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Asymptotic extraction of common signal
subspaces from perturbed signals

Vladimir Nekrutkin
∗
and Irina Vasilinetc

Signal subspaces extracted by Singular Value Decompo-
sition of signal matrices are used in many methods of sig-
nal processing. General approach to asymptotic proximity
of unperturbed and perturbed signal subspaces is discussed
in Nekrutkin 2010, SII, v. 3, 297–319. These theoretical
results are illustrated by several examples related to one-
dimensional signals and the corresponding Hankel matrices.

In this paper we apply this approach to the multidimen-
sional signals and block-Hankel matrices. More precisely, we
suppose that each coordinate of a multidimensional signal
produces the same signal subspace. For such signals, we sug-
gest the solution for asymptotic extraction of this subspace
from the perturbed multidimensional signal series.

A similar procedure is already used in atmosphere sci-
ences to incorporate both spatial and temporal correlations
in multidimensional data.
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1. INTRODUCTION

The general scheme of the signal-subspace approach,
studied in [1], can be explained as follows. Consider
a one-dimensional or multidimensional “signal” FN =
(x0, . . . , xN−1). This series is linearly transformed into L×K
“signal matrix” H. We suppose that the signal FN and the

transformation FN �→ H are such that d
def
= rankH <

min(L,K). Then the linear space U
⊥
0 spanned by the

columns of matrix H contains important information about
the series FN . U⊥

0 is further referred to as signal subspace.
Assume that we observe the perturbed series FN (δ) =

FN+δEN , where EN = (e0, . . . , eN−1) is a “noise” series and
δ stands for a formal perturbation parameter. Thus, instead
of the “signal matrix” H we work with the perturbed matrix
H(δ) = H+ δE, where the “noise matrix” E is constructed
from the series EN in the same manner as H is built from
the series FN .

Consider the Singular Value Decomposition (briefly,
SVD) of H(δ). If δ is small, then continuity considerations
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show that the linear space U⊥
0 (δ) spanned by the left singu-

lar vectors for the d largest singular values of this SVD can
serve as an approximation of U⊥

0 .
Though general results on the proximity of U⊥

0 and U
⊥
0 (δ)

are already proved in [1, sect. 2], all examples in [1] are ded-
icated to one-dimensional signals FN and Hankel matrices
H, H(δ).

These examples were of the same structure. We con-
sider an infinite one-dimensional real-valued signal series
F = (x0, x1, . . . , xn, . . .) which is governed by a minimal
linear recurrent formula of order d. Then finite segments
FN = (x0, x1, . . . , xN−1) of the series F are transformed
into signal L×K Hankel matrices

H = HN =

⎛
⎜⎜⎜⎝

x0 x1 . . . xK−1

x1 x2 . . . xK

...
...

. . .
...

xL−1 xL . . . xN−1

⎞
⎟⎟⎟⎠ ,(1.1)

where N → ∞, L depends on N and K = N − L + 1.
All signal matrices have the same rank d in assumption
that L and K are sufficiently big. Linear d-dimensional
spaces, spanned by columns of matrices H stand for U

⊥
0 =

U
⊥
0 (N).
The similar procedure is accomplished for the perturbed

series F(δ) = F + δE where E stands for some noise series.
The result of this transformation is perturbed Hankel ma-
trix H(δ) and the linear space U

⊥
0 (δ). The proximity of U⊥

0

and U
⊥
0 (δ) is studied with the help of the corresponding pro-

jection operators P⊥
0 and P⊥

0 (δ) using classical perturbation
results [2].

In this paper we consider multidimensional signals with
equal signal subspaces for all coordinate series. Each coordi-
nate signal is perturbed by some additive error series. Then
the resulting multidimensional series is transformed into the
corresponding block-Hankel matrix. Singular Value Decom-
position gives us approximate basis of the common signal
subspace.

As in [1], the precision of approximation is measured in
terms of the sine of the largest principal angle between the
perturbed and unperturbed signal subspaces.

Note that similar computational procedure is widely used
in atmospheric science to incorporate both the spatial and
the temporal correlation in data (see the original paper [4]
and the review [5] for details).
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Just as in the paper [1], we consider our results as a step
to the theoretical foundation of some subspace-based meth-
ods, such as MSSA in the style of [6] or different methods
for the the parameter estimation of multidimensional sig-
nals (see, for example, [7], where some of these methods are
briefly described).

2. MAXIMAL AND MINIMAL POSITIVE
EIGENVALUES

In the same way as for one-dimensional series, the asymp-
totic behavior of positive eigenvalues of large matrices play
the essential role in the whole consideration. In this section
we present several general results on this problem as well as
examples related to block-Hankel matrices. The examples
are used in Section 3 devoted to main results of the paper.

2.1 General statements

Let us start with two simple assertions formulated as lem-
mas for convenience of references.

Consider a matrix G : RK �→ R
L and denote d = rankG.

Suppose that

G =

d∑
k=1

PkQ
T
k(2.1)

with some Pk ∈ R
L and Qk ∈ R

K , where the vectors
P1, . . . , Pd (and the vectors Q1, . . . , Qd) are linearly inde-
pendent. Let ‖Z‖ stand for the Euclidean norm of the vector
Z. Denote Xi = Pi/‖Pi‖, Yi = Qi/‖Qi‖,

X = [X1 : . . . : Xd], Y = [Y1 : . . . : Yd],(2.2)

U = [P1 : . . . : Pd], and V = [Q1 : . . . : Qd]. Also, set

ΠP =

⎛
⎜⎜⎜⎝
‖P1‖ 0 . . . 0
0 ‖P2‖ . . . 0
...

...
. . .

...
0 0 . . . ‖Pd‖

⎞
⎟⎟⎟⎠ ,

ΠQ =

⎛
⎜⎜⎜⎝
‖Q1‖ 0 . . . 0
0 ‖Q2‖ . . . 0
...

...
. . .

...
0 0 . . . ‖Qd‖

⎞
⎟⎟⎟⎠ ,

and ΠPQ = ΠP ΠQ. Lastly, denote

C = XTXΠPQY
TYΠPQ(2.3)

and C ′ = UTUVTV.

Lemma 2.1. Let λ be a positive eigenvalue of the matrix
GGT, and let λ correspond to an eigenvector Z. Then
1. λ is the eigenvalue of the matrix C and λ corresponds to
the (non-null) eigenvector XTZ.
2. λ is the eigenvalue of the matrix C ′ and λ corresponds
to the (non-null) eigenvector UTZ.

Proof. 1. Note that G = XΠPQY
T and GGTZ =

XΠPQ YTYΠPQ XTZ = λZ. Therefore,

λXTZ = XTGGTZ =
(
XTXΠpqY

TYΠpq

)
XTZ = CXTZ.

Since GGTZ �= 0, then XTZ �= 0.
2. In view of the equalityG = UVT,GGTZ = UVTVUTZ
and

λUTZ = UTGGTZ =
(
UTUVTV

)
UTZ = C ′UTZ.

Since GGTZ �= 0, then UTZ �= 0.

Corollary 2.1. The set of positive eigenvalues of the L× L
matrix GGT coincides with the spectrum of the d × d ma-
trices C and C′.

Now consider a sequence of d× d matrices Cn such that
all eigenvalues of matrices Cn are positive for any n and

denote by λ
(n)
max and λ

(n)
min maximal and minimal eigenvalues

of the matrix Cn.

Lemma 2.2. 1. Assume that an → +∞ and Cn/an → M1.

If the matrix M1 is not nilpotent, then λ
(n)
max/an → θ1 > 0,

where θ1 is the maximal eigenvalue of the matrix M1.
2. Assume that bn → +∞ and bnC

−1
n → M2. If the matrix

M2 is not nilpotent, then λ
(n)
min/bn → 1/θ2 > 0, where θ2 is

the maximal eigenvalue of the matrix M2.

Proof. 1. The continuity considerations show that all eigen-
values of the matrixM1 are real and non-negative. SinceM1

is not nilpotent, then some of them are positive. Now the as-
sertion follows from the fact that XTCnX/an → XTM1X
uniformly on the set {X ∈ R

d such that ‖X‖ = 1}.
2. The second assertion is proved in the same manner taking

in consideration that λ
(n)
min is the maximal eigenvalue of the

matrix C−1
n .

The next proposition is the particular case of Lemma 2.2
for matrices discussed in Lemma 2.1.

Consider a sequence of Ln ×Kn matrices G = Gn with
fixed d = rankG. As in Lemma 2.1 we use representa-
tions G =

∑d
k=1 PkQ

T
k with some Pk ∈ R

L and Qk ∈ R
K ,

where the vectors P1, . . . , Pd (and the vectors Q1, . . . , Qd)
are linearly independent. (Vectors Pk and Qk depend on
n, still we ignore this dependence in our notation.) Let
σj stand for ‖Pj‖‖Qj‖. It is convenient to assume that
σ1 ≥ σ2 ≥ . . . ≥ σd−1 ≥ σd.

Define matrices X = X(n), Y = Y(n), ΠP = Π
(n)
P , ΠQ =

Π
(n)
Q , ΠPQ = Π

(n)
PQ, and C = Cn as earlier. Note that for

any n, matrices Cn have the fixed size d× d.
Lastly, denote by λmax and λmin maximal and minimal

positive eigenvalues of the matrix GGT.

Proposition 2.1. Assume that XTX → A and YTY → B,
where both A and B are invertible.
1. Assume that σ1 → ∞ and σj/σ1 → cj for any j. Set
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Λmax =

⎛
⎜⎜⎜⎝
1 0 . . . 0
0 c2 . . . 0
...

...
. . .

...
0 0 . . . cd

⎞
⎟⎟⎟⎠

and

M1 = AΛmaxBΛmax.(2.4)

If the matrix M1 is not nilpotent, then λmax/σ
2
1 → θ1 > 0,

where θ1 is the maximal eigenvalue of the matrix M1.
2. Assume that σd → ∞ and σd/σj → c′j for any j. Set

Λmin =

⎛
⎜⎜⎜⎝
c′1 0 . . . 0
0 c′2 . . . 0
...

...
. . .

...
0 0 . . . 1

⎞
⎟⎟⎟⎠

and

M2 = ΛminB
−1ΛminA

−1.(2.5)

If the matrix M2 is not nilpotent, then λmin/σ
2
d → 1/θ2 > 0,

where θ2 is the maximal eigenvalue of the matrix M2.

Proof. 1. By Corollary 2.1, the set of positive eigenvalues of
the matrix GGT coincides with the spectrum of the d × d
matrix C = XTXΠPQY

TYΠPQ.
Since XTX → A, YTY → B and

1

σ1
ΠPQ =

1

σ1

⎛
⎜⎜⎜⎝
σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σd

⎞
⎟⎟⎟⎠ → Λmax ,

then C/σ2
1 → M1. Therefore the result follows from the first

assertion of Lemma 2.2.
2. Note that matrices XTX and YTY are strictly positive
definite and hence invertible. This means that

C−1 = Π−1
PQ

(
YTY

)−1
Π−1

PQ

(
XTX

)−1
.

Since matrices A and B are of full rank and

σd Π
−1
PQ = σd

⎛
⎜⎜⎜⎝
1/σ1 0 . . . 0
0 1/σ2 . . . 0
...

...
. . .

...
0 0 . . . 1/σd

⎞
⎟⎟⎟⎠ → Λmin ,

then σ2
d C

−1 → M2. The second assertion of Lemma 2.2
finishes the proof.

Corollary 2.2. The following remark helps to verify the
conditions of Proposition 2.1. Assume that XTX → A
and YTY → B, where both A and B are invertible. Let
A = {aij}di,j=1, A−1 = {αij}di,j=1, B = {bij}di,j=1 and

B−1 = {βij}di,j=1. Since A and B are strictly positive defi-
nite, the diagonal elements of these matrices are positive.
1. If all diagonal elements of the matrix Λmax are positive,
then detM1 �= 0 and λmin/σ

2
1 tends to the minimal eigen-

value of the matrix M1.
2. If all but the first diagonal elements of the matrix Λmax

are equal to zero, then the matrix C1 is not nilpotent and
λmax/σ1 → a11b11.
3. If all but the last diagonal elements of the matrix Λmin

are equal to zero, then the matrix C2 is not nilpotent and
λmin/σd → 1/(αdd βdd).

Proof. The first statement of the corollary immediately fol-
lows from the first assertion of Proposition 2.1. The two
remaining statements are similar. Let us demonstrate the
first of them. Describe matrices A and B by their columns:

A =
[
A1 : . . . : Ad

]
, B =

[
B1 : . . . : Bd

]
.

Then

C1 = AΛmaxBΛmax =
[
A1 : 0 : . . . : 0

][
B1 : 0 : . . . : 0

]
=[

C1 : 0 : . . . : 0
]

with C1 =
(
a11b11, . . . , ad1 b11

)T
. The latter matrix is not

nilpotent and its maximal eigenvalue equals a11b11.

2.2 Examples: eigenvalues of some
block-Hankel matrices

Consider the two-dimensional series of length N with

components x
(1)
n and x

(2)
n , 0 ≤ n ≤ N − 1. For a certain

L ∈ {2, . . . , N}, let G(i) be the “trajectory” (Hankel) ma-
trix

G(i) =

⎛
⎜⎜⎜⎜⎝

x
(i)
0 x

(i)
1 . . . x

(i)
K−1

x
(i)
1 x

(i)
2 . . . x

(i)
K

...
...

. . .
...

x
(i)
L−1 x

(i)
L . . . x

(i)
K+L−2

⎞
⎟⎟⎟⎟⎠(2.6)

of the series x
(i)
n and put G = [G(1) : G(2)]. Lastly, let λmax

and λmin stand for the maximum and minimum positive
eigenvalues of the matrix GGT.

Lemma 2.3. 1. Consider the two-dimensional series with
components

x(1)
n =

r1∑
m=1

αm cos(2πωmn), x(2)
n =

r2∑
k=1

βk cos(2πνkn),(2.7)

where ωm, νk ∈ (0, 1/2), αm, βk �= 0, ωi �= ωj and νi �= νj
for i �= j.

Then there exist Λmax ≥ Λmin > 0 such that

λmax/LK → Λmax, λmin/LK → Λmin

as N → ∞ and min(L,K) → ∞.
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2. Consider two polynomial series

x(1)
n =

p1∑
j=0

γjn
j , x(2)

n =

p2∑
m=0

βmnm(2.8)

with γp1 , βp2 �= 0 and p1 ≥ p2. If L/N → α ∈ (0, 1) then
there exist θmax ≥ θmin > 0 such that

N−2p1−2λmax → θmax, N−2p1−2λmin → θmin.

3. Consider exponential signals with components

x(1)
n =

p∑
�=1

α�a
n
� , x(2)

n =

p∑
�=1

β�a
n
� ,(2.9)

where a1 > . . . > ap > 1, αi, βi �= 0. Then λmax/a
2N
1 and

λmin/a
2N
p tend to positive constants as min(L,K) → ∞.

Proof. The demonstrations of all assertions are similar. To
avoid elementary but laborious calculations we present only
the general line of the proof.

First of all, we express the matrixG in the form (2.1) with
the appropriate vectors Pk and Qk. Note that the rank d of
this matrix does not depend on the length N of the series
under consideration provided that N is sufficiently big.

Note that d = 2 card (N1 ∪ N2) with N1 = {ω1, . . . , ωr1}
and N2 = {ν1, . . . , νr2} for the series (2.7), d = p1 + 1 for
the series (2.8) and d = p for the series (2.9).

Then we apply the first assertion of Lemma 2.1 with
Corollary 2.1 and therefore reduce our eigenvalue problem
from the L × L matrix GGT to the d × d matrix (2.3). To
find the asymptotic behavior of maximal and minimal eigen-
values of the matrix (2.3) as N → ∞, we use Lemma 2.2
and Proposition 2.1 with its Corollary 2.2.

More precisely, it can be checked that matrices XXT

and YYT (see (2.2) for their definition) tend to invert-
ible matrices A and B as N → ∞. Moreover, matrices
(2.4) and (2.5) are not nilpotent. Thus we can use Propo-
sition 2.1. By this proposition, λmax ∼ maxj ‖Pj‖ ‖Qj‖ and
λmin ∼ minj ‖Pj‖ ‖Qj‖ as N → ∞.

Lemma 2.4. Let

e(1)n =

∞∑
j=−∞

bj ε
(1)
j+n, e(2)n =

∞∑
j=−∞

cj ε
(2)
j+n,(2.10)

where ε
(i)
n are i.i.d. random variables, defined on the same

probability space (Ω,F,P). Assume that Eε
(i)
n = 0, Dε

(i)
n = 1,

and E|ε(i)n |3 < ∞.
Additionally, it is supposed that

∑
j |bj | < ∞,

∑
j b

2
j = 1,∑

j |cj | < ∞, and
∑

j c
2
j = 1.

If max(L,K) → ∞, then there exist Ω′ ∈ F with P(Ω0)=
1 and a constant C such that for any ω ∈ Ω0

lim sup
N

‖G‖
N lnN

≤ C.

Proof. It can be easily seen that the maximal singular value
of the matrix (G(1) : 0) is equal to the maximal singular
value of G(1). Analogously,

∥∥(0 : G(2))
∥∥ =

∥∥G(2)
∥∥.

Applying [3, th. 1] we see that almost surely

lim sup
N

‖G(i)‖
N lnN

≤ Ci

for i = 1, 2 and certain constants C1, C2.
Since G = (G(1) : 0) + (0 : G(2)) then

lim sup
N

‖G‖
N lnN

≤ lim sup
N

‖G(1)‖+ ‖G(2)‖
N lnN

≤ C = C1 + C2

with probability 1.

Remark 2.1. It is worth mentioning that the random se-

quences
{
ε
(1)
n

}
and

{
ε
(2)
n

}
in (2.10) are not assumed to be

independent.

Remark 2.2. Though both lemmas 2.3 and 2.4 are formu-
lated for two-dimensional series, the analogous results hold
for m-dimensional series with m > 2.

3. ON THE COMMON PART OF SEVERAL
SIGNAL SUBSPACES

For 1 ≤ i ≤ m let us consider m real-valued series F
(i)
N =

(x
(i)
0 , x

(i)
1 , . . . , x

(i)
N−1) and the corresponding Hankel matrices

Hi defined by the right-hand side of (2.6).
All series together are described by the block-Hankel ma-

trix H = (H1 : . . . : Hm).

If each of series F
(i)
N is governed by a certain (minimal)

LRF of order di and if L = L(N) and K are big enough,
then the linear space U

⊥
0 spanned by the columns of matrix

H has some fixed dimension d for any L and K.
Note that here Hankel matrices H1, . . . ,Hm are put side

by side to form the matrix H and we use their columns
to define U

⊥
0 . This corresponds to the general construction

described in [1]. The other possible way to build H is to
stack Hi one on the top of the other. Then U

⊥
0 must be

spanned by the rows of the matrix H.
We call U⊥

0 the signal subspace of the multidimensional

signal (F
(1)
N , . . . , F

(m)
N ). Of course, U⊥

0 is the smallest linear
space containing all signal subspaces U⊥

i of one-dimensional

series F
(i)
N .

In the same manner as it is described in the Introduc-
tion, each signal series F

(i)
N is perturbed with the help of

some “error” series E
(i)
N , and the resulting perturbed series

F
(i)
N (δ) = F

(i)
N +δE

(i)
N are transformed into the block-Hankel

matrix

H(δ) =
(
H1(δ) : . . . : Hm(δ)

)
=

(
H1 + δE1 : . . . : Hm + δEm

)
= H+ δE.

Taking d leading left singular vectors of the matrix H(δ), we
obtain the perturbed signal subspace U⊥

0 (δ) and our general
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aim is to investigate the behavior of the main principal angle
‖P⊥

0 (δ)−P⊥
0 ‖ between U

⊥
0 (δ) and U

⊥
0 as N → ∞.

Here we restrict ourselves to the case when all signal sub-
spaces U⊥

i coincide. This case can be interpreted as the prob-
lem of extracting the common part of signal subspaces of

the observed series F
(i)
N (δ). For the sake of brevity, we take

m = 2.
More precisely, we consider 3 kinds of two-dimensional

signals:
1) oscillating signals with components

x(1)
n =

r∑
i=1

αi cos
(
2πωin

)
, x(2)

n =

r∑
i=1

βi cos
(
2πωin

)
,(3.1)

where ωl ∈ (0, 1/2), ωi �= ωj for i �= j, |αi| > 0 and |βi| > 0;
2) polynomial signals with components

x(1)
n =

p∑
l=0

αln
l, x(2)

n =

p∑
l=0

βln
l,(3.2)

where p ≥ 1 and βp, αp �= 0, and
3) exponential signals with components defined by (2.9),
where a1 > . . . > ap > 1, αi �= 0, βi �= 0.

Proposition 3.1. Consider the two-dimensional signal with
components defined by (3.1) and assume that min(L,K) →
∞ as N → ∞.

1. Suppose that the “error series” has components

e(1)n =

r1∑
i=1

bi cos
(
2πν

(1)
i n

)
, e(2)n =

r2∑
i=1

ci cos
(
2πν

(2)
i n

)
,

with ν
(1)
i , ν

(2)
i ∈ (0, 1/2) and bi �= 0, ci �= 0.

If the sets {ν(1)i , ν
(2)
j } and {ωi} are disjoint, then

‖P⊥
0 (δ)−P⊥

0 ‖ = |δ|O
(
1/min(L,K)

)

for any δ such that |δ| < δ0 = δ0(bi, ci, αi, βi) and for any
N ≥ N0(δ).

2. If the error components are defined by (2.10), then
‖P⊥

0 (δ)−P⊥
0 ‖ = |δ|O

(√
N lnN/

√
LK

)
for any δ with prob-

ability 1.

Proof. 1. Let μmin, μmax be minimal and maximal positive
eigenvalues of the matrix HHT and set νmax = ‖EET‖.
Denote

Θ1 =

√
νmax

μmax
, Θ2 =

μmax

μmin
, Θ = Θ1Θ2,

and Δ = 1/ lim supN (ΘΘ1). Then Δ > 0 in view of the first
assertion of Lemma 2.3. Set

CLi =
(
1, cos(πωi), . . . , cos((L− 1)πωi)

)T
,

SLi =
(
0, sin(πωi), . . . , sin((L− 1)πωi)

)T
.

If μ is a positive eigenvalue of HHT, then each eigenvector
Uμ,j , corresponding to this eigenvalue has the form

Uμ,j =
∑
i,j

(
a
(μ,j)
Li CLi + b

(μ,j)
Li SLi

)
,

where 1 ≤ j ≤ dμ, dμ is the multiplicity of μ, and the
number of pairs (i, j) equals 2r.

We specify coefficients a
(μ,j)
Li , b

(μ,j)
Li by conditions that

‖Uμ,j‖ = 1 and UT
μ1,j1

Uμ2,j2 = 0 for different pairs (μ1, j1),

(μ2, j2). Then Pμ =
∑

j Uμ,jU
T
μ,j , where Pμ is the projec-

tion operator on the eigenspace corresponding to positive
eigenvalue μ of the matrix HHT.

It is easy to check that uniformly in L

‖Uμ1,j1U
T
μ2,j2EiE

T
i ‖ = O(K)

for i = 1, 2 and any pairs (μ1, j1), (μ2, j2).
Since EET = E1E

T
1 +E2E

T
2 , then uniformly in L

‖Uμ1,j1U
T
μ2,j2EiE

T
i ‖ = O(K)(3.3)

also for i = 1, 2 and any pairs (μ1, j1), (μ2, j2).
Let S0 =

∑
μ>0 Pμ/μ be the pseudoinverse to HHT.

Since all μ have the order O(LK) as L,K → ∞, then
‖S0EET‖ = O(1/L) in view of (3.3).

Lastly, direct calculations show that ‖HET‖ = O(L).
Therefore, we can apply [1, Proposition 3.2]. By this propo-
sition,

‖P⊥
0 (δ)−P⊥

0 ‖ = |δ|O
(∥∥HET

∥∥/μmin + |δ|
∥∥S0EET

∥∥)

for δ < δ0 = Δ/4. As it was already noticed, μmin has the
order LK as L,K → ∞, and the first assertion is proved.

2. To prove the second assertion, we use both lemmas 2.3
and 2.4 as well as [1, Proposition 3.1]. This proposition af-
firms that under condition Θ → 0 as N → ∞,

lim sup
N

Θ−1‖P⊥
0 (δ)−P⊥

0 ‖ ≤ 8C|δ|

for any δ and some constant C > 0. In view of Lemma 2.3,
Θ2 = μmax/μmin → Λmax/Λmin > 0, while (see Lemma 2.4)
Θ1 =

√
νmax/μmax ≤

√
N lnN/LK with probability 1.

Therefore, the second assertion is also proved.

Proposition 3.2. Consider the two-dimensional signal with
components defined by (3.2) and assume that L/N → α ∈
(0, 1) as N → ∞.

1. If the error series is determined by (2.7), then
‖P⊥

0 (δ)−P⊥
0 ‖ = |δ|O

(
N−p

)
for any δ.

2. If the error components are defined by (2.10), then
‖P⊥

0 (δ) − P⊥
0 ‖ = |δ|O

(√
lnNN−p−1/2

)
with probability 1

for any δ.

Proof. In view of the first assertion of Lemma 2.3, νmax/LK
tends to some positive constant. On the other hand, the
second assertion of the same Lemma 2.3 shows, that μmax 
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N2p+2 and μmin  N2p+2. Therefore,

Θ =

√
νmax

μmax

μmax

μmin


√
LKN−p−1  N−p → 0

as N → ∞. Applying [1, proposition 3.1], we see that

lim sup
N

Θ−1‖P⊥
0 (δ)−P⊥

0 ‖ = O
(
|δ|

)
,(3.4)

and the proof is complete.
2. The second assertion is proved in the same manner

taking into account that νmax = O(
√
N lnN) almost surely

in view of Lemma 2.4.

Proposition 3.3. Consider the two-dimensional exponen-
tial signal with components defined by (2.9) under the re-

striction τ
def
= a1/a

2
p < 1. Assume that min(L,K) → ∞.

1. If the error series is defined by (2.7), then

‖P⊥
0 (δ)−P⊥

0 ‖ = |δ|O
(√

LK τN
)

for any δ as N → ∞.
2. If the error components are defined by (2.10), then

‖P⊥
0 (δ)−P⊥

0 ‖ = |δ|O
(
N
√
lnN τN

)
with probability 1 for any δ.

Proof. 1. In view of the third assertion of Lemma 2.3,
μmax  a2N1 and μmin  a2Np . The first assertion of the

same lemma tells that νmax  LK. Thus Θ 
√
LK τN and

(3.4) gives us the result.
2. The second assertion is proved in the same manner

taking into account that νmax = O(
√
N lnN) almost surely

in view of Lemma 2.4.
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