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On perturbation stability of SSA and MSSA
forecasts and the supportiveness of time series
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Studying the stability of Singular Spectrum Analy-
sis (SSA) and Multivariate Singular Spectrum Analysis
(MSSA) forecasts under random perturbations of the in-
put time series, we make the empirical observation that the
reconstruction kernel of SSA as a convolution filter and the
forecast recurrence vector are remarkably stable both under
generated Gaussian and natural non-Gaussian noise. As-
suming that these elements of the forecast procedure are
noise-independent, we derive concise formulae for the vari-
ance under perturbations of SSA and MSSA forecasts. We
suggest a criterion of supportiveness based on the behaviour
of these proxy variances under scaling of the support series.
Finally, we remark on a problem of lacking scaling invariance
of MSSA.
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1. INTRODUCTION

In the present study, we analyse the stability of the SSA
and MSSA forecasts, i.e. the properties of the forecast as a
random variable when the original time series is perturbed
by added noise, with and without the inclusion of a second
time series in the analysis. This question was motivated by
the analogy between the recurrence system (4) for a recur-
rent MSSA forecast of a pair of time series and the stationary
vector autoregressive process

(1)

Xt =

m∑
j=1

ajXt−j +

m∑
j=1

bjYt−j + εt

Yt =

m∑
j=1

cjXt−j +

m∑
j=1

djYt−j + ξt

used by C. J. Granger to implement his concept of causality,
as expressed in the words: “We say that Yt is causingXt if we
are better able to predict Xt using all available information
than if the information apart from Yt had been used” [6,
p. 428], i.e. Y is causing X if it improves the quality of the
forecast of series X.
∗Corresponding author.

Note that there are essential differences between the mod-
els: (1) is a stochastic process modeling the noise only, and
indeed the definition of Granger’s causality coherence re-
quires noise to be present in both time series, whereas (4) is
a deterministic process (although the coefficients are derived
from random variables in practice) modeling the signal, with
noise added afterwards, so that in this case noise does not
propagate and no specific noise model is assumed.

Nevertheless, the analogy between (4) and (1) could pro-
vide a basis for the study of a causal or support relationship
between time series (without the assumptions of station-
arity, zero mean or autoregressive structure) by comparing
the quality of the MSSA forecast of time series x using the
support series y with that of the SSA forecast of x alone,
taking an improved forecast as an indicator of supportive-
ness. What exactly counts as an improvement is open to
interpretation: it can refer both to accuracy of the forecast,
i.e. how close the predicted value is to the real value, and to
the stability of the forecast, i.e. the variance of the forecast
as a random variable. In practice, actual future values are
subject to random fluctuation and hence introduce further
variance into a measurement of accuracy. Therefore, we fo-
cus on working with the stability of the forecast value in
the present study. This is effectively done in practical use
of Granger causality tests, which are closely related to the
F-test and essentially compare goodness of fit for regression
with and without the support series [7, 14].

There have been earlier attempts to estimate causality
by different means than autoregressive modeling, including
SSA [12, 2]. For example, in [2] the forecast improvement
is estimated from the point of view of accuracy, i.e. pre-
dicted values in a forecast interval are compared to actual
future values. In contrast, we study the stability of time
series forecasts under random perturbations., considering
the following question: Does inclusion of the support se-
ries in MSSA make the forecast more stable under perturba-
tions?

Put simply, the SSA procedure can be visualised as a
black box (see diagram below) which takes the initial series
x and its perturbation (σε) as an input and outputs the fore-
cast. For the bivariate MSSA, an extra time series y (sup-
port series) is used as input. The resultant outcome is the
forecast point, calculated with the appropriate SSA/MSSA
linear recurrence. This will be a random variable; in the
diagram below, ξ has mean 0 and variance 1.
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x+ σε −→ SSA −→ x̂SSA + σ̂SSAξ

x+ σε
y

}
−→ MSSA −→ x̂MSSA + σ̂MSSAξ

We are interested in the relation of input and outcome vari-
ances with the main focus on the ratio between outcome
variances of SSA σ̂SSA and MSSA σ̂MSSA. We do not per-
turb the support series, as this would only add variance to
the MSSA output in a way which has no comparable ana-
logue in SSA.

After noting, in Section 2, that the first-order perturba-
tion theory of the spectral decomposition, which is a core
element of SSA, does not give a sufficiently transparent link
between the variances of input perturbation and forecast,
we make the discovery, in Section 3, that the central part
of the time series, excluding the first and the last SSA win-
dow, is remarkably stable under perturbations, allowing the
use of the unperturbed SSA projector as a proxy for the
actual perturbed one. To a lesser extent, this flattening ef-
fect carries over to MSSA. Note that for this observation
to be useful, the time series needs to be longer than twice
the chosen window length for SSA, to leave a sufficiently
indicative central part of the series. This discovery moti-
vates a simplifying assumption which we can use to derive
very convenient and practical formulae (47), (54) for the
SSA and MSSA forecast variances in Section 4. When com-
paring the performance of these formulae against empirical
forecast variances calculated in random trials for pairs of
time series with and without expected supportiveness, in
Section 5, we find that they appear to reflect the qualita-
tive relationship between the SSA and MSSA variances very
well and are also robust against distorting effects caused by
random eigenvalue crossings in the pseudorandom empirical
trials.

Accepting these formulae as indicative proxies for the
actual forecast variances, and with Granger’s guiding idea
in mind, we suggest the following practical computational
method for establishing or rejecting supportiveness of a
time series yn for a time series xn. Calculate the two fun-
damental objects, the MSSA convolution kernel (44) and
the MSSA forecast vectors R11, R12 (5) from MSSA of xn

and ρyn, with a scaling parameter ρ > 0, and hence com-
pute the convolution norm (54). If this norm tends to 0
for large ρ, the series yn is supportive for xn, if the norm
approaches a positive level for large ρ, then yn is not sup-
portive for xn. Note that the application of this criterion
does not require any calculation of (pseudo)random pertur-
bations, but uses only MSSA data for the unperturbed time
series.

The above method makes crucial use of the fact that
the MSSA forecast is not homogeneous in the scaling
factor ρ. However, in some other applications of MSSA,
this may be rather problematic. We briefly touch upon
this scaling problem and suggest a partial remedy in Sec-
tion 6.

2. FIRST-ORDER PERTURBATION
THEORY OF SSA

We start with a look at the information on the forecast
provided by first-order perturbation theory [13], which es-
sentially corresponds to linearisation of the singular-value
(spectral) decomposition underlying SSA and MSSA and of
the recurrent forecast formula. As a result, we shall see that
this linearisation in itself is not sufficient to give a sufficiently
simple overview of the connection between the forecast vari-
ance and the variance of the input perturbation; but it shows
the different steps of error variance propagation in the SSA
process and pinpoints the crucial elements of this process for
our subsequent considerations. We remark that, beyond the
simple first-order perturbation analysis below, the full per-
turbation series has been studied extensively in [11]; how-
ever, that study is mainly concerned with the limit of in-
finitely long time series, whereas we consider fixed-length
time series and small perturbation variance.

We shall use the following notation for SSA and bivariate
MSSA analysis and recurrent forecast. Consider a time series
(x1, ..., xN ). Choosing a window length 1 < L < N , we set
up a trajectory matrix

X =

⎛⎜⎜⎜⎝
x1 x2 . . . xN−L+1

x2 . . . xN−L+2

... . . .
...

xL . . . xN

⎞⎟⎟⎟⎠
and consider the spectral decomposition of the lag-
covariance matrix XX

T =
∑L

j=1 λjηjη
T
j , where ηj are or-

thonormal eigenvectors of XXT ∈ R
L×L with correspond-

ing eigenvalues λj , enumerated in non-increasing order, i.e.
λj ≥ λj+1. Choosing r < L, we use the orthogonal spec-
tral projector of rank r, P =

∑r
i=1 ηjη

T
j , to extract a lower

rank matrix X̃ = PX. Hankelization, i.e. diagonal averaging
of X̃ and of X − X̃ = (1 − P)X, gives a decomposition of
the initial time series xi = x̃i + εi into reconstructed time
series x̃i, which can be interpreted as a signal, and residu-
als εi which are treated as noise. For the discussion of the
optimal choice of window length L and number of compo-
nents r see [4]. Based on this representation, it is possible to
forecast the initial time series by extending the Hankelized
output matrix X̃H in such a way that the next added col-
umn (x̃N−L+2, ..., x̃N , x̂N+1)

T has minimal distance to the
projection subspace PR

L, giving the linear L-term recur-
rence

x̂n+1 = (x̃n−L+2, ..., x̃n)R, (n ≥ N)(2)

with the recurrence vector

R =

∑r
k=1 ηk,Lη

∇
k

1−
∑r

k=1 η
2
k,L

∈ R
L−1, ηk =

(
η∇k
ηk,L

)
∈ R

L.(3)

The forecast can be further extended using the same recur-
rence formula.
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The above procedure can be extended to the simultane-
ous analysis of two time series by stacked bivariate MSSA.
Given a second time series y = (y1, ..., yN ), we stack trajec-
tory matrices, both with the same window length L, in the
following manner ( X

Y
) and use the spectral decomposition of

(
X

Y

)(
X

Y

)T

=

(
XX

T
XY

T

YX
T

YY
T

)
=

2L∑
j=1

λM
j ηMj ηMj

T
;

the spectral projector will be PM =
∑r

j=1 η
M
j ηMj

T
. Separate

Hankelization of X̃ and Ỹ, defined by ( X̃
Ỹ
) = PM ( X

Y
), gives

MSSA reconstructions x̃ and ỹ.
For the forecasting, following the same principle as before,

we get a bivariate L-term linear recurrence

x̂N+1 = (x̃N−L+2, ..., x̃N )R11 + (ỹN−L+2, ..., ỹN )R12(4)

ŷN+1 = (x̃N−L+2, ..., x̃N )R21 + (ỹN−L+2, ..., ỹN )R22

with the recurrence vectors (j ∈ {1, 2})

R1j =
1

detA

(
(1−

r∑
k=1

η2k,2L)

r∑
k=1

η
(j)
k ηk,L

+

r∑
k=1

ηk,2Lηk,L

r∑
k=1

η
(j)
k ηk,2L

)
,(5)

R2j =
1

detA

(
(1−

r∑
k=1

η2k,L)

r∑
k=1

η
(j)
k ηk,2L

+

r∑
k=1

ηk,Lηk,2L

r∑
k=1

η
(j)
k ηk,L

)
,(6)

where

A =

(
1−

∑r
k=1 η

2
k,L −

∑r
k=1 ηk,2Lηk,L

−
∑r

k=1 ηk,Lηk,2L 1−
∑r

k=1 η
2
k,2L

)
and

ηk =

⎛⎜⎜⎝
η
(1)
k

ηk,L

η
(2)
k

ηk,2L

⎞⎟⎟⎠ ∈ R
2L.

Note that in addition to the above recurrent forecasting
method, which will be the basis of our considerations in this
paper, there are other SSA- and MSSA-based forecasting
methods, see [15, 3]; our MSSA forecasting method corre-
sponds to MSSA-K in [15] and recurrent row MSSA fore-
casting in [3].

First-order perturbation theory of the SSA process and
forecast gives the following result.

Proposition 2.1. Let X be the trajectory matrix of an
unperturbed time series x and L the chosen SSA window
length. Assume that the eigenvalues λ1, ..., λL of XX

ᵀ are
all simple.

Let R be the SSA recurrence vector (3) obtained from the
unperturbed time series xn. Then the SSA recurrence vec-
tor R(σ) obtained from the randomly perturbed time series
xn + σεn, where ε ∼ N(0, 1) is i.i.d., with the same SSA
parameters L and r is, to first order,

R(σ) = R+ σ
(
cR+ R̃

)
+O(σ2) (σ → 0),(7)

where

c =
2
∑r

k=1

∑L
i=r+1 αi,kηi,Lηk,L

1−
∑r

k=1 η
2
k,L

(8)

and

R̃ =

∑r
k=1

∑L
i=r+1 αi,k(ηi,Lη

∇
k + ηk,Lη

∇
i )

1−
∑r

k=1 η
2
k,L

.(9)

Proof. Let N be the trajectory matrix of the perturbation
time series ε, and

Z = XNT +NXT .(10)

The perturbed matrix

(X+ σN)(X+ σN)T = (XXT + σZ) +O(σ2)

has orthonormal eigenvectors

γσ,k = ηk + σν1,k + σ2ν2,k + . . .(11)

and eigenvalues

λσ,k = λk + σμ1,k + σ2μ2,k + . . . ,(12)

k ∈ {1, ..., L}, which are analytical in σ [10, Chapter 2, §1].
Substitution of these power series into the eigenvalue equa-
tion gives, in order σ,

XX
T ν1,k + Zηk = λkν1,k + μ1,kηk,(13)

and hence μ1,k = ηTk Zηk. Hence, writing ν1,k in terms of
basis eigenvectors ηi,

ν1,k =

L∑
i=1

αi,kηi,

gives, for j �= k,

αj,k =
ηTj (μ1,k − Z)ηk

λj − λk
= −

ηTj Zηk

λj − λk
.

For j = k, note that

1 = γT
σ,kγσ,k = ηTk ηk + σ(ηTk ν1,k + νT1,kηk) +O(σ2)

= 1 + 2σαk,k +O(σ2),
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so αk,k = 0. Furthermore, the fact that Z is symmetric
implies the antisymmetry αj,k = −αk,j . Now the recurrence
vector for the SSA forecast is

R(σ) =

r∑
k=1

γk,σ,Lγ
�
k,σ

1−
r∑

k=1

γ2
k,σ,L

(14)

=

r∑
k=1

(ηk,Lη
�
k + σ

L∑
i=1,i �=k

αi,k(ηi,Lη
�
k + ηk,Lη

�
i )) +O(σ2)

1−
r∑

k=1

(η2k,L + 2σ
r∑

i=1,i �=k

αi,kηi,Lηk,L) +O(σ2)
.

Due to antisymmetry, we have

αi,k(ηi,Lη
�
k + ηk,Lη

�
i ) + αk,i(ηk,Lη

�
i + ηi,Lη

�
k ) = 0(15)

in the numerator of (14), and similarly in the denominator
of (14),

αi,kηi,Lηk,L + αk,iηk,Lηi,L = αi,kηi,Lηk,L − αi,kηk,Lηi,L = 0.
(16)

Therefore

(17)

R(σ) =

r∑
k=1

ηk,Lη
�
k + σ(

r∑
k=1

L∑
i=r+1

αi,k(ηi,Lη
�
k + ηk,Lη

�
i )) +O(σ2)

1−
r∑

k=1

η2k,L − 2σ
r∑

k=1

L∑
i=r+1

αi,kηi,Lηk,L +O(σ2)

.

Equations (7),(8),(9) now follow by observing that(
1−

2σ
∑r

k=1

∑L
i=r+1 αi,kηi,Lηk,L

1−
∑r

k=1 η
2
k,L

+O(σ2)

)−1

= 1 +
2σ

∑r
k=1

∑L
i=r+1 αi,kηi,Lηk,L

1−
∑r

k=1 η
2
k,L

+O(σ2).

Note that, to first order, the noise from the perturbation
enters the recurrence vector R(σ) only through the coeffi-
cients αj,k.

The perturbation of the forecast is determined not only
by the perturbation of the forecast recurrence vector (7),
but also by the perturbation of the reconstructed time series
on which gives the initial values for the forecast recurrence.
The signal of the unperturbed time series is reconstructed,
by diagonal averaging, from the sum of the first r elemen-
tary matrices Xk(0) = ηkη

T
k X of the decomposition of the

trajectory matrix X

X =

r∑
k=1

Xk(0).(18)

Correspondingly, for the first order reconstruction for the
perturbed time series, the elementary matrices are calcu-
lated from the perturbed eigenvectors γσ,i,

Xk(σ) = γσ,kγ
T
σ,k(X+ σN)

= (ηk + σ

L∑
i=1,i �=k

αi,kηi +O(σ2))

× (ηk + σ

L∑
i=1,i �=k

αi,kηi +O(σ2))T (X+ σN)

= ηkη
T
k X + σ

L∑
i=1,i �=k

αi,k(ηiη
T
k + ηkη

T
i )X+O(σ2)

= Xk(0) + σ

⎛⎝ L∑
i=1,i �=k

αi,k(ηiη
T
k + ηkη

T
i )X+ ηkη

T
k N

⎞⎠
+O(σ2).

Again, to first order the added noise enters through the co-
efficients αj,k only. Then

X(σ) =

r∑
i=1

Xi(σ)

gives rise, after diagonal averaging, to the reconstructed
time series x̃n(σ). To calculate the forecast, we substitute
the vector (14) into the linear recurrence formula and use
the reconstruction series

x̃n(σ) = x̃n(0) + σε̃n +O(σ2),

where σε̃n arises from perturbation terms in elementary ma-
trices Xk(σ). The forecast for the (N + 1)st point is calcu-
lated from the linear recurrence formula (2) as

x̃N+1(σ) =

L−1∑
k=1

(
ak + σ(cak + bk) +O(σ2))

× (x̃N−k+1(0) + σε̃N−k+1 +O(σ2)
)

=

L−1∑
k=1

akx̃N−k+1(0)

+ σ

L−1∑
k=1

(
(cak + bk)x̃N−k+1(0) + akε̃N−k+1

)
+O(σ2)

= x̃N+1(0)

+ σ
L−1∑
k=1

(
(cak + bk)x̃N−k+1(0) + akε̃N−k+1

)
+O(σ2).

where we have written R = (aL−1, ..., a1)
T and R̃ =

(bL−1, ..., b1)
T for the unperturbed vector R (cf. (3)) and

the vector R̃ (cf. (9)) respectively, and x̃N+1(0) is the un-
perturbed forecast.
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Clearly,

var(x̃N+1(σ))

σ2

= var

(
L−1∑
k=1

(
(cak + bk)x̃N−k+1(0) + akε̃N−k+1

))
.

Note that coefficients bk (k ∈ {1, ..., L − 1}) and c are
random variables due to the noise, which complicates the
understanding of the output variance and makes the above
formula rather inconclusive. Therefore we need to analyse
the process of noise propagation in more detail in the fol-
lowing.

3. THE FLATTENING EFFECT

In order to reach a better understanding of how the fore-
cast variance depends on the variance of the input noise
ε, we study the effect of the perturbation at three stages
separately. These stages are: projector construction, time
series reconstruction and forecast. Firstly, we deal with the
noise propagation at the stage of constructing the projec-
tor, obtained from perturbed eigenvector components. Sec-
ond stage is reconstruction, where the noise comes through
the Hankel matrix and perturbed projector. And finally, the
forecast, where the noise comes in through the perturbed re-
currence vectors and through reconstruction. On each stage
we assess the effect size of noise and see if any of these effects
are dominant, so that others could be neglected in compar-
ison.

Univariate case

The perturbation of the time series affects the reconstruc-
tion of the time series xn directly and linearly through the
Hankel matrix σN, and indirectly and non-linearly by way
of the perturbed eigenvectors γσ in the spectral projection
of the Hankel matrix X+ σN.
The reconstruction resulting from elementary matrices

ηiη
T
i X, i ∈ {1, ..., r},(19)

is the signal reconstruction x̃(1) with no perturbation either
in the time series or in the eigenvectors ηi, i.e. the result of
SSA of the unperturbed time series.

The reconstruction x̃(2) resulting from the elementary
matrices

γσ,iγ
T
σ,i(X+ σN), i ∈ {1, ..., r},(20)

is the reconstruction with the double perturbation effect in
eigenvectors and projected Hankel matrix, i.e. this is the
result of SSA of the perturbed time series. Both x̃(1) and
x̃(2) are standard SSA reconstructions of time series xn and
xn + σεn, respectively.

The following two constructions are hybrids we use to
study the influence of the perturbation. The reconstruction

Figure 1. Reconstructions differences for the model (23) with
perturbation σεn ∼ N(0, 0.25): x̃(1) − x̃(3), x̃(2) − x̃(4) (top);

x̃(2) − x̃(4), x̃(2) − x̃(3) (bottom).

series x̃(3) is based on the effect of the direct Hankel matrix
perturbation only, but using the unperturbed eigenvectors,

ηiη
T
i (X+ σN), i ∈ {1, ..., r},(21)

and the reconstructed series x̃(4) uses elementary matrices
resulting from perturbed eigenvectors, but applied to the
unperturbed time series

γσ,iγ
T
σ,iX.(22)

For a first experiment, we use the generated time series

xn = sin(
3π

2
n) + sin(

π

2
n) n ∈ {1, ..., 200},(23)

perturbing it with Gaussian i.i.d. noise σεn ∼ N(0, 0.25),
and performing SSA with L = 50 and r = 4.

Figure 1 illustrates that

x̃(2)
n − x̃(3)

n ≈ 0 for n ∈ {L+ 1, ..., N − L},(24)

i.e. the difference is negligibly small through the whole re-
construction, apart from the first and last length L interval.
Therefore, we see that the difference of the sum of elemen-
tary matrices

∑r
i=1 γiγ

T
i (X + σN) −

∑r
i=1 ηiη

T
i (X + σN) is

approximately zero after Hankelization. That suggests that
the difference in the eigenvectors is small and may be ne-
glected in comparison with the effect of the perturbation
coming through the Hankel matrix X+ σN directly.

Similar behaviour is observed for the difference

x̃(4)
n − x̃(1)

n ≈ 0 for n ∈ {L+ 1, ..., N − L},(25)

which is approximately zero through all series, apart from
the first and last L interval.

The observation indicates that the change in perturbed
eigenvectors γσ is not crucial in the main (central) part of
time series. One could think that this holds because the
time series in this example had a simple structure and was
perturbed with generated Gaussian white noise. However,
we also find this flattening effect with real data.
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Figure 2. Australian dry wine sales, L = 24, r = 5:
(x(2) − x(1)) (above), (x(4) − x(1)) (below). Noise is Gaussian
N(0,4000) (top two graphs) or permuted residuals (bottom

two graphs).

The real data presented here is monthly sales of dry Aus-
tralian wine for the period 1980–1994 [9]. The analysis of
the dry wine time series is done as in [4, Chapter II], where
the same time series was used. The length of the series is
N = 187 and the natural period is equal to one year, i.e.
12 months (12 data points). It is therefore natural to choose
a multiple of 12 for the window length. According to the
book [4, p. 138], the optimal window length to obtain the
structure of the time series is L = 24 and the number of
eigentriples which correspond to the trend and main peri-
odics is r = 5.

Here we consider the unperturbed signal time series to be
based on the first 5 eigentriples, and the added noise term
is either generated Gaussian noise or randomly permuted
residuals from the SSA reconstruction (so statistically inde-
pendent, but not Gaussian).

Figure 2 illustrates the differences of reconstructions for
both experiments, where the difference between x(1) and
x(4) is approximately zero in both cases in the central part
of the reconstruction and is oscillating in the first and last
window length interval.

We also investigated the effect of the perturbed eigen-
vectors on the recurrence vector used for forecasting. In the
example shown in Figure 3, the unperturbed signal time
series is based on the first 7 eigentriples (L = 60) of the
red wine sales time series ([9]), and the added noise term
is either generated Gaussian noise or randomly permuted
residuals from the SSA. We generated random (Gaussian or
permuted residuals) noise 250 times to study the stability
of the recurrence vector under perturbations. In the case of

Figure 3. Australian red wine sales, L = 60, r = 7:
Recurrence vector with generated noise ε ∼ N(0, 100) (left)
vs. permuted residuals (right); 250 random instances in each

graph.

Gaussian white noise (left in Figure 3), the recurrence vec-
tor is remarkably stable and can be considered as practically
independent on noise; the permuted natural noise (right Fig-
ure 3) gives greater variation of the recurrence vector, but
the positions and heights of the characteristic spikes are very
stable.

Bivariate case

In the bivariate case the main time series xn is perturbed
with σεn, and yn is a support series. Performing bivariate
MSSA with parameters L, r, we study two signal reconstruc-

tions of the main series xn: the reconstruction x̃
(1),MSSA
n

from diagonal averaging of grouped elementary matrices
of

ηMSSA
(
ηMSSA

)T (
X

Y

)
and x̃

(2),MSSA
n from the perturbed series

γMSSA(σ)
(
γMSSA(σ)

)T (
X+ σN

Y

)
,

along with two hybrid cases, x̃
(3),MSSA
n from

ηMSSA(ηMSSA)T ( X+σN
Y

) and x̃
(4),MSSA
n from

γMSSA(σ)(γMSSA(σ))T ( X
Y
). Considering a simple ex-

ample with time series

(26) xn = yn = sin (πnω) ,

where n ∈ {1, ..., 200}, ω = 0.48 and i.i.d. perturba-
tion 0.5εn ∼ N(0, 0.25), we calculated MSSA reconstruc-

tions and hybrid cases x̃
(1),MSSA
n , x̃

(2),MSSA
n , x̃

(3),MSSA
n ,

x̃
(4),MSSA
n with L = 10, r = 2. Figure 4 illustrates that

the difference

x̃(4),MSSA
n − x̃(1),MSSA

n

is not negligibly small as for the generated example for uni-
variate case (see Figure 1), but is considerably smaller than

x̃
(3),MSSA
n − x̃

(1),MSSA
n and x̃

(2),MSSA
n − x̃

(1),MSSA
n .

38 M. Vronskaya-Robl and K. M. Schmidt



Figure 4. Reconstructions differences x̃
(4),MSSA
n − x̃

(1),MSSA
n

(top) of perturbed time series (26), in comparison to

x̃
(2),MSSA
n − x̃

(1),MSSA
n , L = 10, r = 2.

4. A SIMPLIFIED MODEL OF FORECAST
VARIANCE

We now proceed to derive formulae for the variance of
SSA and MSSA forecasts of the randomly perturbed time
series, calculated from the SSA and MSSA data of the unper-
turbed time series. They will give a simple and transparent
model for the forecast variance. However, they will rely on
the following two assumptions. Firstly, we make the simpli-
fying assumption that the flattening effect observed in the
preceding section occurs exactly, so that the SVD eigenvec-
tors and the forecast recurrence vectors of the unperturbed
time series can be used as proxies for those of the perturbed
time series in the central part of the time series, i.e. omitting
the first and last L entries, where L is the window length.
Note that this requires L to be substantially smaller than
the total length N of the time series, so the choice L = N/2,
which is not uncommonly used in SSA, will be unsuitable.
However, if the time series comprises several period inter-
vals, then the period length or a multiple of it will be a
natural choice for L, allowing to leave a sufficient central
part of the series. Secondly, because of the restriction to the
central part of the series and for reasons which will become
apparent in the following, the formulae will apply not to a
forecast at the end of the series, i.e. a future forecast, but to
the forecast at the end of the central part of the series. This
will not normally be a forecast of interest in itself; however,
we here use the forecast as a tool to assess the supportive-
ness of a second time series, and for this specific purpose
a forecast from an interior part of the time series will be
suitable.

The formulae (47), (54) for the SSA and MSSA forecast
variance will be based on the following reformulation of SSA
reconstruction as a (mid-point) linear filter; for this aspect
of SSA, see also [1, 8] and [5], Section 3.9.

Proposition 4.1. Let f = (f1, ..., fN ) be a time series and

f̃ = (f̃1, ..., f̃N ) its SSA signal reconstruction for a suitable

choice of parameters L and r. Then

f̃n = (q 
 f)n =

L−1∑
m=−L+1

qmfn+m, n ∈ {L+ 1, ..., N − L},

(27)

where the reconstruction kernel q : {−L+ 1, ..., L− 1} → R

has the symmetry property

q−m = qm, m ∈ {−L+ 1, ..., L− 1}.(28)

The convolution formula (27) gives the exact same result
as the standard SSA reconstruction, except in the first and
last L terms. In fact, the convolution concept is more natural
to doubly-infinite time series f = (fj)j∈Z. Our approach to
the proof is to derive the convolution formula for the doubly-
infinite case; the fact that the series f is finite (and extended
to be doubly-infinite by padding zeros) is invisible from the
central part due to the finite support of q. However, for
points in the first and last window length, the convolution
will in general be different from the result of standard SSA,
as it gives the SSA of the time series extended by 0.

Proof. Consider a doubly infinite time series f = (fj)j∈Z

and the right shift operator S : RZ → R
Z, (Sf)t = ft+1(t ∈

Z); then the trajectory matrix of infinite time series f with
window length L is

X =

⎛⎜⎜⎜⎝
f
Sf
...

SL−1f

⎞⎟⎟⎟⎠ ∈ R
L×Z,(29)

and the lag-covariance matrix takes the form

XX
T =

(30)

⎛⎜⎜⎜⎝
ffT f(Sf)T . . . f(S(L−1)f)T

(Sf)fT Sf(Sf)T . . . Sf(S(L−1)f)T

...
(S(L−1)f)fT S(L−1)f(Sf)T . . . S(L−1)f(S(L−1)f)T

⎞⎟⎟⎟⎠
∈ R

L×L, assuming that the inner products are finite. In fact,
the matrix XX

T is a Toeplitz matrix, as

(Sjf)(Skf)T = (S(j−k)f)fT (j, k ∈ Z).(31)

The SSA projector P calculated from the first r orthonormal
eigenvectors η1, ..., ηr of XXT has matrix entries

pk,j =

r∑
i=1

ηi,kηi,j (k, j ∈ {1, ..., L}),(32)
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where ηi,j is the jth entry of ηi. Note that

pk,j =

r∑
i=1

ηi,kηi,j =

r∑
i=1

ηi,jηi,k = pj,k.(33)

Therefore, applying the SSA projector to the Hankel matrix,
we get

PX =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

L−1∑
j=0

p0,jS
jf

L−1∑
j=0

p1,jS
jf

...
L−1∑
j=0

pL−1,jS
jf

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
,(34)

The Hankelization of this matrix of L rows and infinitely
many columns takes the simple form of a linear operator.

H : RL×Z → R
Z, H

⎛⎜⎝ y0
...

yL−1

⎞⎟⎠ =
1

L

L−1∑
k=0

S−kyk.(35)

Hence, the reconstructed signal is

f̃ = HPX =
1

L

L−1∑
k=0

PX =
1

L

L−1∑
k=0

L−1∑
j=0

pk,jS
j−kf

=

L∑
m=−L

qmSmf,(36)

i.e.

f̃n =

L−1∑
m=−L+1

qmfn+m (n ∈ Z),

where

qm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

L

L−1∑
i=0

pi,i, if m = 0,

1

L

L−1∑
i=m

pi−m,i, if m ∈ (1, ..., L− 1),

1

L

L−1∑
i=−m

pi,m+i, if m ∈ (−L+ 1, ...,−1).

As the calculation of convolution coefficients qm is based
on summing projector elements (32), which have the sym-
metry (33), the qm are symmetric as well,

qm = q−m (m ∈ {−L+ 1, ..., L− 1, L}).(37)

Setting qm = 0 if |m| > L, the expression (36) can be rewrit-
ten as a convolution

f̃n =
∑
m∈Z

qn−mfm = (q 
 f)n.

Proposition 4.2. Let f = (f1, ..., fN ), g = (g1, ..., gN ) be

time series and f̃ = (f̃1, ..., f̃N ), g̃ = (g̃1, ..., g̃N ) their MSSA
signal reconstructions, respectively, for a suitable choice of
window length L and r eigentriples. Then there exists a
convolution representation for the central part of the recon-
structed time series(

f̃
g̃

)
=

(
q1 
 f + q2 
 g
q3 
 f + q4 
 g

)
,(38)

where the reconstruction kernels qi : {−L+1, ..., L−1} → R

for i ∈ {1, 2, 3, 4} depend on the MSSA parameters L, r.

Proof. Extend the given time series by 0 to doubly-infinite
time series (fn)n∈Z, (gn)n∈Z ∈ R

Z.
The Hankel matrix for the bivariate MSSA is a block

matrix consisting of the Hankel matrix X of fn stacked on
top of the Hankel matrix Y of gn,

(
X

Y

)
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

f
Sf
...

SL−1f
g
Sg
...

SL−1g

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
∈ R

2L×Z.(39)

The MSSA projector P is obtained from the first r eigen-
vectors η1, ..., ηn of the 2L× 2L lag-covariance matrix

(
X

Y

)(
X

Y

)T

(40)

=

((
(Si−1f)(Sj−1f)

)L
i,j=1

(
(Si−1f)(Sj−1g)

)L
i,j=1(

(Si−1g)(Sj−1f)
)L
i,j=1

(
(Si−1g)(Sj−1g)

)L
i,j=1

)
.

The projector P consists of 4 blocks

P =

(
p1 p2

p3 p4

)
,

where

p1k,j =

r∑
i=1

ηi,kηi,j (k, j ∈ {0, ..., L− 1}),

(41)

p2k,j =

r∑
i=1

ηi,kηi,j (k ∈ {0, ..., L− 1}, j ∈ {L, ..., 2L− 1}),
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p3k,j =

r∑
i=1

ηi,kηi,j (k ∈ {L, ..., 2L− 1}, j ∈ {0, ..., L− 1}),

p4k,j =

r∑
i=1

ηi,kηi,j (k, j ∈ {L, ..., 2L− 1}).

Similarly to the univariate case, we now can write down
the expression for the signal reconstruction of fn and gn,
using the Hankelization operator H of (35)

(
f̃
g̃

)
=

⎛⎜⎜⎜⎜⎜⎝
H

(
L−1∑
k=0

L−1∑
k=0

p1k,jS
j−kf +

L−1∑
k=0

L−1∑
k=0

p2k,jS
j−kg

)

H

(
L−1∑
k=0

L−1∑
k=0

p3k,jS
j−kf +

L−1∑
k=0

L−1∑
k=0

p4k,jS
j−kg

)
⎞⎟⎟⎟⎟⎟⎠

(42)

=

⎛⎜⎜⎜⎜⎜⎝
L∑

m=−L

q1mSmf +

L∑
m=−L

q2mSmg

L∑
m=−L

q3mSmf +

L∑
m=−L

q4mSmg

⎞⎟⎟⎟⎟⎟⎠ ,(43)

where

qjm =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

L

L−1∑
i=0

pji,i, if m = 0,

1

L

L−1∑
i=m

pji−m,i, if m ∈ (1, ..., L− 1),

1

L

L−1∑
i=−m

pji,m+i, if m ∈ (−L+ 1, ...,−1),

(44)

and qjm = 0 otherwise. Thus

(
f̃n
g̃n

)
=

⎛⎜⎜⎝
∑
m∈Z

q1n−mfm +
∑
m∈Z

q2n−mgm∑
m∈Z

q3n−mfm +
∑
m∈Z

q4n−mgm

⎞⎟⎟⎠
=

(
(q1 
 f)n + (q2 
 g)n

(q3 
 f)n + (q4 
 g)n

)
(n ∈ Z)(45)

or briefly (
f̃
g̃

)
=

(
q1 
 f + q2 
 g
q3 
 f + q4 
 g

)
.(46)

The expression (46) gives the reconstructions f̃n, g̃n of the
main series fn and support series gn for n ∈ {L+1, ..., N −
L}. This expression is identical to the MSSA reconstruc-
tions, provided that the parameters of both procedures are
the same.

It is worth mentioning that convolution vectors q1 and
q4 have the reflection symmetry (37), which q has in the
univariate case, but q2, q3 do not. Instead, they are related
via q2m = q3−m(m ∈ Z).

After these preparations, we are ready to study the
forecast for xN−L+1 based on the SSA reconstruction for
{x̃L+1, ..., x̃N−L} from the convolution formula. The expres-
sion (27) is conveniently linear and concise; however, both
convolution kernel qi(σ) and the recurrence vector R(σ) will,
strictly speaking, depend on noise of the initial time series,
which complicates the process of estimating the variance of
the noise in the reconstruction and in the forecast. There-
fore we make the simplifying assumption that these can be
replaced with the convolution kernel and recurrence vector
of the unperturbed series, as indicated by our observations
in Section 4. Then we obtain the following result in the uni-
variate (SSA) case.

Proposition 4.3. Let R, q be the recurrence vector and
convolution kernel, respectively, of SSA performed on a time
series (xn)n∈{1,...,N} with parameters L, r.

Moreover, assume that (εn)n∈{1,...,N} is a random time
series such that the εn are independent and have vari-
ance 1. Let x̂N−L+1(σ) be the SSA forecast of the time se-
ries (xn + σεn)n∈{1,...,N} calculated from the reconstructed
(x̃N−2L+2(σ), ..., x̃N−L(σ)).

Then, assuming the recurrence vector R(σ) and convolu-
tion kernel q(σ) are equal to the unperturbed R, q,

var(x̃N−L+1(σ)) = σ2‖R 
 q‖22.(47)

Here ‖y‖2 =
√∑

j |yj |2 is the �2-norm.

Proof. Using the convolution expression (27) for the SSA
reconstruction of the perturbed time series xn + σεn, we
find

x̃n(σ) =
∑
m∈Z

qn−m(σ)(xm + σεm)

=
∑
m∈Z

qn−m(σ)xm + σ
∑
m∈Z

qn−m(σ)εm.(48)

Applying the LRF (2) to the reconstruction (48), the ex-
pression for the forecast x̂N−L+1(σ) may be written, using
R(σ) = (aL−1(σ), ..., a1(σ))

T for the perturbed recurrence
vector, as

x̂N−L+1(σ) =

L−1∑
i=1

ai(σ)
( ∑

m∈Z

qN+1−i−m(σ)xm

+ σ
∑
m∈Z

qN+1−i−m(σ)εm

)
(49)

=

L−1∑
i=1

ai(σ)
∑
m∈Z

qN+1−i−m(σ)xm

On perturbation stability of SSA and MSSA forecasts and the supportiveness of time series 41



+ σ
L−1∑
i=1

ai(σ)
∑
m∈Z

qN+1−i−m(σ)εm.(50)

Under the simplifying assumptions, (50) turns into

x̂N−L+1(σ) =

L−1∑
i=1

ai
∑
m∈Z

qN−L+1−i−mxm

+ σ

L−1∑
i=1

ai
∑
m∈Z

qN−L+1−i−mεm(51)

= x̂N−L+1(0) + σ
L−1∑
i=1

ai
∑
m∈Z

qN−L+1−i−mεm(52)

= x̂N−L+1(0) + σ
∑
m∈Z

( L−1∑
i=1

aiqN−L+1−i−m

)
εm.(53)

As εm are i.i.d. with variance 1, we hence conclude that

var(x̂N−L+1) = σ2
∑
m∈Z

∣∣∣∣∣
L−1∑
i=1

aiqN−L+1−i−m

∣∣∣∣∣
2

= σ2
∑
k∈Z

∣∣∣∣∣
L−1∑
i=1

aiqk−i

∣∣∣∣∣
2

= σ2
∑
k∈Z

|(R 
 q)i|2 = σ2‖R 
 q‖22.

Similarly, we have the following result in the bivariate
(MSSA) case, including the additional support series yn.

Proposition 4.4. Let R11, R12 and qi, i ∈ {1, 2, 3, 4} be
the recurrence vectors and convolution kernels, respectively,
of MSSA performed on (xn)n∈{1,...,N}, (yn)n∈{1,...,N} with
parameters L, r.

Assume that (εn)n∈{1,...,N} is a random time series
such that the εn are independent and have variance 1.
Let x̂N−L+1(σ) be the MSSA forecast of the time se-
ries (xn + σεn)n∈{1,...,N} calculated from the reconstructed
(x̃N−2L+2(σ), ..., x̃N−L(σ)) and (ỹN−2L+2(σ), ..., ỹN−L(σ)).

Then, assuming the recurrence vectors R11(σ), R12(σ)
and convolution kernels (qi(σ), i ∈ {1, 2, 3, 4} are equal to
the unperturbed R11, R12 and qi, i ∈ {1, 2, 3, 4},

var(x̂N−L+1(σ)) = σ2‖R11 
 q
1 +R12 
 q

3‖22.(54)

Proof. Recalling the MSSA LRF for the forecast (4) and
its recurrence vectors R11, R12 (5), we derive the forecast
x̂N−L+1(σ) from the following formula

x̂N−L+1(σ) =

L−1∑
i=1

a1,ix̃N−L+1−i(σ) +

L−1∑
i=1

a2,iỹN−L+1−i(σ),

(55)

where R11 = (aL−1,i, ..., a1,1)
T and R12 = (a2,L−1, ..., a1,1)

T .

Note that we are operating under the simplifying assump-
tions that recurrence vectors R11 and R12 are obtained from
the unperturbed time series xn, i.e. fixed.

Substituting reconstructions (45) into (55) we get, using
xm(σ) = xm + σεm,

x̂N−L+1(σ) =
L−1∑
i=1

a1,i

( ∑
m∈Z

q1N−L+1−i−mxm(σ)

+
∑
m∈Z

q2N−L+1−i−mym

)

+

L−1∑
i=1

b1,i

( ∑
m∈Z

q3N−L+1−i−mxm(σ)

+
∑
m∈Z

q4N−L+1−i−mym

)
= x̂N−L+1(0)

+σ
∑
m∈Z

L−1∑
i=1

(a1,iq
1
N−L+1−i−m + b1,iq

3
N−L+1−i−m)εm.

Similarly to the univariate case, we can now calculate the
variance of the forecast,

var(x̂N−L+1(σ)) = σ2
∑
m∈Z

|
L−1∑
i=1

(a1,iq
1
N−L+1−i−m

+ b1,iq
3
N−L+1−i−m)|2

= σ2
∑
k∈Z

∣∣∣∣∣
L−1∑
i=1

(a1,iq
1
k−i + b1,iq

3
k−i)

∣∣∣∣∣
2

= σ2
∑
k∈Z

∣∣R11 
 q
1 +R12 
 q

3
∣∣

= σ2‖R11 
 q
1 +R12 
 q

3‖22.

5. TOWARDS A MEASURE OF
SUPPORTIVENESS

In this section, we aim to explore the possibility of using
the forecast variance as a tool to establish a relationship
between two time series in the sense that the second (sup-
port) series stabilises the forecast of the primary series. This
will roughly correspond to Granger’s concept of causality. In
particular, we address the question of what role the convo-
lution formula (54) based on the simplifying assumption of
constant reconstruction kernel and forecast vectors can play
as a predictor for the empirical variance one would observe
in random trials of perturbed time series.

The comparison of variances bears some similarity to the
statistical F-test; however, our question does not directly fit
into the scheme of that test, as here the sample size (the
number of random trials) is arbitrary and will not strongly
affect the variance. Hence the significance of the test cannot
be reasonably calculated, and a single number will not be
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Figure 5. Red wine vs sparkling wine and generated series,
1980–1994.

very indicative. Therefore we consider the change in the vari-
ance as the relative weight of the support series in bivariate
MSSA is increased. More precisely, we consider the pair of
time series (xn)n∈{1,...,N} (main series) and (ρyn)n∈{1,...,N}
(support series) with varying support series multiplier ρ and
study the dependence of the variance on ρ.

Given this pair of time series, we compare the value for
the predicted forecast variance calculated from the convo-
lution formula (54) for the original series (xn)n∈{1,...,N},
(ρyn)n∈{1,...,N}, with the empirical variance from 1,000 ran-
dom trials of the MSSA forecast for the time series (xn +
εn)n∈{1,...,N} and (ρyn)n∈{1,...,N}, where εn ∼ N(0, σ2) is in-
dependent pseudo-random generated noise in each trial. In
order to assess the impact of our simplifying assumptions in
more detail, we also consider the empirical variance of the
MSSA forecast where the forecast vector R11(σ) is, in each
trial, replaced with the fixed unperturbed forecast vector
R11 (values A), and where both forecast vectors R11(σ) and
R12(σ) are replaced with the fixed unperturbed forecast vec-
tors R11, R12 (values B). Note, however, that in these cases
the convolution kernel will not be kept fixed, but will vary
with the random perturbations.

We analysed two examples, with time series taken from
the Australian wine datasets [9]. The main series in both
examples is based on the red wine sales time series, the
support series in the first example is based on the sparkling
wine sales time series, in the second example it is made up
of unrelated generated data. The length of all time series is
N = 187. The red wine and sparkling wine time series clearly
exhibit some structural similarities as well as characteristic
differences, see Figure 5 (left).

We constructed time series (xn)n∈{1,...,187},
(yn)n∈{1,...,187} by preconditioning the raw red and
sparkling wine time series, respectively, performing SSA
with L = 60 and r = 7 separately on both series; these
are the optimal SSA parameters for these standard series
(see [4] pp. 138–139). The variance for the perturbative
Gaussian white noise added to (xn)n∈{1,...,187} in the trials
was set to σ2 = 100. For the further analyses, we kept the
(M)SSA parameters at L = 60, r = 7. For a fair comparison
with the convolution formula, we forecast the value starting
the last window in the time series, i.e. x̂128, from the
reconstructed x̃68, . . . , x̃127 and ỹ68, . . . , ỹ127.

Table 1. MSSA Red Wine Forecast Measures

ρ var(x̂128) var(A) var(B) σ2|Rs
11 ∗ q1 +Rs

12 ∗ q3|
0.1 7.4768 6.6278 6.5749 5.6975
0.17 8.1574 114.5941 7.1851 4.5769
0.18 3898.9 3146.2 997.9766 2.6169
0.19 7.3854 194.1092 3.6954 2.5575
0.2 6.7346 30.4935 3.2459 2.4359
0.22 5.9248 9.5182 3.1407 2.1989
0.3 4.7625 5.1692 1.9477 1.5222
0.4 4.6748 4.5712 1.2182 1.0386
0.5 4.7254 4.371 0.7938 0.7341
0.6 4.8085 4.3115 0.537 0.5253
0.7 4.8949 4.3248 0.3738 0.3792
0.8 4.978 4.3794 0.2663 0.2764
0.9 5.0574 4.4572 0.1934 0.2039
1 5.1319 4.5463 0.1429 0.1523
1.1 5.1994 4.6383 0.1073 0.1152

To put the absolute variances calculated for the MSSA
forecasts into perspective, we computed the perturba-
tive variance of the SSA forecast of the red wine series
(xn)n∈{1,...,187} alone. The empirical variance from 1,000 tri-
als is var(x̂SSA

128 ) = 7.9991. When the perturbed recurrence
vector R(σ) is replaced with the unperturbed constant R
in each trial, the empirical variance is 7.2037. The convo-
lution formula (47) gives the value 6.7355, showing that a
large part (although not all) the observed variance can be
explained even making the simplifying assumptions.

The results for the first example (red wine sales with
sparkling wine sales as support) are shown in Table 1. The
empirical variance of forecast values x̂128 appears largely
stable, apart from the conspicuously large value for ρ = 0.18,
which we shall discuss below. The variance of forecasts with
fixed R11 (values A) behaves in a generally similar man-
ner. On the other hand, the variance of forecasts with both
R11 and R12 fixed (values B) shows are marked and sus-
tained decrease with increasing ρ. This is fully paralleled by
the prediction from the convolution formula (54). Thus it
appears that the instability under perturbation of R12(σ)
has a pronounced effect on the result variance, while R11

and the reconstruction convolution kernel can be assumed
to be unperturbed without qualitative difference in the re-
sults.

It is striking in Table 1 that all values obtained from
simulated noise trials show very unstable behaviour near
ρ = 0.18 (values in bold). This instability is caused by an
uncertainty in the relative position, within the pair of the
7th and 8th, of the eigenvalues corresponding to the con-
tinuous branches of eigenvectors. For ρ near 0.18, the 7th
and 8th eigenvalues happen to lie very closely together. As
the MSSA cut-off was fixed between the 7th and 8th eigen-
value, a small change due to the perturbation can lead to a
swap of relative position of these eigenvalues and hence to a
large change in the elementary MSSA matrix formed from
a completely different nearly orthogonal eigenvector.
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Table 2. MSSA Red Wine Forecast Measures with support
series

ρ var(x̂128) var(A) var(B) σ2|Rs
11 ∗ q1 +Rs

12 ∗ q3|
0.1 8.6397 8.4545 7.8798 7.8661
0.2 8.1232 7.952 7.5153 7.1994
0.3 7.7428 8.8551 7.1967 6.7942
0.4 7.5411 11.6653 6.9916 6.6424
0.5 7.4265 15.1699 6.8687 6.5881
0.6 7.3044 18.2412 6.793 6.5639
0.7 9.9216 22.2217 6.7272 6.5341
0.8 8.2548 22.6167 6.7453 6.5747
0.9 8.3286 24.0218 6.7349 6.5809
1 8.3883 25.0824 6.7274 6.5853
1.1 8.4366 25.8982 6.7218 6.5888
10 8.7161 30.0821 6.6967 6.6064
100 8.7201 30.1362 6.6964 6.6067

The instability is thus easily explained as a meaningless
artefact of the support series scaling and can therefore be
disregarded. Note that the values from the convolution for-
mula do not have this problem, as they are calculated from
unperturbed series.

For the second example, we used the same main series as
before, but the unrelated generated support series

yn = 500 + 1000 sin 2π
277

566
n (n ∈ {1, . . . , 187}).

Figure 5 (right) shows both time series. The resulting vari-
ances are shown in Table 2.

The empirical variance of the forecast x̂128 is very stable
and shows no essential increase or decrease. The variances
for fixed R11 (values A) even have an increasing trend. Here
also the empirical variances for fixed R11 and R12 (values B)
are very stable, showing only very faint decrease, especially
for ρ > 0.5, even if the multiplier ρ is pushed to extremely
high values. This also holds for the values calculated from
the convolution formula, which here are excellent proxies for
the values B.

In summary, we see that the convolution formula (54)
gives very good predictions of the values and, more impor-
tantly, qualitative behaviour for varying ρ, of the empirical
variances where the recurrence vectors are fixed. However,
these predictions do not in general reflect the empirical vari-
ance of the forecast of the perturbed time series very well.

On the one hand, this can be taken as an indication that
our simplified model based on the assumption that the re-
currence vectors do not essentially vary with the perturba-
tion is oversimplified and unrealistic, and it is certainly not
a suitable tool for a precise estimate of the actual forecast
variance.

On the other hand, bearing in mind that we are using the
forecast variance just as an experimental tool for assessing
to what extent the support series helps improve the forecast
of the main series, giving an indicator of supportiveness, our

Table 3. Convolution norms (54) for Australian sparkling
wine sales, support (a) cosine, (b) self, (c) shifted self

ρ (a) (b) (c)

0.1 55678.41 54919.27 53727.07
0.2 54741.06 51796.55 47554.96
0.3 53438.47 47153.5 39250.44
0.4 52003.64 41634.33 30705.39
0.5 50593.95 35854.82 23246.07
0.6 49282.33 30289.33 17424.38
0.7 48086.06 25234.52 13204.97
0.8 46997.06 20829.55 10268.55
0.9 46000.84 17100.56 8243.08
1 45084.41 14005.79 6818.03
10 35443.87 5.49 6.59
100 35522.25 0.00056 0.00069

results suggest that the convolution formula (54), when con-
sidered for varying support series multiplier ρ, could well be
used as such a tool. As it is calculated from the original
unperturbed time series only, it is very quick and inexpen-
sive to compute and does not suffer the cut-off instability
observed in the empirical results.

In short, we suggest the criterion for supportiveness that
the convolution norm (54) becomes small for large support
series multiplier ρ, compared to its value for small ρ (or
the SSA convolution norm (47)), whereas supportiveness is
rejected if it settles at a positive level for large ρ.

To explore this concept further, we consider the sparkling
wine time series, using a simple cosine with 1 year period,

yn = 3500 + 500 cos
2π

12
n (n ∈ {1, . . . , 187}),

as a support series (L = 60, r = 7). The convolution norms
(54), shown in Table 3 (a), settle at a positive level after a
brief initial decrease, indicating lack of supportiveness.

For comparison, we then take the sparkling wine time
series itself, without added noise, as a support series for the
same main series and use the same MSSA parameters as
above. In this case, the convolution norms tend to zero, see
Table 3 (b). When this support series is shifted cyclically by
17 months, to become

(y18, . . . , y187, y1, . . . , y17),

the same level of supportiveness appears, see Table 3 (c).
We observed the same effect in the case of a simple sine

example, with main series

xn = sin
2π

40
n+ εn (n ∈ {1, . . . , 200}),

εn ∼ N(0, 1) i.i.d., and support series

yn = sin 2π(
n

40
+ α) (n ∈ {1, . . . , 200})
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with offsets α ∈ {0.05, 0.1, 0.15, 0.25}, taking L = 50, r = 2.
In all cases, the convolution norms (54) became small with
growing ρ, at a rate roughly independent of α.

This indicates that the suggested criterion for support-
iveness tests for structural compatibility between the two
time series rather than a simple point-by-point conformity.

6. THE SCALING PROBLEM AND
LINEARISED MSSA

Consider two time series, one (x) giving prices (in units
of $), the other (y) quantities of a commodity (in units of
metric tonnes). Then, in the MSSA recurrence formula (4),
the recurrence vectors R11, R22 will be dimension-free, but
the entries of R12 will be in units of $/t and those of R21 in
units of t/$.

Now consider the same data, but expressing the quanti-
ties of the commodity in units of kilogrammes, i.e. as a time
series ỹ = 1000y. Then, in order to get the same forecast as
before, the recurrence vectors must be adjusted by the same
conversion factor, i.e. R̃12 = R12/1000 and R̃21 = 1000R21.
However, this is not what MSSA of the new pair of time
series x, ỹ will give; instead the result will be completely
different forecast vectors, due to the non-linearity of the
spectral analysis of the combined (stacked) Hankel matri-
ces. Thus MSSA has the intrinsic problem of lacking scaling
invariance in the separate input time series. The practical
expedient of only using normalised time series (e.g. mean
0, variance 1) in MSSA hides rather than solves this prob-
lem. In situations where the effect of different scalings of a
support time series is to be explicitly studied, such as in
Section 5 above, normalisation will not be applicable in any
case.

A partial solution of the scaling problem is achieved by
the following proposed linearisation of MSSA around SSA,
which will also give a quick MSSA-type forecast on the basis
of the SSA of the main (first) time series alone.

Consider the stacked Hankel matrix ( X

αY ) with small α,
then(

X

αY

)(
X

αY

)T

=

(
XX

T 0
0 0

)
+ α

(
0 XY

T

YX
T

)
+O(α2).

Denoting, as before, the (SSA) eigenvectors and eigenvalues
of XX T by ηk, λk, respectively, the (MSSA) eigenvectors of
( X

αY )(
X

αY )
T have the form(

ηk
α
λk

YX
T ηk

)
+O(α2),

and further the MSSA recurrence vectors are

R11(α) =
1

(1−
∑

k η
2
k,L)

∑
k

ηk,Lη
∇
k ,

R12(α) =
1

(1−
∑

k η
2
k,L)

α
∑
k

ηk,Lγ
∇
k ,

R21(α) =
1

(1−
∑

k η
2
k,L)

α
∑
k

(
γk,L(1−

∑
l

η2l,L)

+ηk,L
∑
l

ηl,Lγl,L
)
η∇k ,

R22(α) =
1

(1−
∑

k η
2
k,L)

α2
∑
k

(
γk,L(1−

∑
l

η2l,L)

+ηk,L
∑
l

ηl,Lγl,L
)
γ∇
k ,

where γk = 1
λYX

T ηk. Note that R11 is the α-independent
SSA recurrence vector R for the series x. Moreover, R12 and
R21 are linear in α, whereas R22 is of higher order and hence
negligible in the linearisation.

The resulting forecast will be properly homogeneous with
respect to scaling of the support series y and is calculated
from the SSA of x only. However, it is asymmetric between
the two series as it remains non-linear (in particular, not
scaling covariant) in x and does not give a usable forecast
for the support series y. Also, this linearised MSSA cannot
directly replace full (non-linear) MSSA in the supportiveness
analysis proposed in Section 5.

Nevertheless, linearised MSSA may be a suitable approx-
imation in many situations where MSSA is now used, and
its general relationship with the supportiveness question re-
mains to be explored.
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