projection and
IMpotn (X) = X for double projection.

The following lemma is a direct consequence of the defi-
nition of projection.

Lemma 2. Let Lo contain the row space of a matrix X
and Lcol contain the column space of a matriz X. Then
IIow(X) = X and I (X) = X.

For example, it follows from Lemma 2 that to preserve
an exponential series with s, = Cu™ by SSA with column
projection, the column projection should be performed to a
space which contains span ((,u, w2, uL)T), while to pre-
serve a linear function with s,, = an + b for any b and non-
zero a, the column projection should be performed to a space
which contains span ((1, 1,....,0)T (1,2,..., L)T).

Let us derive a condition sufficient for IT.n(X) = X to
hold for the general case of the double projection.

Lemma 3. Let the columns of a matricr W € Mg 4 belong

to Lrow and the columns of a matriz S € My, belong to
Leor. Then Mpen (X) = X for

(8)

for any S € My, 4 and W e Mg p-

Proof. By the assumption, Il,o (AW?T) = AWT for any
matrix A € My 4, where ¢ > 1, while II.,(SBT) = SB™ for
any matrix B € M, .

X = SWT + sWT

porn(X) = SWT + I (SWT) + SWT 4 I, (SWT)
— ot (o (SWT + SWT)) = X,
since I 0 Il 0w = 10w 0 Ilco1 by the associativity of matrix
multiplication. O

It is easy to check that the trajectory matrix of a linear
series satisfies the conditions of Lemma 3 for the case of
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double centering. However, for a general case an approach
based on characteristic roots is more convenient. We start
with a technical lemma.

Lemma 4. For any polynomial Py of degree d and for any
l and k such that |+ k = d — 1 the following expansion can
be constructed:

Py(i+j) = Pra(i,5) + Paix(i,5),

where P; ,.(i,7) denotes a polynomial of i and j of bidegree
(1,3).

Proof. This lemma is proved by an appropriate grouping
of the monomials C,, ,i%j", u+v < d, of Py(i + j). O

Recall that a series governed by an LRR, whose charac-
teristic polynomial has the given set of roots called charac-
teristic roots, is of the form (5).

Theorem 1. Let series Y, m = 1,2, be governed by min-
imal LRRs of orders r,, Y™ be their trajectory matrices.
Let {u;; 7 =1,...,s} be the set containing the character-
istic roots of both series. Assume that Y™ m = 1,2, have

the characteristic roots uj;, j = 1,...,s, with multiplicities
dg»m) >0, ijl dgm) = 1. Let Il be the projector on the

column space € of YV, Il,oy be the projector on the row

space Z of Y P, Myoen be given in (6). Then Ipon(X) =X

if and only if the set of characteristic roots of the series

X consists of the roots uj, j = 1,...,s, of multiplicities
, (1) (2

dj <d;j’ +d;”.

Proof. Due to linearity of projectors and linear depen-
dence of Ilyin on Iloy and g, it is sufficient to prove the
theorem for the case of one root u. Let Y(!) have the charac-
teristic root u of multiplicity p, Y have the characteristic
root p of multiplicity q.

Thus, we should prove that IT.n(X) = X if and only if
the series X has the form x, = P;(k)u*, where t < p+q— 1.
It is sufficient to consider t = p+ ¢ — 1.

By Lemma 4

Pp+q—1(i + j)MH_j

= Bptprq-1 (i )W + Ppig1,g-1 (6, )’ 1.

This means that (8) holds for W € Mg, and S € My,
such that the column space of W coincides with #Z and the
column space of S coincides with % .

Since the dimension of the space of trajectory matri-
ces that are preserved by the projector Ilo, is equal to
r = ry + ro, we found all such matrices. This completes the
proof. a

Corollary 1. Let Y be a series of dimension r, Y be its
trajectory matriz, ..y be the projector on its row trajec-
tory space, Il be the projector on its column trajectory
space. Consider the series X with x,, = (an + b)y,. Then
Mpon (X) = X.
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Remark 3. Note that multiplication of a series by an +
b, where a # 0, means that the multiplicities of the series
characteristic roots increase by 1.

Note that formally the sets {P;,i = 1,...,p} and {Q;,i =
1,..., ¢} can be arbitrary. However, if the model of the series
is partly known, then in the context of SSA this means that
a time series component satisfies an LRR and we know its
characteristic roots (see Section 2.3). Therefore, to extract,
for example, a sine wave using projections, we should know
its period, and to extract an exponential trend, we should
know its rate. Such conditions are often too restrictive. A
clear exception is extraction of polynomial trends of a degree
k, when there is the unique characteristic root equal to 1 of
multiplicity £ + 1 and we should assume only the degree of
the polynomial trend to obtain its trajectory space.

Corollary 2. Let 11,y be the projector on the row trajectory
space of a polynomial of degree [, 1l.o be the projection on
the column trajectory space of a polynomial of degree k. Then
for any polynomial X = Py 1 of degree l + k + 1 we have
Mpotn (X) = X,

Remark 4. It immediately follows from Lemma 2 that in
the conditions of Corollary 2, for any polynomial X = P
of degree 1 we have 0w (X) = X and for any polynomial
X = Py of degree k we have I1.,(X) = X.

3.3 Separability

We expect that if a time series component is governed
by a minimal LRR and this LRR is known, then the series
component can be separated by a suitable version of SSA
with projection better than it can be done by Basic SSA.

Using the notion of separability, we can formulate this im-
provement as follows. Let X = X(!) + X, We will say that
a time series component X(!) is separated by SSA with pro-
jection if X(1) = C, where C is equal to I oy (X), e (X)
or Iotn(X), in dependence on the type of projection.

Let XM be a series of finite rank, X = X(!) 4+ X®), Simi-
larly to [9, Section 6.3], where conditions for separability by
SSA with centering are considered, the following conditions
of separability can be obtained.

1. Basic SSA:
XM and X®) are separable if (if and only if, by defini-
tion) their row and column spaces are orthogonal.

2. SSA with row projection on the row space of X(1):
XM and X@ are separable if their row spaces are or-

thogonal.

3. SSA with column projection on the column space of
X
XM and X@) are separable if their column spaces are
orthogonal.

4. SSA with double projection on the row and column
space of Y, where X(!) is expressed through Y as
) = (an + b)yn, a # 0:

XM and X are separable by SSA with double projec-
tion if Y and X() are separable by Basic SSA.



Note that the separability by SSA with projection is al-
ways strong, since projections on linear spaces are uniquely
defined.

For the approximate separability, where X(!) ~ C, the
approximate orthogonality is necessary. Also, the asymp-
totic separability can be considered by analogy with the
conventional separability for Basic SSA and SSA with cen-
tering.

Recall that the usual double centering in SSA corresponds
to a constant series Y and therefore to a linear series X(1).
Orthogonality to a constant series is a much weaker condi-
tion than that to a linear series (moreover, the condition of
orthogonality to a linear series can never be exactly satis-
fied). In particular, any sinusoid with frequency w is asymp-
totically separable from the linear trend and the exact sep-
arability by SSA with projection takes place if Lw and Kw
are integers, that is, if L and K are divisible by the period of
the sinusoid. Therefore, for extraction of linear trends, the
double centering is recommended.

In the case of a polynomial trend of degree larger than
1, the conditions of exact separability cannot be satisfied at
all, even for SSA with double projection. However, we still
can expect that in the case of polynomial trends, SSA with
double projection also will work better than SSA with only
row or column projection and also better than Basic SSA.
This will be checked in the next section.

4. EXAMPLES

The presented examples are related to finding polyno-
mial trends. For convenience, if the row and column projec-
tions are performed on the subspace generated by polyno-
mials of degree ¢ — 1 and p — 1 respectively, then we de-
note the method as ProjSSA(q,p). Recall (see Corollary 2
and Remark 4) that the choice ProjSSA(g,p) corresponds to
extraction of a polynomial trend of degree ¢ + p — 1. The
zero value for p or ¢ means that the corresponding projec-
tion is not performed. For example, both ProjSSA(2,0) and
ProjSSA(1,1) can be used for extraction of a linear trend. In
ProjSSA(g,p), the projection part of the decomposition, i.e.,
the decomposition of the matrix C = IIon(X), consists of
p + ¢ rank-one matrices.

All the examples are implemented in R [18] with the
help of the Rssa package [16]. For example, to perform
ProjSSA(g,p) for a time series taken from the variable x with
a window length L, the following code should be called:

s <- ssa(x, L =1L,

row.projector = q,

column.projector = p)
r <- reconstruct(s,

groups = list(trend = 1:nspecial(s)))
plot(r, add.residuals = FALSE,

plot.method = "xyplot", superpose = TRUE)

For more details on RSsA, see the help files in [16].

Note that the implementation of SSA with projection in
RssA is efficient, since it uses the approach described in
[15, 12]. The computational cost of Decomposition stage for
the common case is ((¢+p)N log N + gpN) for the projec-
tion computation using fast convolution and &'((¢+p+r+
log N)Nr) for the SVD decomposition itself. Here r is the
number of required leading SVD eigentriples, which is small
in practice. The computational cost of Reconstruction stage
is exactly the same as that for Basic SSA.

4.1 SSA with projection and regression

Let us demonstrate that the conventional linear regres-
sion and SSA with double centering, i.e., ProjSSA(1,1), use
different statements of the solved problem and therefore can
yield different results. It is clearly seen in short time series.
For long time series the results are very close. Also, in the
model of linear regression with white noise, the least-squares
regression solution is the best linear unbiased estimate, see
the Gauss-Markov theorem. Therefore, to demonstrate the
difference, we consider a time series, which contains a sea-
sonal component.

Here we examine the time series ‘Gasoline’ taken from
[1] and containing the data ‘Gasoline’, which contains gaso-
line demand, monthly, Jan 1960 — Jun 1967, Ontario, gallon
millions.

Let us consider the first two years and apply the linear
regression and ProjSSA(1,1) with L = 12. To show the dif-
ference, we continue the linear regression line with the help
of the estimated coefficients. In the RssA, a method of fore-
casting for SSA with projection is implemented. However,
since this forecasting method is not thoroughly tested and
proved, we do not use it. We will construct the forecast by
a linear regression applied to the reconstruction, which is
performed by ProjSSA(1,1). Note that the forecasting pro-
cedure from RSSA provides a similar prediction. As a bench-
mark, the linear regression constructed by the whole series
is considered.

One can see in Figure 1 that the ProjSSA(1,1) linear
trend (the black thin line) is very close to a linear trend con-
structed by the whole long time series (the grey dash line).
The linear regression line (a line with circle points) gives a
much worse approximation of the trend. This is explained
by the following reasons. The least-squares approach to the
linear regression estimation minimizes the prediction error
and therefore the seasonal component can shift the linear
regression trend. For ProjSSA(1,1), the seasonal component
is well separated from the linear trend, since for the chosen
parameters L = K = 12 are divisible by the seasonal period
12.

4.2 SSA with projection and Basic SSA

The example introduced in this section demonstrates that
both SSA with projection and Basic SSA can extract trends
in a similar manner. Let us consider the example ‘co2’
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Figure 1. ‘Gasoline’: SSA with projection, linear trend
detection.

(Mauna Loa Atmospheric COy Concentration, 468 obser-
vations, monthly from 1959 to 1997 [14]).

We start with extraction of the linear trend and therefore
choose ProjSSA(1,1) to perform SSA with double centering.

By analogy with SSA, large window lengths help to
extract separable series components, while small window
lengths correspond to smoothing. Therefore, we take L =
228, which is divisible by 12 and is close to half of the time
series length to obtain better separability, and a small value
L = 36 to smooth the series. Three of four versions of the
extracted trends presented in Figure 2 almost coincide.

For the choice L = 228, the extracted trend is close to
linear, see Figure 2 (left-top). Certainly, the accurate trend
of ‘co2’ series is not linear. However, the projection com-
ponents can be supplemented by the third and sixth SVD
components (ET5,8) to improve the trend (Figure 2 (right-
top)). Figure 2 (left-bottom) shows the result of smooth-
ing with L = 36. Finally, the result of ProjSSA(2,2) with
L = 228, which is designed for extraction of a cubic trend,
is depicted in Figure 2 (right-bottom). The extracted trend
is very similar to that in [8], which was extracted by Basic
SSA (not depicted).

Identification of the components in the decomposition
produced by SSA with projection is exactly the same as
it is performed in Basic SSA.

4.3 Numerical comparison

The real-life examples presented in Sections 4.1 and 4.2
show that the results of Basic SSA, SSA with projection and
linear regression can be either different or similar. To under-
stand, which method is better, let us perform a numerical
study.

We consider a time series of length N = 199 with the
common term
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Original _— Original
Lineartrend —— Trend _—
] ] ] ] ] ] ] ] ] ]
370 — 370 —
360 — 360 —
350 — 350 —
340 — 340 —
330 — 330 —
320 — 320 —
310 — 310 —
I I I I I I I I I I
1960 1970 1980 1990 2000 1960 1970 1980 1990 2000
Time Time
Original _— Original _—
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] ] ] ] ] ] ] ] ] ]
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360 — 360 —
350 — 350 —
340 — 340 —
330 — 330 —
320 — 320 —
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Time Time

Figure 2. ‘co2’: Reconstructions of the trend. Left-top:
ProjSSA(1,1), L = 228; right-top: ProjSSA(1,1), L = 228,
complemented by the ET 5 and 8; left-bottom: ProjSSA(1,1),
L = 36, right-bottom: ProjSSA(2,2), L = 228.

(9) Tn :tn+8n+5n7
where t,, is a trend, s, = Asin(2rnw + ¢), €, is a Gaussian
white noise with standard deviation o.

For obtained estimates tASf), where ¢ is the number of
series with 4th realization of noise asf ), i =1 M
we will calculate the root-mean-square error (RMSE) as
Vate ST 0 - )2

Linear trend and sine wave. Let us start with the noiseless
case (0 = 0) and therefore take M = 1. Let ¢, = an+b. We
fixa=1,b= —-100, A =1 and change w from 0.02 to 0.1
(that is, the period is changed from 50 to 10).

Since the result of the least-squares method strongly de-
pends on the form of the residual, we consider the values of
the phase, ¢ =0 and ¢ = 7/2.

Figure 3 (left) contains the RMSE values in the case ¢ = 0
for Basic SSA with reconstruction by ET1-2, ProjSSA(2,0),
ProjSSA(1,1) with L = 100, and for the linear regression.
One can see that the worse cases for ProjSSA(1,1) are ap-
proximately equal to the best cases for the linear regression.

In Section 4.1, we performed forecasting by the linear re-
gression applied to the trend reconstruction. The same lin-
ear regression, which is applied to the trend reconstruction,
can be considered as a different trend estimate. Figure 3
(right) contains the RMSE for the linear regression lines
constructed in this way; ‘regr’ is added to the legend. Note
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Figure 3. Dependence of the RMSE of linear-trend estimates
on frequency of the periodic component, ¢ = 0.
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Figure 4. Dependence of the RMSE of linear-trend estimates
on frequency of the periodic component, ¢ = /2.

that the ‘linear regression’ thick line is the same on the left
and right plots, which are depicted in different scales. The
ordering of the SSA methods is generally the same, while
the SSA methods become better than the linear regression.
Probably, 0 is one of the worst values of ¢ for linear regres-
sion.

Now consider ¢ = 7/2 as one of the best cases for the lin-
ear regression. The behavior of the errors is quite different
(Figure 4 (left)). However, the accuracy of ProjSSA(1,1) is
still better than that of the linear regression. Linear least-
squares approximation of the SSA reconstructions consider-
ably improves the accuracy of the SSA methods (Figure 4
(right)).

Note that zero values of the RMSE for ProjSSA(1,1) for
frequencies w = 0.01k are explained by the theory, since
then Lw and Kw are integers. The errors for ProjSSA(2,0)
lie between that for Basic SSA and ProjSSA(1,1). It is inter-
esting that the minimal errors for Basic SSA are achieved for
the middle points, when Lw+ 0.5 and Kw+ 0.5 are integers.

Remark 5. The accuracy of separation of a periodic com-
ponent from a trend depends on (a) is the window length
L small or close to half of the time series length and (b)
is L divisible by the period of the periodic component [9,
Section 6.1], [7]. The accuracy is more sensitive to the di-
visibility. Therefore, taking different periods, we check the
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Figure 5. Dependence of the RMSE of cubic-trend estimates
on frequency of the periodic component, ¢ = 0.
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Figure 6. Dependence of the RMSE of cubic-trend estimates
on frequency of the periodic component, ¢ = /2.

stability of the comparison with respect to the choice of the
window length.

Cubic trend and sine wave. Let us consider a more com-
plex case of the cubic trend ¢, = 0.0001n3, o = 0. Since
there is no exact separability for any choice of parameters,
the results are unpredictable. Figures 5 (left) and 6 (left)
contain the RMSE values for Basic SSA with reconstruction
by ET1-4, ProjSSA(4,0), ProjSSA(2,2) with L = 100 and
for the cubic regression. One can see that ProjSSA(2,2) is
the best method for ¢ = 0, while it is just comparable with
the linear regression for ¢ = 7/2. Note that here the best
parameters for ProjSSA(2,2) do not correspond to the case
when Lw and Kw are integers. The cubic least-squares ap-
proximation of the reconstructed trend again improves the
estimates (Figures 5 (right) and 6 (right)).

Basic SSA fails for the chosen parameters because of lack
of strong separability: the fourth trend component has a con-
tribution comparable with the contribution of the periodic
components that causes their mixture.

Note that one of the modifications described in [10], Iter-
ative O-SSA, can be used to get strong exact separability for
the considered noiseless examples. However, we do not in-
volve this modification into the comparison, since Iterative
O-SSA is not able to remove noise and should be applied
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after denoising in the nested manner, while the compared
methods are able to extract the trend without denoising.

Linear trend and noise. For the data which satisfy the
model of the linear regression with white Gaussian noise,
that is, for the amplitude A equal to zero, we take o = 1
and use M = 1000. As expected, the smallest error 0.10 is
achieved for the regression estimate. However, the RMSE
of the ProjSSA(1,1) estimate equal to 0.12 is very close to
0.10. The error of the Basic SSA is equal to 0.17. Applica-
tion of linear regression to the results of SSA reconstruction
improves the SSA estimates. The RMSE for ProjSSA(1,1)
and Basic SSA become equal to 0.115 and 0.104 respectively.

We do not show the errors of trend estimates when the
series has both periodic component and noise, since the com-
parison result (ordering of error values) is intermediate be-
tween the cases of a noisy trend with no periodic component
and a noiseless trend with added periodicity. The general
conclusion is that to keep the advantage of SSA with projec-
tion, the noise standard deviation o should be considerably
smaller than the amplitude A of the periodic component.

5. CONCLUSION

The considered combination of singular spectrum analy-
sis, which does not need a series model given in advance, and
of a subspace-based parametric approach, which is incorpo-
rated by means of projections to subspaces given in advance,
proves successful for extraction of polynomial (especially,
linear) trends, when the residual has unknown structure and
can include deterministic oscillations, e.g., the seasonality.

The general form of projections of columns and rows of
the trajectory matrix, which keeps this trajectory matrix,
was obtained. It was proved that projections to the row
and column subspaces (so-called double projection) of the
trajectory matrix of a series Y are related to extraction of
the series (an + b)Y. In particular, the linear trend can be
obtained by double projection to the column and row sub-
spaces of a constant series. The formulated conditions of
separability of a series component, which is kept by projec-
tions, show that if a series component can be represented in
the form (an+0b)Y, then the double projection is preferable.

Thus, the theory provides an additional theoretical sup-
port to SSA with double centering (ProjSSA(1,1)), which
was known before, and also enlarges the range of applica-
tions of semi-nonparametric modifications of Basic SSA.

Applications of SSA with projection considered in the
paper were related to the extraction of a polynomial trend,
since its trajectory space is determined by the polynomial
degree only.

We showed on the example ‘Gasoline’ that the linear re-
gression approach can be inadequate for short series and
large oscillations, in comparison with ProjSSA(1,1). Com-
parison of different SSA versions applied to the ‘co2’ data
demonstrates that even if the model of a series component
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used for projection is wrong, the non-parametric part of SSA
with projection can correct the bias.

A numerical study was performed for a better under-
standing of the difference between SSA with projection and
the linear regression approach. First, it appears that if we
extract a polynomial trend by SSA with projection, then
the polynomial least-squares approximation of the trend re-
construction can considerably improve the accuracy.

The second found effect is related to the influence of the
residual geometry on the estimate accuracy. In the consid-
ered example, we changed the phase of a sinusoid. The SSA
estimates slightly depend on the phase, while the regression
estimates demonstrate a considerable dependence.

Numerical experiments confirm that for a linear trend
and a sine wave residual, ProjSSA(1,1) is more accurate
than the linear regression estimate. For a noisy linear trend,
when the model of the linear regression if fulfilled, the lin-
ear regression estimate is slightly more accurate than SSA.
Thus, we can formulate conditions, when SSA with double
projection can be recommended for use: series has a linear
or polynomial trend (the polynomial degree is not large)
and the regular oscillations are considerably larger than the
noise level.

The further investigation can be performed in two di-
rections. First, the forecasting algorithm for ProjSSA(m,k)
implemented in RssA should be proved. Then, the idea to
use projection to involve the structure of a supporting series
looks promising.
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