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Iterative algorithms for weighted and unweighted
finite-rank time-series approximations

NIKITA ZVONAREV* AND NINA GOLYANDINA® T

The problem of time series approximation by series of fi-
nite rank is considered from the viewpoint of signal extrac-
tion. For signal estimation, a weighted least-squares method
is applied to the trajectory matrix of the considered time
series. Matrix weights are chosen to obtain equal or approx-
imately equal weights in the equivalent problem of time-
series least-squares approximation. Several new methods are
suggested and examined together with the Cadzow’s itera-
tive method. The questions of convergence, computational
complexity, and accuracy are considered for the proposed
methods. The methods are compared on numeric examples.
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1. INTRODUCTION

Consider the problem of extracting a signal S =
(81,...,8n) from an observed noisy series X = S+ N, where
S is governed by a linear recurrence relation (LRR) of or-
der r:

T
sn:E a;Sp—i, m=r+1,...,N; a. #0.
i=1

Generally, series, which are governed by LRRs, may be writ-
ten in a parametric form

(1) Sp = Z Pi(n) exp(a;n) cos(2rw;n + 1),

where P;(n) are polynomials of n. However, a parametric re-
gression approach for the problem does not lead to accurate
estimation of parameters due to instability of estimates.

It is known that methods based on signal subspace esti-
mation (subspace-based methods) work well [2, 20, 5, 11].
These subspace-based methods use the following approach.
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Let us fix a window length L, 1 < L < N,set K = N—L+1,
and build the trajectory matriz for the series S:

S1 S9 SK

52 S3 SK+1
S = .

SL SL+1 SN

Note that S € ‘H, where H is the set of Hankel matrices with
equal values on their anti-diagonals ¢ + j = const. Let S be
governed by an LRR of order r, r < min(L, K), and be not
governed by an LRR of smaller order. Then rank S = r and
therefore S is a Hankel matrix of low-rank r. The column
space of S, that is, the signal subspace, provides estimates
of a; and w; in (1) by the ESPRIT method [17, 13] applied
to S.

Let X be the trajectory matrix of the series X. Then the
problem of estimation of S and the signal subspace can be
considered as a problem of approximation of the matrix X
by a Hankel matrix of rank not larger than r:

(2)

IX -Y||z - min ,
rank Y <r
YeH

where || - ||r is the Frobenius norm.

Many papers are devoted to this problem, e.g., [3, 16,
19, 7] among others, where the problem is called Structu-
red Low-Rank Approximation. Numerical solutions of the
problem are iterative; e.g., the Cadzow iterative method [3]
consists of alternating projections to the sets of Hankel ma-
trices and of matrices of rank not larger than r. The tar-
get function is not unimodal in such a class of problems,
and the convergence to the global minimum is not guar-
anteed; despite this, the problem (2) is considered to be
well-researched, though it still has many open questions.

Note that the problem (2) is equivalent to the problem
of weighted approximation of the series X = (x1,...,2n):

N
(3) Zwi(xi — ) — Y:mfrlllkigér,
1=1 YEH
where
7 fori=1,...,L —1,
(4) w; =< L fori=1L,....K,
N—-i+1 fori=K+1,...,N,
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and Y is the trajectory matrix of the series Y.

The weights (4) at both ends of the series are smaller
than that in the center, i.e. the ordinary least-square prob-
lem (2) for matrices corresponds to a weighted least-squares
problem for series.

The aim of this paper is to consider methods which solve
the problem (3) with equal weights instead of w; and then
to compare the constructed methods in terms of accuracy of
the signal estimation. All described methods are iterative. If
one is interested in a signal estimate, which is not necessarily
governed by an LRR, then the first iteration can be taken
as a low-cost estimate of the signal. Hence, the described
methods are compared by accuracy of the signal estimation
at the first iteration and in the limit. Note that singular
spectrum analysis (SSA) [2, 20, 5, 11, 6, 13] applied to the
problem of signal estimation can be represented as the first
iteration of the Cadzow method.

The structure of the paper is as follows. In Section 2,
the problem of approximating a matrix by a Hankel rank-
deficient matrix is considered. The common structure of it-
erative alternating-projection algorithms is described, ap-
proaches to construction of the projectors are given, the
convergence theorem is proved.

In Section 3, the relation between the problems of ap-
proximation of time series and of their trajectory matrices
is described. The relationship between weights in equivalent
weighted least-squares problems is also given. Section 4 con-
tains the suggested time-series approximation algorithms. In
Section 5, a numeric comparison of algorithms on a typical
simulated example is performed. Section 6 contains an ex-
ample with analysis of real-life data.

The paper is summarized and conclusions are drawn in
Section 7. Supplementary results on SSA separability, which
has a connection with the convergence rate, are proved in
Appendix A.

2. APPROXIMATION BY RANK-DEFICIENT
HANKEL MATRICES

2.1 Common scheme of iterations

Consider the problem of projecting a point x to a set
H N M in a Hilbert space X with an inner product (-,-),
where H and M are closed under the limit operation, H is
a linear subspace of X, while M is closed with respect to
scalar multiplication, i.e. if z € M, then az € M for any a.
Note that M is not necessarily a linear space or a convex
set.

Thus, the problem is formulated as

(5) [x =yl — m;n overy € HNM,

where || - || is the norm corresponding to the inner product.
To present a scheme of the algorithm for the solution of

this problem, let us introduce the projectors to the subset M

and the subspace H with respect to the norm ||-||: Ty is the

projector to M, Il is the projector to H. Note that if the
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projection to M is not uniquely defined, then we suppose
that in the case of ambiguity any closest point is chosen.
The projector to H is evidently orthogonal, while Il is
orthogonal due to the following proposition.

Proposition 1. Let X be a Hilbert space, M C X be
a subset closed with respect to scalar multiplication, I1x4
be the projection operator to M. Then for any € X
the following equation (‘Pythagorean equality’) is true:
Iz]* = [z — vzl + [[[Lval?.

Proof. Define y = IIy(x. Since
1l = lx = yII* + llyl* + 2(x — y,¥),

we should prove that (x —y,y) = 0. Assume the opposite:

(x—y,y) #0. Then for v = (x.¥)

(v,y)
and therefore ||x —y||? > ||x — yy]|*:

we have (x —yy,vy) =0

[x—ylI> = Ix — vyl
xy)?” (x-yy)?

v,y) vy -0

=(y,y) —2(x,y) +

Since ~y lies in M according to the property of M, the
contradiction with the fact that y = Ilx(x is the closest
point to x is acquired. O

Remark 1. The proof of Proposition 1 yields that for any
y € M one can perform an adjustment A(y) = %y eM
such that A(y) is not further from x than the original y.

Moreover, A(y) is orthogonal to x — A(y).

Let us consider the iterative method of alternating pro-
jections for the problem (5), which is given by the following
iteration step:

(6)

Vi1 = Hyllpmyy, where y, = x.

In the following theorem, we investigate convergence
properties of the sequence (6).

Theorem 1. Let the conditions of Proposition 1 be fulfilled
and also the set M and the space H be closed under the limit
operation. Then

1 |lyp — Haaygll = 0 as k — +oo, vy, — Ypqall — 0
as k — +o0.

2. Let MNBy be a compact set, where By = {z: ||z]] < 1}
is the closed unit ball. Then there exists a convergent
subsequence of points y; ., Y;,, ... such that its limit y*

belongs to M NH.

Proof. Let us use the following inequalities:
(M) vk = Hmyell = HImyy — Yigal
> ||}’k:+1 - HMYk+1H-

Indeed, since the projection Il x4z is not further from z than
any other point in M and the similar statement is valid for
I3, we have |[IIypyy — 2| > ||z — Iz, where z =y, 4,
and ||y, — z|| > ||z — Iz, where z = IT\1yy,.



1. According to inequalities (7), the sequences

lye — Huyels & = 1,2,..., and [ITymyy, — yiqalls
k=1,2,..., are non-increasing. It is obvious that they
are bounded from below by zero. Therefore, they have
the same limit ¢ due to (7).
Let us prove that ¢ = 0 assuming the opposite ¢ > 0.
Then there exists d > 0 such that ||y, — Dymyill >
d and |[IIamyy, — Yyl > d for any £ = 1,2,.... In
accordance to Proposition 1, the following equality is
valid: [ly,[* = llve — Dmygl® + [Tvy,l*. Since
the space H is linear, the following equality is valid too:
Iyl = 1Ty, — Ty, + [Ty, |2 =
Iaye — Yisal® + [¥esr ] Therefore,

Iy el = IMaay el + Iy — Dyl =
1ve = Ty il? + 1Dy e =Yg I + [[¥esal®

Thus, [ypel* < llyel* — 2d*. Expanding this in-
equality by the same way, we obtain that ||y, ;[|* <
lyill? — 2jd? for any j = 1,2,.... Choose k = 1, and
j = [llygl?/(2d*)] + 1. Then [ly, ;> < 0, which is
impossible. Thus, ¢ = 0.

2. Consider the sequence IIapmyy, & = 1,2,..., which
is bounded, since ||[IIpz| < ||z|| (by Proposition 1)
and ||IIyz| < ||z|| for any z € X. The sequence be-
longs to a compact set, since M is closed with respect
to scalar multiplication, and we can resize the unit
ball to cover the sequence. Hence, a convergent sub-
sequence (ILry;, ) can be chosen; denote by y* € M
its limit and notice that ||[Ilamy;, — ¥, 11l = [[TTmy, —
Oy pmy;, || — 0 as k — +oo. Since H is closed, and
X is a Banach space, the projector II4 is a continuous
mapping. Taking into consideration that ||z — IIxz|| is
a composition of continuous mappings, we obtain that
ly* —IIyy*|| =0, y* € MNH. Finally, II4 is a contin-
uous mapping and therefore the sequence (IlxIIrmy;, )
converges to y*. Thus, y; 4 is the required subse-
quence. O

Note that Proposition 1 was in fact proved in [7] for a
particular case, while inequalities (7) are extensions of [4,
inequalities (4.1)].

Let us apply Theorem 1 to the case of matrix approxi-
mation by rank-deficient Hankel matrices. Let X = REXK,
i.e. X be the space of matrices of size L x K equipped with
some inner product, H C REXK be the space of Hankel ma-
trices, M = M, C REXK be the set of matrices of rank not
larger than r. Then the iterative step (6) of the method of
alternating projections has the following form:

Y1 = Uyl Yy, where Yo =X € REXK,

It is well known that the set M, is closed with respect to
the conventional Frobenius norm and therefore is closed to
any norm, since in the matrix space all the norm are equiv-
alent. The closed unit ball is obviously a compact set in
the finite-dimensional Euclidean space. Therefore, the con-

clusion of Theorem 1 holds. Note that the existence of a
convergent subsequence can be deduced from [3]. However,
our proof of this fact is based on different assumptions; in
particular, we stress on the Pythagorean equality for projec-
tions to sets which are closed with respect to multiplication.

In this paper, we consider norms (semi-norms) in X gen-
erated by weighted Frobenius inner products in the form,
which is parameterized by a matrix M with positive (non-
negative) entries m, ;:

L K
(Y.Z)m = Z Zml,kyl,kzl,k-

=1 k=1

(8)

Therefore, the conclusion of Theorem 1 holds if the weights
m; ; are positive.

2.2 Evaluation of projections

Let us consider the weighted norm || - ||m generated by
. L K
(8), that is, [|IX||* = [|X[[}y = 32021 Xokmy muki s
2.2.1 Projector Iy

It is easy to show that Il can be evaluated explicitly
using the following proposition.

Proposition 2. For Y = 114 Y we have

bis = Dotk Ly k=it TUKYLK
1] .
Zl,k: I+k=itj MUk

It is impossible to derive an explicit form of x4, in the
case of arbitrary weights. Consider one specific case and
suggest an iterative approach to the general case.

2.2.2 Case of the explicit form of the projector II a4,

For equal weights m;; = 1, denote II, = ITpy, . It is well-
known that the projector I, Y can be evaluated as the sum
of r leading components of the singular value decomposi-
tion (SVD) of the matrix Y. More precisely, let L < K for
simplicity and Y = UXVT be the SVD, where U is an or-
thogonal matrix of size L x L, 3 is a quasi-diagonal matrix of
size L x K with non-negative diagonal elements (o1, ...,0r)
in non-increasing order, and V is an orthogonal matrix of
size K x K. Denote %, = (07,,), where

r ()
Y

Then the projection can be evaluated as II,Y = UX, VT,
The next proposition describes the case when the evalua-
tion of a projector II4, is reduced to the application of the
projector IL,.

ifi=ji<r,

otherwise.

Proposition 3. Let there exist a symmetric positive
semidefinite matriz C of size K X K such that for a given
M the equality ||Z||3; = tr(ZCZT) holds for any matriz
Z € RLXE . Suppose that the column space of the matriz C
contains the column space of a matrix Y. Then

Iterative algorithms for weighted and unweighted finite-rank time-series approximations 7



(9) Iy, Y = (ILB)(0&),

where Og is a matriz such that C = OLO¢, B = YO(,
(O%)T denotes Moore-Penrose pseudoinverse to the matriz
ol

Proof. The proof is a direct consequence of the fact that the

considered norm is generated by an oblique inner product
in the row space of Y, see details in [12, 1]. O

Remark 2. In fact, the condition ||Z|3; = tr(ZCZT) of
Proposition 3 can be fulfilled only if C is diagonal and M
has a specific form, see Proposition 4.

2.2.3 The projector II o4, in the general case

Since the projector can not be found explicitly for ar-
bitrary weights m,;, iterative algorithms are used in the
general case. One of these algorithms is described in [18].
Denote by ® the element-wise matrix product.

Algorithm 1. Input: initial matriz Y, rank r, weight ma-
triz M, stop criterion STOP.
Result: Matriz Y as an estimate of IIag, Y.

1. Yo=Y, k=0.

2. Y1 =1L (YOM+Y,©(Q—M)), where Q € REXE
is the matriz of all ones;  k «+ k+ 1.

3. If STOP, then Y = Yy, else go to 2.

Note that in the case, when m;; are equal to either 0 or 1,
Algorithm 1 is an EM-algorithm [18]. Formally, it does not
matter what values are in Y at positions of zero weights.
However, these values can influence the algorithm conver-
gence rate and the limiting values.

3. TIME SERIES AND PROBLEM OF
MATRIX APPROXIMATION

3.1 Problem statement for time series

Consider a time series X = (z1,...,zn) of length N > 3.
Let us fix a window length L, 1 < L < N, denote K =
N — L+ 1. Also consider a sequence of L-lagged vectors:
(10) Xi= (i, wiyn1)", =1 K.

yoeeey

Define an L-trajectory matriz of the series X as X = [X :

Suppose that 0 < r < L. We say that the series X has
L-rank r if its L-trajectory matrix X has rank r. Obviously,
the series X can have L-rank r only when

(11)

Further we suppose that L is not larger than K, since the
problems of approximation of X and XT coincide.

Let X be the set of time series of length IV, X'y be the
set of time series of length N which has L-rank not larger
than r. For a given time series X € Xy, a window length
L,1 < L < N, and a rank r satisfying the condition (11),
consider the problem:

r < min(L, K).
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N
(12) fo(Y) = min,  f(Y) = Zqz'(ﬂ?i — )%,

YeEX?,

where Y = (y1,...,y~n) and ¢; > 0, i = 1,...,N. The
squared Euclidean distance to X in RY is one of reason-
able target functions. It coincides with f,(Y) when ¢; = 1,
i=1,...,N.

Adjustment. Let an estimate Y € X' of the solution of
the problem (12) for approximation of X € Xy be obtained.
Then, according to Remark 1, the estimate can be adjusted
to obtain a better estimate Y* = A(Y), which is called an
adjustment of Y.

3.2 Equivalent target functions

Let X = (z1,...,2n) € Xy be a time series of length N,
X = (Z;%) € H. Then there exists a one-to-one mapping 7T
between Xy and H, which can be written as

T(X) = X, where Cﬁlyk = Ti+k—1-

Due to this one-to-one mapping, the problem (12) of time
series approximation can be expressed in terms of matrices.

In the space Xy of time series, the target function (12)
can be given explicitly f4(Y) = ||Y —X||2 using a (semi)inner
product

N
(13) (Y, Z)q = Z%’yiziv

i=1

where ¢; are positive (non-negative) weights.

Consider two (semi)inner products in the space RE*¥ of
matrices which are extensions of the conventional Frobenius
inner product.

Denote, as before,

K
(14) <Y7 Z>1,M = <Y’ Z>M = Z Z myeYi,k21k
=1 k=1

RL><K

for a matrix M € with positive (non-negative) ele-

ments and also

(15) (Y,Z)sc = tr(YCZ")

for a positive (semi)definite symmetric matrix C € RE*K,

Note that if the matrix M consists of all ones, i.e. m; ; =
1, and if C is the identity matrix, then both inner products
coincide with the standard Frobenius inner product.

Proposition 4. 1. Let Y = TY), Z = T(Z).
(Y,Z)q = (Y,Z)1,m if and only if

qi = Z my k-

1<I<L
1<k<K
I+k—1=i
2. The equality (Y, Z)1m = (Y, Z)2 ¢ is valid if and only
if the matriz C = diag(cy,...,ckx) and

Then

(16)



(17) ml,k = Ck.-
Proof. To prove the first statement, note that

L K

E E Mg, jYi+j—12i4+5—1-

i=1 j=1

<Y7 Z>1,M =

The proof of the second statement is a consequence of the
fact that only for a diagonal matrix C the corresponding
inner product has a form appropriate to (14) (see also Re-
mark 2):

K
E CLYL k21, O
1

Mn

(Y,Z)s,

=1

k=
Corollary 1. If m;; =1,1=1,.

the equivalent series wezghts g, 1=1,...,
are equal to w; introduced in (4).

..,L,j=1,... K, then
N, given by (16)

Note that the matrix norm ||-||2,c with a diagonal matrix
C is a particular case of the norm | - ||; m. However, this
particular case is of special interest, since the correspond-
ing approximation problem can be solved by means of the
ordinary SVD, see Proposition 3.

Remark 3. If the condition (16) is carried out and all
weights ¢; and m; ; are positive, then the problem (12) is
equivalent to the problem

(18)  fm(Y

) — _ min
YeM,nH’

(YY) =

L K
sz $l,k*yl,k)2~

=1 k=1

4. ALGORITHMS

In this section we suggest a range of algorithms for solving
the problem (12). In the model of series X = S+ N, where S
is a time series of finite rank r and N is a noise series, results
of the algorithms serve as estimates of the signal S.

4.1 Cadzow iterations

The aim of the Cadzow algorithm [3] is the least-squares
approximation (18) of the trajectory matrix of a series with
respect to the norm || - ||1 M with the weights m;; =1 (i.e.,
the algorithm solves the problem (2), which, by Corollary 1,
corresponds to the problem (3); or, the same, to the prob-
lem (12) with the weights ¢; = w; given in (4)). The draw-
back of this algorithm consists in the unequal series weights
w;: they are larger in the center than at both ends of the
time series. Note that smaller window lengths leads to more
uniform weights.

Note that in the case of unit weights m;; = 1, the pro-
jections Il and IInq, = II,. can be easily calculated, see
Sections 2.2.1 and 2.2.2.

Algorithm 2 (Cadzow iterations). Input: Time series X,
window length L, rank r, stop rule STOP1 (e.g., given by
quantity of iterations).

Result: Approzimation S of the time series X by a finite-
rank series of rank r.

1. Yo=TX, k=0.
2. Yiq1 = IIxIL Yy, k+ k+1.
3. If STOP1, then S = T~ 1Y}y; else go to 2.

4.2 Weighted Cadzow iterations

Let ¢; =1,i=1,..., N, be chosen in (12). According to
Proposition 4, the problem (12) is equivalent to the problem
(18) with the weights

1

b
Wi4k—-1

(19) my g =

where w; are introduced in (4).

Algorithm 3 (Weighted Cadzow iterations). Input: Time
series X, window length L, rank r, stop rules STOP1 for
outer iterations and STOPZ2 for inner iterations.

Result: Approzimation S of the time series X by a finite-
rank series of rank r.

1. YO = TX, k=0.

2. Obtain Z using Algorithm 1 applied to Yy for estima-
tion of llng, Y1 with stop criterion STOP2.

3. Yyp1 =yZ, k+ k+1.

4. If STOP1, then S= T=YY}; else go to 2.

4.3 Extended Cadzow iterations

Let us introduce the Extended Cadzow algorithm, which
presents a different approach to the problem (12) with equal
weights than the Weighted Cadzow algorithm does. For-
mally, let the series X be extended to both sides on L — 1
measurements with some values having zero weights, i.e.,
the added measurements are considered as gaps. Thus, the
length of the extended series X is N + 2L — 2, and the size
of its trajectory matrix X is L by N + L — 1 (instead of
N — L +1 for the non-extended trajectory matrix).

For the extended series, Algorithm 1 with weights m; ; =
T 1 is applied to )~(, where the series I has ones in the place
of the series X and zeroes in positions of gaps, i.e.

1,
i =0

Algorithm 4 (Extended Cadzow iterations). Input: Time
series X, window length L, rank r, stop criteria STOP1 for
outer iterations and STOP2 for inner iterations, left and
right extension values Ly _1 and Rp_;.

Result: Approximation S of the time series X by a finite-
rank series of rank r.

1. Yo = T X, where X = (Lp—1,X,Rp_4), k=0.

2. Obtain Z using Algorithm 1 applied to Y, for estima-
tion of Ilng, Yy, with stop criterion STOP2.

3. ?k'-‘rl = Hqiz, k+ k+1.

if1<i+j—L<N,

otherwise.

Iterative algorithms for weighted and unweighted finite-rank time-series approximations 9



4. Construct Yy consisting of the columns of the ma-
triz Y, from L-th to N-th ones. If STOPI, then
S =T-YYy; else go to 2.

4.4 Oblique Cadzow iterations

Algorithms considered in this section generalize the con-
ventional Cadzow algorithm based on the Euclidean inner
product to the use of an oblique inner product given by a
matrix C. These algorithms can be applied if the conditions
of Proposition 3 hold.

Algorithm 5 (Oblique Cadzow iterations). Input: Time
series X, window length L, rank r, matrix C =
diag(ci, ..., ck), where K = N—L+1, stop criteria STOP1.

Result: Approzimation S of the time series X by a finite-
rank series of rank r.

1. Yo=TX, k=0.

2. Yiy1 = Uyllpg, Y, k < k+ 1, where Ilpq, is given
by (9). R

3. If STOP1, then S = T ~1Yy; else go to 2.

To solve the problem (12) of approximation of time series
with equal weights g;, a proper matrix C should be chosen.
It is found that there is no such full-rank matrix; therefore,
a few variants providing approximately equal weights are
considered below.

4.4.1 Cadzow(«) iterations

The following lemma describes a case, when the condi-
tions of Proposition 4 are fulfilled and therefore the problem
(12) with equal weights g; is equivalent to the problem (18).

Lemma 1 ([8]). Let X € Xy, X = T(X) € REXK If h =
N/L is integer, then for ¢; = 1 we have ||X||2 = || X]|3 ¢,
where C = diag(cy, . . ., cx) with diagonal elements

1, ifk=jL+1 for somej=0,...,h—1,
Ck = .
0, otherwise.

This approach has an essential drawback. Since zeroes
are placed at the diagonal of the diagonal matrix C, C has
rank h, which is considerably smaller than K. The change
of the diagonal zeroes to some small « is suggested in [8] to
improve rank-deficiency.

Let

(20) ¢k = k(@)

_J1, ifk=jL+1forsomej=0,...,h—1,
B «, otherwise.

Then the matrix C(a) = diag(ci(«),...,cx(a)) with the
diagonal given in (20) is of full rank. However, the corre-
sponding series weights are not equal.

Let Cadzow(c) denote the iterations performed by Al-
gorithm 5 with the diagonal matrix C = C(«). Note that
for & = 1 the matrix C(«) is the identity matrix and the

10 N. Zwonarev and N. Golyandina

Cadzow(«) iterations coincide with the conventional Cad-
zow iterations.

Degenerate case « = 0. Equality (17) provides the form of

a matrix M to obtain || - ||[im = || - [|2,c in the case a = 0:
1 00 010 1
1 00 010 1

(21) M=
T 1
100 --- 010 1

Remark 4. The optimization problem (18) with the matriz
M given in (21) corresponds to the search of an arbitrary
(not necessary Hankel) matriz of rank not larger than r,
which is closest in the Frobenius norm to the matrix

1 TL+1 TK

(22)

L Zar TN

This problem is quite different from the problem (12) of ap-
prozimation by finite-rank series. Therefore, the Cadzow(0)
algorithm does not solve the problem (12).

4.4.2 Cadzow-C iterations

Let us correct the rank-deficiency of C(0) by another way.

To obtain equal series weights ¢; = 1 in (12), we should
choose the weight matrix M in (18) with weights m; ; de-
fined in (19). Generally, there is no a matrix C providing
the equivalent norm || - ||2,c = || - ||1,m, since the matrix C
should be diagonal and therefore the matrix M should have
columns consisting of equal elements (see Proposition 4).

To obtain approximately equal weights, the following ap-
proach is suggested. Consider the set Z C REXK of matrices
with columns consisting of equal elements and find M such
that

M — M| — min,
Mez

where || - || is the Frobenius norm.

The solution M is evidently constructed as the averag-
ing of the matrix M by columns. As a result, the resul-

tant matrix C such that || - loe = Il - ll, 5 has the form

C= diag(éy,. .., ¢k ), where
1L
(23) ék = Z l_zlmhk.

We call Algorithm 5 with the matrix C = C Cadzow-C
iterations.

4.4.3 Weights ¢; in (12) produced by the algorithms

Since the norm || - ||2,c with C(a) or C in place of C
does not correspond to equal series weights, let us find ¢;(a)
and ¢; from the equalities || Y|, & = [| Y|l and | Y ||2,c(a) =



[IY|g(a)- Formulas for calculation are provided in Proposi-
tion 4.
The following statements are valid.

Proposition 5. Let h = N/L be integer, C(a) =
diag(ci(a), ..., cx(®)), where ¢;(a) are given in (20), 0 <
a < 1. Then the weights q;(a)) have the form

1+(i—Va fori=1,...,L—1,
gi(a) = +(L-1a fori=L,...,K—1,
+ (N —-i)a fori=K,...,N.

Proof. The proof is a straightforward consequence of Propo-
sition 4. U

To illustrate the form of the weights ¢;, let us formulate
propositions with simplifying conditions.

Proposition 6. Let N > 3(L—1). Then the diagonal matriz
weights ¢ defined in (23) are equal to

( +35 1;), l<k<L-1,
/I, L<k<K-L+1,
éK—k+1, K-L+2<k<K.

Cr =

Proof. To prove the proposition, it is sufficient to substitute
my, i defined in (19) to (23). O

Proposition 7. Let N > 4(L — 1). Define
(S i+ H - H)), 1<i<L-1,
Ui = ;

1 2Lo® L Ly —Hy o y), L<i<2L-1,

where Hy = 0, and H; = Z;Zl 1/j is the i-th harmonic
number. Then the weights §; have the form:

s, 1<i<2L -1,
G =11, 9L <i< N —2L +1,
Gn_iy1, N—2L+2<i<N.

Proof. For 1 <i¢ < L — 1, we have

. =1 &1 i+t
i=xo-2p (i X )

j=1 Jj=1
. 1 L—1 min(k,z) 1 B Z(Z+ 1) . 1 L-1 mln(kvl)
k=1 j=1 =l
i(i+1) i
_ —(1+ Hp_1 — H;).
TE +L( +Hr )

For L <i < 2L — 1, changing the order of summation, we
obtain

L L—1 .
R . . i—L+1
G; = § CiL+j = E Cj + 7
j=1 j=i—L+1

v
o X ¥,
o FARY Y
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Figure 1. Normalized series weights q; corresponding to C(«)

and C.
. L—-1 L—1 _
i—L+1 1 1
s ek HD DRFEL DY Z 2
j=t—L+1 j=i—L+1 k=j
k

i—L+1 2L —i—32 1 1
o L + 212 tI Z Z k

k=i—L+1 j=i—L+1
2iL—i—i2+L—
212 L

i
=1+ (Hp—1 — Hi_pr).
The weights ¢; for N — 2L + 2 < ¢ < N are calculated
by symmetry. The center series weights are evidently equal

to 1. O

Let us normalize series weights so that their sums equal 1.
The normalized weights ¢;(«), for @« = 1 (the conventional
Cadzow iterations), & = 0 (equal ¢;), « = 0.1, and §; for
N =40, L = 8, are shown in Figure 1.

4.5 Comments to algorithms. Comparison

Let us comment and compare the following methods: the
Weighted Cadzow iterations (Algorithm 3), the Extended
Cadzow iterations (Algorithm 4), the Cadzow(«) iterations,
0 < a < 1, coinciding with the conventignal Cadzow itera-
tions if @ = 1, and finally the Cadzow-C iterations (Algo-
rithm 5). Note that the window length L is a parameter for
each of the considered methods.

e Theoretical convergence. Theorem 1 provides conditions
for the existence of a subsequence, which converges to
a matrix from M, N H. This theorem is applicable di-
rectly to Algorithm 5 if all weights are positive and to
Algorithm 3 if to suppose that the weighted projection
to M. can be calculated with no error. It is easy to ex-
tend Theorem 1 to be applicable to Algorithm 4 where
the weights for added values are zero, if the sequence
Y. instead of Y}, is considered.

o Convergence in practice. Although the theory says
about the existence of converging subsequences, the nu-

Iterative algorithms for weighted and unweighted finite-rank time-series approximations 11



merical convergence of the constructed sequences took
place in all the training examples.

o Comparison by accuracy. The methods are iterative,
and convergence to the global minimum in the cor-
responding least-squares problem does not necessarily
take place. Therefore, different algorithms correspond-
ing to the same weights can yield different approxima-
tions. Hence, the comparison of the algorithms by the
approximation accuracy makes sense.

o Signal estimation and series approximation. The pro-
posed methods can be considered as both approxima-
tion methods of the original series by finite-rank series
and weighted least-squares methods for signal estima-
tion. Note that generally the approximation quality can
contradict the estimation accuracy due to possible over-
fitting.

o Algorithms and series weights. The Weighted Cadzow
and Extended Cadzow methods try to solve the prob-
lem (12) with equal weights ¢;. The other methods work
with weights with different levels of non-uniformity.

o Algorithms and computational costs. All suggested al-
gorithms are iterative. However, each outer iteration
in the Weighted Cadzow and Extended Cadzow algo-
rithms has a step with inner iterations. Therefore, these
algorithms are very time-consuming. The other algo-
rithms do not contain inner iterations; moreover, they
have similar computational costs of one iteration and
can be compared by the number of iterations. Compu-
tational complexity is described by both complexity of
one iteration and the number of iterations. Evidently,
the necessary number of iterations is determined by the
convergence rate.

e Fast implementation. There is a very fast implementa-
tion of iterations of the Cadzow algorithm suggested
in [15] and extended in [10]. However, it can be shown
that the same implementation approach can be applied
to the Cadzow(a) and Cadzow-C algorithms. There-
fore, fast implementations of these algorithms still can
be compared by the number of iterations.

o Use of the first iteration for signal estimation. One iter-
ation of the Cadzow iterations is exactly the well-known
singular spectrum analysis (SSA) method, which can
solve a significantly wider range of tasks than the iter-
ative method does. By analogy, together with the lim-
iting series, we are interested in the signal estimation
by means of the first iteration of the considered algo-
rithms. In a sense, each iterative method produces a
modification of SSA. The first iteration is generally not
of finite rank; however, it has low computational com-
plexity and can provide a reasonable accuracy of the
produced estimates.

e Separability, the first iteration and the convergence rate.
Separability of a signal, which is an important con-
cept of the SSA method, means the ability of a method
to (approximately) separate the signal from a residual.
From the viewpoint of the iterative methods, the sep-
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arability quality is closely related to the accuracy of
the first iteration of the method. On the other hand,
we can expect that the accuracy of the first iteration is
connected with the method’s convergence rate. There-
fore, the separability accuracy is connected with the
convergence rate of iterative methods.

e Separability and choice of parameters. The connection
between the separability and the window length L is
well studied for the SSA method, see [9]. In particular,
the optimal window lengths are close to half of the series
length. A small window length L provides poor sepa-
rability. We can expect that this is valid for the other
considered algorithms. The Cadzow(a) method has an
additional parameter a.. Influence of the parameter oo on
separability in the class of Cadzow(«) iterations is in-
vestigated in Appendix A. The studied example of sep-
arability of a sine-wave signal from a constant residual
shows that small values of a provide poor separability.

o Equal series weights and choice of parameters. Let us
consider the dependence of series weights produced by
the Cadzow(c) algorithm on the window length L or
«. Proposition 5 shows that more uniform weights are
achieved for small L and small «. This is exactly the
case corresponding to poor separability.

e Fqual series weights and accuracy of signal estimation.
Thus, the weights, which are close to equal ones, cor-
respond to the algorithms, which either have a time-
consuming iteration step with inner iterations or are
slowly convergent; therefore such algorithms have high
computational complexity. There are no theoretical re-
sults about the behavior of the estimation accuracy in
dependence on the algorithms and their parameters.
However, the numerical study shows that the best ac-
curacy is achieved in the algorithms corresponding to
the weights, which are equal or almost equal.

Remark 5. The adjustment A, which is suggested in Sec-
tion 3.1 for improvement of estimates, can be applied to the
resultant signal estimation S for any considered algorithm.
The inner product used in Remark 1 for definition of A is
the standard Euclidean inner product not depending on the
weight matriz M used in the algorithms, since this norm ||- ||
corresponds to the problem (12) with equal weights q;. We
will call the algorithms with the adjustment A adjusted algo-
rithms. For example, let the result of the k-th iteration of the
Cadzow iterations be expressed as Sy = T (Tl ) FTX.
Then the result of the k-th iteration of the adjusted Cadzow
iterative method is S}, = A(Sk).

5. NUMERICAL COMPARISON

Let us carry out numerical experiments for analysis of
the performance of the considered methods. The comparison
of the methods was performed on several examples, with a
sine-wave signal and an exponentially-modulated sine-wave
signal. Since the obtained comparison results are very simi-
lar, only the results for a sine-wave signal are presented.
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Figure 2. The RMSE of the signal estimate depending on the
number of iterations, o = 1.

Suppose that the signal S = (s1,...,sy) of length N = 40

and rank r = 2 has the form:

(24) si:5sin%, i=1,...,N,

and the series X = S 4+ N is observed, where N is Gaussian
white noise with mean equal to 0 and variance equal to o.
Accuracy of a signal estimate S is measured as the root-
mean-square error (RMSE) using 1000 simulations. The
comparison is performed on the same simulated samples.
It was checked that the stated comparison results are signif-

icant at the 5% level of significance.

Convergence rate and accuracy. We start with the in-
vestigation of the Cadzow-C method and the Cadzow(a)
methods for several values of «, since they have not inter-
nal iterations and therefore their computational costs can
be compared by the number of external iterations. These
methods use an oblique SVD; the Cadzow(1) method is the
conventional Cadzow method. Figure 2 shows the rate of
convergence for « = 0.1 and @ = 1 and for two different
window lengths L. The RMSE values are depicted versus
the number of performed iterations.

One can see that a method with a smaller limit error
is the one with a slower convergence rate. For parameters
involved to the simulations, the Cadzow(0.1) method with
the window length L = 8 has the smallest limit error. At the
same time, these values of parameters correspond to both
the slowest convergence and the most uniform weights.

Note that the limit errors do not differ strongly; they
change from 0.31 (o = 0.1, L = 8) in the best case to 0.35
(e =1, L = 20) in the worst case. However, the error equal
to 0.35 is achieved at the first iteration in the worst case,
while it takes 4-5 iterations to achieve the error 0.35 in the
best case.

Accuracy vs number of iterations for Cadzow(a). The
same signal (24) was taken to investigate how the RMSE
and the convergence rate depend on « for the Cadzow(«)
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Figure 3. The RMSE and the average number of iterations

depending on « (log-scale), L = 20, o = 1.
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Figure 4. The RMSE and the average number of iterations
depending on « (log-scale), L = 20, o = 3.

algorithms with L = 20. The following STOP1 criterion was
1T ) =T (Ya) 12 18

taken: N

Figure 3 shows that smaller values of o lead to more ac-
curate estimates of the signal, but increase their computa-
tional costs. This general rule sometimes does not work for
very small values of the parameter «, see Figure 4, where
the noise standard deviation was increased from 1 to 3. One
can see that for a smaller than 0.1 the dependence of the es-
timation errors on « changes. It seems that the threshold «,
which corresponds to the change of the accuracy behaviour,
depends on the 1-iteration separability of the signal from
noise. Indeed, as we can expect, for small « the separability
quality is poor (see an example in Appendix A).

Comparison by accuracy at the first iteration and in the
limit. Let us now involve the Extended and Weighted Cad-
zow iterations and examine the spreading of the estima-
tion errors along the series. The maximal number of iter-
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Figure 6. The RMSE of signal estimate at each series point;
iteration 100; L = 20, o = 1.

ations equal to 100 is taken for the stop criterion STOP1
(this choice yields the error close to the limiting value);
the stop criterion STOP2 for inner iterations is as follows:
W < 107%. The initial left and right extended val-
ues L;,_; and Ry _1 in the Extended Cadzow iterations are
obtained using the vector SSA-forecasting method [11, Sec-
tion 2.3.1].

Figures 5 and 6 show the dependence of the RMSE on
numbers of the series points. Figure 5 shows the errors at
the first iteration, Figure 6 shows the errors at the 100-
th iteration. It is clearly seen that the Extended Cadzow
method is the most precise in both cases. The Cadzow(1)
and Cadzow-C methods are the best at the first iteration
among the set of methods without inner iterations. The best
method in the limit (after 100-th iteration, the errors do
not change significantly further) is the Cadzow(0.1) method;
this is not surprising according to Figure 2.

Errors for signal and original series approrimations.
Since we used the least-squares method for estimation of

the signal S, consider Table 1 which shows the RMSE for S
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Table 1. Comparison of methods by the RMSE, L = 20,
o =1, for the signal (24)

Method S, k=1 X, k=1 S, k=100 X, k= 100
Cadzow, a = 1 0.3758  0.0195  0.3782 0.9664
Cadzow, « = 0.1 0.4329  0.7040  0.3311 0.9506
Cadzow C 0.3655  0.8925  0.3559 0.9583
Weighted Cadzow  0.3644  0.8801  0.3455 0.9549
Extended Cadzow 0.3361  0.0030  0.3189 0.9471

Table 2. Comparison of adjusted methods by the RMSE,
L =20, 0 =1, for the signal (24)

Method S,k=1 X, k=1 S, k=100 X, k=100
Cadzow, o =1 0.3714 0.9175 0.3667 0.9622
Cadzow, o = 0.1 0.4385 0.7023 0.3276 0.9493
Cadzow C 0.3626 0.8909 0.3478 0.9555
Weighted Cadzow  0.3640 0.8883 0.3380 0.9523
Extended Cadzow 0.3370 0.9030 0.3184 0.9469

as an estimate of S (i.e., the signal estimation errors) and
the RMSE for S as an estimate of the original series X (i-e.,
the series approximation errors). Here k is the number of
iterations, L = 20. Table 1 confirms the conclusions about
comparison of the methods by accuracy of signal estimation.
Also it is seen that the quality of original series approxima-
tion does not always correspond with the quality of signal
estimation. For example, overfitting is clearly present for
the Cadzow(0.1) iterations at the first iteration. However,
the methods are ordered identically by errors of series ap-
proximation and signal estimation in the limit. This means
that minimization of the error of approximation likely yields
minimization of the error of signal reconstruction. The same
ordering of the errors is very important for practice, since for
real-life data we can choose a better method and its param-
eters by smaller approximation errors. Certainly, a proper
rank should be set before the comparison of the methods.

The same simulations were performed with the adjusted
algorithms (see Remark 5). One can see in Table 2 that
the accuracy is almost the same. By its definition, the ad-
justment always improves the approximation of the origi-
nal series; however, the influence on the accuracy of signal
approximation is ambiguous (the adjustment improves the
accuracy at the 100-th iteration; results are various at the
first iteration).

Thus, the numerical examples mostly confirm the state-
ments itemized in Section 4.5.

6. REAL-LIFE EXAMPLE

Let us consider the series ‘Fortified wine’ (fortified wine
sales, Australia, monthly, from January 1980 till December
1993) [14]. This series has the following structure: a signal
consisting of an exponential trend and a seasonality of a
complex form and noise. We compare the Cadzow(«) al-



gorithms for different o and demonstrate that a smaller «
provides a smaller approximation error.

In Section 5 we considered a simple example with a signal
consisting of one sine wave. However, the real-life time series
has a much more complex form. To check if the minimization
of the approximation errors can diminish the signal estimate
errors, let us construct a model of the ‘Fortified wine’ series
and use this model for simulation experiments.

The series ‘Fortified wine’ has been analyzed in several
papers (see e.g. [10] for a bit longer time series). A typi-
cal analysis of the time series by Basic SSA [11, Chapter
1] with window length L = 84 shows that the leading 11
eigentriples correspond to the signal. The ESPRIT method
suggested in [17] (see also [13, Section 2.8.2], among oth-
ers) applied to the found signal subspace provides estimates
of exponential bases p,, for the trend and for the modu-
lations of seasonal components in the series components,
where the i-th term in the mth component is given in the
form C,,pt, or Cppl, sin(2mwpmi + ¢p), @ = 1,...,N. The
ESPRIT method also estimates the frequencies w,,; how-
ever, for seasonal components the possible frequencies are
known and therefore we changed the frequency estimates to
nearest values in the form j/12. The coefficients C,, before
the found series components and the phases ¢,, of seasonal
components were estimated by the least-squares method.
Noise is taken multiplicative, that is, its variance increases
proportionally to the trend. Thus, the model of the signal
S=(s1,...,8n5), N =168, is estimated as

s; = 3997.74 (0.9967)"
. 2m
+ 117475 (0.9942)" sin( - — 2.249)

+425.75 (1.0001)¢ sin(% +2.333)

+211.55 (1.004)’ sin(%z +1.677)

211
— +1.533
2.4 + )

. i
+361.07 (0.9884)° sin(%z —2.901).

+169.33 (1.0007)" sin(

The model of the whole series X = (z1,...,2n) is ; =
s; + 353.17(0.9967)%;, where ¢;, i = 1,..., N, is Gaussian
white noise with mean equal to 0 and variance equal to 1. We
set L = 84 and apply the Cadzow(«) algorithm with a@ =
1,0.8,0.6,0.4,0.2,0.1,0.05. The following STOP1 criterion

is taken in Algorithm 5: 1T () =T (V)2 < 1074, The

algorithm was applied to 1,000 in(fépendent realizations of
the model and also to the original ‘Fortified wine’ series.
Table 3 contains the RMSE of model signal estimates (the
column S), the RMSE of model series approximations (the
column X) and the approximation accuracy for the ‘Fortified
wines’ series (the column X*).

Table 3 shows that for a € [0.2,1] a smaller approxima-
tion error yields a smaller reconstruction error. However, for
the smaller values « the tendency is broken. Probably, small

Table 3. Comparison of the errors of signal estimation and
series approximation using the Cadzow methods, for the
‘Fortified wine' series and the model realizations

Method: S X X*
Cadzow, a =1 127.71 263.20 283.58
Cadzow, a = 0.8 127.18 262.98 283.25
Cadzow, a = 0.6 126.42 262.63 282.72
Cadzow, a = 0.4 125.39 262.06 281.77
Cadzow, a = 0.2 124.10 260.94 279.55
Cadzow, a = 0.1 125.09 260.52 276.70
Cadzow, a = 0.05 129.44 261.47 274.00
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Figure 7. ‘Fortified wine' series: application of the
Cadzow(0.2) algorithm.

values of a do not provide a sufficient separability from noise
to converge toward the global minimum.

Figure 7 depicts the approximation of the original ‘Forti-
fied wine’ series X* obtained by the Cadzow(0.2) algorithm.
The dotted line corresponds to the original series, while the
solid line shows the finite-rank estimate of the signal of rank
11. One can expect that the Cadzow(0.2) algorithm provides
one of the most accurate finite-rank estimates of the signal.

7. CONCLUSION

Several known and new iterative algorithms for approxi-
mation of a noisy signal by a finite-rank series were consid-
ered in the present paper. The approximation was performed
by a least-squares method and its result was considered as
an estimate of the signal.

We used equivalent statements of the problems for the
weighted matrix approximation and the weighted time-series
approximation, where equal weights in the least-squares ma-
trix problem correspond to unequal weights in the least-
squares time series problem, and vice verse.

A wide range of the iterative algorithms was reviewed
with the aim to obtain equal weights in the least-squares
method applied to time series. Equal weights were formally
achieved in the algorithms using inner iterations, which con-
verge to a local minimum only and also make the algorithms
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very time-consuming. It appears that the use of methods
without inner iterations (Cadzow-type methods) leads to
approximately equal weights only.

The convergence of outer iterations by subsequences was
proved for the reviewed algorithms.

The comparison of the accuracy and convergence rate was
performed by simulation on the example of a noisy sine-wave
signal. The simulation results confirm the theoretical conclu-
sions. It appears that time-series weights, which are closer
to equal, provides in the limit more time-consuming and si-
multaneously more accurate methods. Also, the simulations
confirm that the convergence rate is in accordance with the
separability rate. Therefore, for the Cadzow-type methods,
there is the correspondence between slow convergence, poor
separability, inaccurate approximation at the first iteration
and high accuracy in the limit; and vice verse. In particular,
for the Cadzow iterations, which produce singular spectrum
analysis for signal reconstruction at the first iteration, the
window length equal to half of the series length gives poor
accuracy in the limit and one of the best reconstructions at
the first iteration.

APPENDIX A. SEPARABILITY OF
SINE-WAVE SIGNAL FROM
CONSTANT RESIDUAL FOR

THE CADZOW(a)
ITERATIONS

Let us consider modifications of SSA, which are produced
by the first iteration of the Cadzow(«) iterative algorithm
described in Section 4.4.1. Recall that the Cadzow(1) itera-
tive algorithm produces the conventional Basic SSA method
[11, 13], while the first iteration of the Cadzow(a) algo-
rithm for 0 < a < 1 can be considered as a particular case
of Oblique SSA [12] with the Euclidean inner product in
the column space and a special inner product in the row
space.

Separability of signals from residuals in Basic SSA is
deeply investigated in [11, 9]. Separability of a signal means
the ability of the method to extract the signal. In fact, sep-
arability is related to the accuracy of the signal estimate
obtained at the first iteration of the considered iterative al-
gorithms. Notions of exact, approximate and asymptotic (as
the series length tends to infinity) separability together with
examples of the asymptotic separability rates are introduced
in [11, Sections 1.5 and 6.1] and can be generalized for the
oblique case. In a similar manner as in [11], we will mea-
sure the separability by means of the cosines between L-
and K-lagged vectors of the signal and the residual.

Let C € REXK be a symmetric positive semidefinite ma-
trix, X; and Xy be two different time series of length N,
X! X2 be their trajectory matrices. Define the so-called
correlation coefficient between the i-th and j-th columns as:

(X, X3)

(25) oy = et
I I
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where XF is the i-th column of the matrix X* k= 1,2, (-, )
is the Euclidean inner product, || - || is the Euclidean norm.
Define the correlation coefficient between the i-th and j-th
TOWS as:

(Xl,i, Xz’j)C

(26) Pij = [ X1 X27

’
C

where X% is the i-th row of matrix X*, k = 1,2, and (-, )¢
is the oblique inner product in R generated by a matrix
C as follows: (X,Y)c = XCYT (here X and Y are row
vectors), ||-||c is the norm with respect to this inner product.
We say that the series X; and Xo are weakly e-separable if

(27) max |p:]|) <e.

p = max (
1<i,j<L

C
1%??;(}( |pi,j|7
We are interested in the order of € as N — oo for different
matrices C, where the series Xy, k = 1, 2, consist of the first
N terms of infinite series Xg°.

Here we apply the theory to an example with a sine-
wave signal and a constant residual. By analogy with SSA,
we can expect that the asymptotic separability rate will
be the same if the residual is Gaussian white noise. Thus,
let X° = (cos(2nwk),k = 1,2,...) and X3 = (¢,¢,...).
Consider N — oo and L(N), K(N) — oo such that N =
L+ K — 1. When C is the identity matrix, the answer is
known: € has order 1/ min(L, K), i.e. the rate of separabil-
ity has order 1/N for L proportional to N. This result can
be found in [11, Section 6.1].

Let us consider the separability rate for the Cadzow(«)
iterations introduced in Section 4.4.1.

Remark 6. We will use the following notation: a function
f€0(g(n)) as n — oo if there exist k > 0 and ng > 0 such
that for any n > ng the inequality |f(n)| < k|g(n)| holds;
a function f € Q(g(n)) as n — oo if there exist k > 0 and
ng > 0 such that for any n > ng the inequality |f(n)| >
klg(n)| holds.

Proposition 8. Let X3° = (cos(2nwk),k = 1,2,...), where
0 < w < 0.5, be a sine wave, X3° = (¢, ¢,...) be a constant
series, L(N), K(N) — oo, where N =L+ K -1, h=hy =
IN/L|. Let also 0 < a = a(N) < 1, and C = C(a) be
defined in (20), i.e. C is a diagonal matriz with diagonal
elements:

{17
Cr —
a,

Then

if k=jL+1 forsomej=0,...,h—1,

otherwise,

1. p given by (27) has the following order: p =

0] (max (%, W%)), where

g cos(2rw(j+k—1)),
1<k<K:
Ck:].

Crx =Crny,k(N) = DA

and



Dp x = Dr(ny,x(n)

- i 2 S
= in, Z cos“(2mw(j + k — 1)).
1<k<K:
cp=1
2. If hny is bounded by a constant, then p =
O (max (1, 7))
3. If there exists small 6, 0 < ¢ < 1/2, such

that 2L(N)w € R\ (Ukez[k 8,k +46]) for ev-
ery N, where Z is the set of integers, then p =

0 (max (4, aavrear ) )-

Proof. 1. To prove the theorem, we should evaluate the order
of the expressions:

(28)
c f;?_l cos(2mwk)
Pij = ’
\/ (ZJJrL 1C052(27ka7))
(29)
oL = SR encos(2mw(j + k — 1))
ij =

\/(ZkK—l Ck) (Zszl ¢k cos?(2mw(j + k — 1)))
The following trigonometric equalities hold:
(30)

n 2b
Zcos(ak + b) = csc(a/2) sin(an/2) cos <%) )
k=1

(31)

Zcos (ak+0b) =

(2n + csc(a) sin(2an + a + 2b)

— csc(a) sin(a + 2b)),

for any real a,b and positive integer n. Therefore, since the
series X; is not constant, the numerator in (28) has order
O(1), while the denominator has order Q(L). Thus, we ob-
tain the order 1/L.

To evaluate the order of (29), consider the sum over k
such that ¢, = 1 separately:

K
Z crcos(2rw(j+k —1))
k=1

=(1-a) Z cos(2rw(j + k — 1))

1<k<K:
Ck:1

+ Z acos(2rw(j +k—1))
1<k<K

=(1-a)0(CL i)+ a0(1),

K
> k=

k=1

(1-a)h+akK,

and
K
ch cos?(2rw(j + k — 1))
k=1
=(1-a) > cos’(2mw(j+k—1))
1<k<K:
Ckzl
+ Z acos?(2mw(j + &k — 1))
1<k<K

=(1- a)Q(DLyK) + aQ(K).

2. Cp, i is exactly the maximum of sums, each of h cosine
values; therefore, the absolute value of Cr i is not larger
than h. Hence, if h is bounded by a constant, then |Cf, k| is
bounded by the same constant and therefore Cr,_x = O(1).

3. The condition 2L(N)w € R\ (Ujezlk — 6.k +4])
guarantees that |csc(mL(N)w)| in (30) for CLx and
|csc(2mL(N)w)| in (31) for Dy x are bounded by a con-
stant; therefore, we obtain an upper bound for Cy, x and a
lower bound for Dy k. Thus, Cp x has order O(1), while

Dy, i has order Q(N/L). O
Remark 7. Let wus suppose that we have cho-
sen L(N) such that p defined in (27) has order

max ) Then the optimal choice for L is

1 1
L’ (I—a)N/L+aK

L a(N+1)+\/a;EJIV+J;1))2+4N(17a2). Hence, the rate of

separability has the same order O(1/N) for a(N) — ¢,
where 0 < ¢ < 1 is some constant (note that a smaller
¢ corresponds to a smaller multiplier before 1/N ). In the
case of converging to zero a(N) = O(NP), the rate of
separability becomes equal to O(NP~1) for 0 < 8 < 0.5 and
to O(1/v/'N) for 3> 0.5.
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